Операции с логарифмами. Натуральный логарифм, функция ln x

  1. Проверьте, не стоят ли под знаком логарифма отрицательные числа или единица. Данный метод применим к выражениям вида log b ⁡ (x) log b ⁡ (a) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}} . Однако он не годится для некоторых особых случаев:

    • Логарифм отрицательного числа не определен при любом основании (например, log ⁡ (− 3) {\displaystyle \log(-3)} или log 4 ⁡ (− 5) {\displaystyle \log _{4}(-5)} ). В этом случае напишите "нет решения".
    • Логарифм нуля по любому основанию также не определен. Если вам попался ln ⁡ (0) {\displaystyle \ln(0)} , запишите "нет решения".
    • Логарифм единицы по любому основанию ( log ⁡ (1) {\displaystyle \log(1)} ) всегда равен нулю, поскольку x 0 = 1 {\displaystyle x^{0}=1} для всех значений x . Запишите вместо такого логарифма 1 и не используйте приведенный ниже метод.
    • Если логарифмы имеют разные основания, например l o g 3 (x) l o g 4 (a) {\displaystyle {\frac {log_{3}(x)}{log_{4}(a)}}} , и не сводятся к целым числам, значение выражения нельзя найти вручную.
  2. Преобразуйте выражение в один логарифм. Если выражение не относится к приведенным выше особым случаям, его можно представить в виде одного логарифма. Используйте для этого следующую формулу: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) {\displaystyle {\frac {\log _{b}(x)}{\log _{b}(a)}}=\log _{a}(x)} .

    • Пример 1: рассмотрим выражение log ⁡ 16 log ⁡ 2 {\displaystyle {\frac {\log {16}}{\log {2}}}} .
      Для начала представим выражение в виде одного логарифма с помощью приведенной выше формулы: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) {\displaystyle {\frac {\log {16}}{\log {2}}}=\log _{2}(16)} .
    • Эта формула "замены основания" логарифма выводится из основных свойств логарифмов.
  3. При возможности вычислите значение выражения вручную. Чтобы найти log a ⁡ (x) {\displaystyle \log _{a}(x)} , представьте себе выражение " a ? = x {\displaystyle a^{?}=x} ", то есть задайтесь следующим вопросом: "В какую степень необходимо возвести a , чтобы получить x ?". Для ответа на этот вопрос может потребоваться калькулятор, но если вам повезет, вы сможете найти его вручную.

    • Пример 1 (продолжение): Перепишите в виде 2 ? = 16 {\displaystyle 2^{?}=16} . Необходимо найти, какое число должно стоять вместо знака "?". Это можно сделать методом проб и ошибок:
      2 2 = 2 ∗ 2 = 4 {\displaystyle 2^{2}=2*2=4}
      2 3 = 4 ∗ 2 = 8 {\displaystyle 2^{3}=4*2=8}
      2 4 = 8 ∗ 2 = 16 {\displaystyle 2^{4}=8*2=16}
      Итак, искомым числом является 4: log 2 ⁡ (16) {\displaystyle \log _{2}(16)} = 4 .
  4. Оставьте ответ в логарифмической форме, если вам не удается упростить его. Многие логарифмы очень сложно вычислить вручную. В этом случае, чтобы получить точный ответ, вам потребуется калькулятор. Однако если вы решаете задание на уроке, то учителя, скорее всего, удовлетворит ответ в логарифмическом виде. Ниже рассматриваемый метод использован для решения более сложного примера:

    • пример 2: чему равно log 3 ⁡ (58) log 3 ⁡ (7) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}} ?
    • Преобразуем данное выражение в один логарифм: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) {\displaystyle {\frac {\log _{3}(58)}{\log _{3}(7)}}=\log _{7}(58)} . Обратите внимание, что общее для обоих логарифмов основание 3 исчезает; это справедливо для любого основания.
    • Перепишем выражение в виде 7 ? = 58 {\displaystyle 7^{?}=58} и попробуем найти значение?:
      7 2 = 7 ∗ 7 = 49 {\displaystyle 7^{2}=7*7=49}
      7 3 = 49 ∗ 7 = 343 {\displaystyle 7^{3}=49*7=343}
      Поскольку 58 находится между этими двумя числами, не выражается целым числом.
    • Оставляем ответ в логарифмическом виде: log 7 ⁡ (58) {\displaystyle \log _{7}(58)} .

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)

*Магистрант под научным руководством Исахова А. А., PhD математического и компьютерного моделирования

Задумывались ли вы о том, как люди считали в далёкие времена, когда не было ни калькуляторов, ни компьютеров? Расчёты выполнялись вручную, на бумаге или в уме. Хотя задачи, с которыми они сталкивались, были такими же сложными, как и современные.

Отсутствие вычислительных машин подталкивало древних математиков к упрощению вычислений. Они придумывали таблицы с уже рассчитанными выражениями (например, таблица умножения), искали пути замены сложных операций простыми. Сегодня мы поговорим об одном подобном «упрощении» или о том, как люди научились заменять умножение сложением, а деление – вычитанием. Благодаря этому был изобретён логарифм. Чтобы понять, что это, нужно сделать всего три шага.

ШАГ 1: Упрощать и ещё раз упрощать

Начнём с простого примера.

2 + 2 = 4

Давайте усложним задачу и найдём сумму пяти двоек.

2 + 2 + 2 + 2 + 2 = 10

И с этой задачей мы легко справились. А если нужно найти сумму 1 000 000 двоек? Использование аналогичного метода расчёта займёт уйму места и времени. Но хитрые математики поняли, как это легко сделать. Они придумали операцию умножения. Давайте посмотрим как это выглядит:

2 × 2 × 2 × 2 × 2 × 2 × 2 = 128

Для упрощения этого выражения математики придумали операцию возведения в степень. Ясно, что речь идёт об умножении одного и того же числа на себя n раз, зачем его дублировать и записывать снова и снова? Не легче ли написать так?

Здесь а – основание степени, n – показатель степени. Таким образом, мы значительно укоротили запись. Независимо от величины показателя степени, выражение будет выглядеть весьма лаконично:

Михаэль Штифель (1487–1567) — немецкий математик, внёс значительный вклад в развитие алгебры и таких её областей как прогрессии, возведение в степень и отрицательные числа. Штифель впервые использовал понятия «показатель степени» и «корень». Несмотря на то, что учёный фактически использовал логарифмы, слава первооткрывателя досталась шотладскому математику Джону Неперу (1550–1617).

ШАГ 2: Понять свойства степеней

Как мы уже говорили, древние математики не обременяли себя расчётами каждый раз, когда им нужно было помножить или сложить числа, а использовали таблицы с заранее рассчитанными результатами. Очень удобно! Пользуясь подобной таблицей, немецкий математик Михаэль Штифель заметил интересную закономерность между арифметической и геометрической прогрессией.

Арифмитическая прогрессия 1 2 3 4 5 6 7 8 9 10
Геометрическая прогрессия 2 4 8 16 32 64 128 256 512 1024
Степенная запись 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

Давайте и мы попробуем её увидеть. Ведь эта закономерность позволяет упростить операции умножения и деления . Пусть нам необходимо посчитать произведение двух чисел:

16 × 64 =  ?

Прежде чем браться за расчёты, взгляните на таблицу и найдите эти числа: это члены геометрической прогрессии с шагом 2. Числа, стоящие над ними в верхнем ряду: 4 над 16; 6 над 64 – это члены арифметической прогрессии. Сложим эти числа: 4 + 6 = 10. Теперь смотрим, какое число стоит под цифрой 10 во втором ряду – 1024. А ведь если выполнить наше изначальное задание 16х64, то результат будет равен 1024. Это значит, что, пользуясь таблицей и умея лишь складывать цифры, можно легко находить произведение.

Теперь рассмотрим операцию деления:

Снова посмотрите на таблицу и найдите соответствующие числа из верхнего ряда. Получим 10 и 7 соответственно. Если при умножении мы складываем, то при делении мы вычитаем: 10–7  =  3. Смотрим на число, стоящее под числом 3 во втором ряду, это 8. Следовательно, 1024:128 = 8.

Точно так же можно использовать таблицу для операций возведения в степень и извлечения корня.

Например, нам надо возвести 32 в квадрат. Смотрим на число, стоящее над 32 в верхнем ряду. Получаем 5. Умножаем 5 на 2. Выходит 10, далее смотрим на число, стоящее под 10: 1024. Отсюда 32 2   = 1024.

Рассмотрим извлечение корня. Например, найдём корень третьей степени от числа 512. Над числом 512 в верхнем ряду стоит 9. Разделим 9 на 3, получим 3. Находим соответствующее число во втором ряду. Получим 8. Следовательно, 83 = 512.

Все четыре примера – это следствие свойств степеней, которые можно записать следующим образом:

ШАГ 3: Назовём это логарифм

Разобравшись со степенями, попробуем решить маленькое уравнение:

2 x = 4

Данное уравнение называют показательным . Так как х , который нам необходимо найти, является показателем степени, в которую надо возвести 2, чтобы получить 4. Решение уравнения х  = 2.

Рассмотрим другой аналогичный пример:

2 x = 5

Ещё раз проговорим условие, мы ищем число х, в которое надо возвести 2, чтобы получить 5. Этот вопрос ставит нас в ступор. Решение наверняка существует, например, если нарисовать графики этих функций, то они пересекаются. Но что бы найти его, нам придётся искать его методом проб и ошибок. А это могло занять много времени.

Поэтому древние учёные придумали логарифм, они знали, что решение уравнения существует, но оно не всегда было нужно сразу. Математически это записывается так: х  =  log 2 5 . Вот мы и нашли решение уравнения 2 x   = 5. Ответ: х  =  log 2 5. Если же привести точный ответ, то х = 2,32192809489… , причём эта дробь не заканчивается никогда.

Выражение читается следующим образом: логарифм числа 5 по основанию 2 . Запомнить это легко: основание всегда пишется внизу, и в показательных и в логарифмических записях.

Свойства логарифма

Логарифмы имеют ограничения . В математике существуют два жёстких ограничения.

а) Нельзя делить на ноль

б) Извлекать корень чётной степени из отрицательного числа (так как отрицательное число, возведённое в квадрат, всегда будет положительным).

равносильно записи

a x = b

Ограничения на а

а — это основание, которое нужно возвести в степень x, чтобы получить b.

Если a  = 1. Единица в любой степени будет давать единицу.

А если а меньше нуля? Отрицательные числа — капризные. В одну степень их можно возводить, в другую — нельзя. Поэтому их тоже исключаем. В результате получаем: а > 0; a ≠ 1

Ограничения на b

Если положительное число возвести в любую степень, получим также положительное число. Отсюда: b > 0. x может быть любым числом, так как мы можем возводить в любую степень.

Если b  = 1. то при любом a значение x = 0.

Операции над логарифмами

Учитывая основные свойства степеней, выведем аналогичные и для логарифмов:

Сумма . Логарифм произведения равен сумме логарифмов сомножителей:

Разность . Логарифм частного равен разности логарифмов делимого и делителя:

Степень . Логарифм степени равен произведению показателя степени на логарифм её основания.

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.