Погрешность и точность приближения. Погрешность приближения

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8)


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,5

у=х 2

у ≈2,3

Найдем значение у при х = 1,5 по формуле

у =1,5 2 = 2,25

Приближенное значение отличается от точного на 2,3 – 2,25 = 0,05


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,8

у=х 2

у ≈3,2

Найдем значение у при х = 1,8 по формуле

у =1,8 2 = 3,24

Приближенное значение отличается от точного на 3,24 – 3,2 = 0,04


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

х

1,5

Точное значение у

(по формуле)

1,8

2,25

Приближенное значение у (по графику)

3,24

2,3

3,2

у=х 2

Определение. Абсолютной погрешностью

у = 2,3 А.П. = |2,25 – 2,3| = |- 0,0 5| = 0,05

у = 3,2 А.П. = |3,24 – 3,2| = | 0,0 4| = 0,04


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 1 пуд равна 16,38. Округлите это значение до целых и найдите абсолютную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 2 верста равна 1067 м. Округлите это значение до десятков и найдите абсолютную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 3 . Старинная русская мера длины сажень равна 2,13 м. Округлите это значение до десятых и найдите абсолютную погрешность приближенного значения.

Решение. 2, 1 3 ≈ 2,1

2,13 – точное значение;

2,1 – приближенное значение.

А.П. = | 2,13 2,1 | = | 0,03 | = 0,03


АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Пример 4 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите абсолютную погрешность приближенного значения.


ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Всегда ли можно найти абсолютную погрешность?

АВ ≈ 5,3 см

Найдем длину отрезка АВ

Точного значения длины отрезка АВ мы определить не можем, поэтому и абсолютную погрешность приближенного значения найти невозможно.

В подобных случаях в качестве погрешности указывают такое число, больше которого абсолютная погрешность быть не может.

В нашем примере в качестве такого числа можно взять число 0,1.

ПОЧЕМУ? Цена деления линейки равна 0,1 см и поэтому абсолютная погрешность приближенного значения 5,3 не больше 0,1.


ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в санти-метрах) с точностью до 0,1

АВ ≈ 5,3 см

t ≈ 28 0 с точностью до 1

t ≈ 14 0 с точностью до 2



Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4


ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в сантиметрах) с точностью до 0,1

АВ ≈ 5,3 см

Если х ≈ а и абсолютная погрешность приближенного значения не превосходит некоторого числа h , то число а называют приближенным значением х с точностью до h

х а с точностью до h

х = а ± h



ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

АВ ≈ 5,3 см

с точностью до 0,1

t ≈ 28 0 с точностью до 1

с точностью до 2


Определение . Относительной погрешностью (точностью) приближенного значения называется отношение абсолютной погрешности (точности) к модулю приближенного значения

Для оценки качества измерения можно использовать определения относительной погрешности и относительной точности

l = 100,0 ± 0,1

b = 0,4 ± 0,1


ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение .

Пример 5 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите относительную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38


ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения

Пример 6 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите относительную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3


ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Пример 7 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите относительную погрешность приближенного значения.

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

результата измерений

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. При расчете величины погрешности, особенно с помощью калькуляторов, значение погрешности получается с большим числом знаков. Это создает впечатление о высокой точности измерений, что не соответствует действительности, так как исходными данными для расчета чаще всего являются нормируемые значения погрешности используемого СИ, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности не следует удерживать более двух значащих цифр. В метрологии существуют следующие правила:

1. Погрешность результата измерения указывается двумя значащими цифрами, если первая из них 3 или меньше, и одной - если первая цифра есть 4 и более.

Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней справа цифры, при этом нули, записанные в виде множителя 10 n , не учитываются.

2. Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности. (Например, результат 85.6342, погрешность 0.01. Результат округляют до 85.63. Тот же результат при погрешности в пределах 0.012 следует округлить до 85.634).

3. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним - двумя лишними знаками.

4. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление приводит к ошибкам.

При округлении числовых значений погрешности и результата измерений необходимо руководствоваться следующими общими правилами округления.

Лишние цифры в целых числах заменяются нулями, а в десятичных дробях отбрасываются. (Например, число 165245 при сохранении четырех значащих цифр округляется до 165200, а число 165.245 - до 165.2).

Если десятичная дробь оканчивается нулями, они отбрасываются только до разряда, который соответствует разряду погрешности. (Например, результат измерений 235.200, погрешность 0.05. Результат округляют до 235.20. Тот же результат при погрешности в пределах 0.015 следует округлить до 235.200).

Если первая (считая слева направо) из заменяемых нулями или отбрасываемых цифр меньше 5, остающиеся цифры не изменяются .

Если первая из этих цифр равна 5, а за ней не следует никаких цифр, или идут нули, то, если последняя цифра в округляемом числе четная или нуль, она остается без изменения , если нечетная - увеличивается на единицу . (Например, число 1234.50 округляют до 1234, а число 8765.50 - до 8766).

Если первая из заменяемых нулями или отбрасываемых цифр больше 5 или равна 5, но за ней следует значащая цифра, то последняя остающаяся цифра увеличивается на единицу . (Например, число 6783.6 при сохранении четырех значащих цифр, округляют до 6784, а число 12.34520 - до 12.35).

Особенно внимательно следует относиться к записи результата измерения без указания погрешности, так как записи результата 2.4 10 3 В и 2400В не являются тождественными . Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может находиться в интервале от 2.351кВ до 2.449кВ. Запись 2400 означает, что верны и единицы вольт, следовательно истинное значение напряжения может находиться в интервале от 2399.51В до 2400.49В.

Поэтому запись результата без указания погрешности крайне нежелательна .

Окончательно правила записи результата измерений можно сформулировать следующим образом.

1) При промежуточных вычислениях значения погрешности сохраняют три -четыре значащие цифры.

2) Окончательное значение погрешности и значение результата округляются в соответствии с изложенными выше правилами.

3) При однократных технических измерениях когда учитывается только основная погрешность СИ (СИ используются в нормальных условиях эксплуатации), результат записывается в виде:

(Например, результат измерения напряжения
В, погрешность
В. Результат может быть записан в виде:)

4) При однократных технических измерениях в рабочих условиях, когда по нормативным данным на СИ учитывают основную и дополнительные погрешности и результирующую погрешность определяют по формуле (1.35), результат записывают в виде:

5) При статистических измерениях, когда определяется только величина случайной погрешности нормально распределенных данных в виде доверительного интервала, результат записывается в соответствии с (1.31):

Если границы доверительного интервала несимметрична, то они указываются по отдельности.

Например,

6) При статистических измерениях, когда оцениваются границы неисключенных систематических погрешностей результата (НСП) и доверительный интервал случайной погрешности нормально распределенных данных, но результат используется как промежуточный для нахождения других величин (например, при статистических косвенных измерениях) или предполагается сопоставление его с другими результатами аналогичного измерительного эксперимента, результат записывается в соответствии с (1.39):

если
, то это указывается дополнительно, как в п. 5.

Если границы НСП или границы доверительного интервала несимметричны, то они указываются по отдельности:

7) Если при измерении получены оценки погрешности при условиях, оговоренных в п. 6, но результат является окончательным и не предполагается в дальнейшем анализ его и сопоставление с другими результатами, то он записывается в соответствии с (1.41):

где
определяется по формуле (1.40),

если же
, это указывается дополнительно, как в п. 5.

8) При статистических измерениях, когда оцениваются границы НСП и доверительный интервал случайной погрешности, но при обработке результатов идентифицирован закон распределения, отличный от нормального, оценки значения результата измерения и доверительный интервал случайной погрешности находятся по соответствующим формулам , результат представляется в виде аналогичном представлению результата в п. 6, но дополнительно приводится информация о виде закона распределения опытных данных.

9) Если как в п. 8 обрабатываются результаты статических измерений и заранее известно, что закон распределения опытных данных отличается от нормального, но действий по идентификации вида реального закона по какой-либо причине не предпринимается, то результат может быть представлен в виде, аналогичном представлению результата в п. 6, но доверительный интервал случайной погрешности определяется в соответствии с рекомендациями ГОСТ 11.001-73 как
при доверительной вероятности
.

Запись результата может выглядеть, например, так:


(при
);
;
;
.

Доверительная вероятность, при которой определяется суммарный НСП -
, в этом случае может отличаться от
.

Тема “ ” изучается в 9 классе бегло. И у учащихся, как правило, не до конца формируются навыки ее вычисления.

А ведь с практическим применением относительной погрешности числа , в равно степени как и с абсолютной погрешностью, мы сталкиваемся на каждом шагу.

Во время ремонтных работ измерили (в сантиметрах) толщину m коврового покрытия и ширину n порожка. Получили следующие результаты:

m≈0,8 (с точностью до 0,1);

n≈100,0 (с точностью до 0,1).

Заметим, что абсолютная погрешность каждого из данных измерений не больше 0,1.

Однако 0,1 – это солидная часть числа 0,8 . Как для числа 100 она представляет незначительную ч асть. Это показывает, что качество второго измерения намного выше, чем первого.

Для оценки качества измерения используется относительная погрешность приближенного числа.

Определение.

Относительной погрешностью приближенного числа (значения) называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность договорились выражать в процентах.

Пример 1.

Рассмотрим дробь 14,7 и округлим ее до целых. Также найдем относительную погрешность приближенного числа:

14,7≈15.

Для вычисления относительной погрешности, кроме приближенного значения, как правило, нужно еще знать и абсолютную погрешность. Абсолютная погрешность не всегда бывает известна. Поэтому вычислить невозможно. И в таком случае достаточно бывает указать оценку относительной погрешности.

Вспомним пример, который был приведен в начале статьи. Там были указаны измерение толщины m ковролина и ширина n порожка.

По итогам измерений m ≈0,8 с точностью до 0,1. Можно сказать, что абсолютная погрешность измерения не больше 0,1. Значит, результат деления абсолютной погрешности на приближенное значение (а это и есть относительная погрешность) меньше или равно 0,1/0,8 = 0,125 = 12,5%.

Т. о., относительная погрешность приближения ≤ 12,5%.

Аналогичным образом вычислим относительную погрешность приближения ширины порожка; она не более 0,1/100 = 0,001 = 0,1%.

Говорят, что в первом случае измерение выполнено с относительной точность до 12,5%, а во втором – с относительной точностью до 0,1%.

Подведем итог.

Абсолютная погрешность приближенного числа - это разность между точным числом x и его приближенным значением a.

Если модуль разности | x a | меньше некоторого D a , то величину D a называют абсолютной погрешностью приближенного числа a .

Относительная погрешность приближенного числа - это отношение абсолютной погрешности D a к модулю числа a , то есть D a / |a | = d a .

Пример 2.

Рассмотрим известное приближенное значение числа π≈3,14.

Учитывая его значение с точностью до стотысячных долей, можно указать его погрешность 0,00159… (запомнить цифры числа π поможет )

Абсолютная погрешность числа π равна: | 3,14 3,14159 | = 0,00159 ≈0,0016.

Относительная погрешность числа π равна: 0.0016/3.14 = 0,00051 = 0,051%.

Пример 3.

Попробуйте самостоятельно вычислить относительную погрешность приближенного числа √2. есть несколько способов, чтобы запомнить цифры числа “квадратный корень из 2″.