Полный поток излучения всех длин волн называется. Поток излучения

Cтраница 1


Полный поток излучения характеризует данный источник; этот поток нельзя увеличить никакими оптическими системами. При этом сила света / (6, ф) возрастает по одним направлениям и уменьшается по другим.  

Поскольку полный поток излучения лазера с модулированной добротностью значительно превышает поток, допустимый для плоскостного фотоэлемента, следует тем или иным способом линейно ослабить пучок, чтобы существенно уменьшился поток, падающий на приемник. Как мы уже упомянули, обычные способы оптического ослабления не пригодны. Поэтому для ослабления пучок рассеивается на диффузной мишени , так что плотность потока уменьшается за счет отражения энергии в полусферу радиусом R. Хотя блок спресованной окиси магния представляет собой одну из лучших рассеивающих мишеней, имеющихся в настоящее время, такая мишень не полностью ламбертова. Более того, диффузность окиси магния зависит от длины волны, особенно в инфракрасной области , как показано на фиг.  

Методы полных потоков излучения не могут наглядно вскрывать всю физическую картину протекания лучистого переноса теплоты но зато позволяют получить расчетные данные без громоздких вычислений.  

По этой причине полный поток излучения с поверхности нагретой аэрозольной частицы заметно меньше, чем поток с поверхности массивной частицы того же материала. При этом спектр излучения малой аэрозольной частицы смещен в коротковолновую область по сравнению со спектром излучения массивной частицы.  

Типичные значения освещенности.| Обзор фотометрических характеристик и определений.| Световая отдача абсолютно черного тела.  

Оптические фильтры помогают оптимизировать спектральные характеристики и полный поток излучения источника, попадающий на оптический преобразователь, например линзу, а также реакцию чувствительного элемента.  


Мы изучали пропускание различными сортами млечного сока полного потока излучения инфракрасной лампы Мазда 250 впг для сушки.  

Интегральный метод является методом, синтезирующим представления методов многократных отражений и полных потоков излучения. В основу его кладутся интегральные уравнения, которые составляются применительно к отдельным видам излучения Интегральные уравнения, описывают процессы переноса излучением с произвольным распределением оптических свойств излучающей системы тел и промежуточной среды, непрерывно зависящих от координат точки. Они имеют общий и строгий характер, дают возможность составить полное представление о сущности явлений лучистого переноса и проводить их исследование в сложных геометрических системах. Однако решения интегральных уравнений связаны со значительными трудностями.  

Интегральный метод является методом, синтезирующим представления методов многократных отражений и полных потоков излучения. В его основу кладутся интегральные уравнения, которые составляются применительно к отдельным виДам излучения. Интегральные уравнения описывают процессы переноса излучением с произвольным распределением оптических свойств излучающей системы тел и промежуточной среды, непрерывно зависящих от координат точки. Они имеют общий и строгий характер, дают возможность составить полное представление о сущности явлений лучистого переноса и проводить их исследование в сложных геометрических системах. Однако решения интегральных уравнений связаны со значительными трудностями. Поэтому прибегают к их упрощению.  

В сводной таблице приняты следующие ббозна-чения: FT - измерения для полного потока излучения ламп; IR - измерения только для инфракрасной части этого потока.  

Источник излучения характеризуется энергетической светимостью (излучательностью) R3, т.е. полным потоком излучения с единицы поверхности источника.  

Применение радиационных пирометров для измерений температуры реальных тел целесообразно в тех случаях, когда полный поток излучения объекта R мало отличается от 0 при той же температуре.  

Одномерное аэротермохимическое явление имеет место, если векторы среднемассовои скорости, массовых сил и полного потока излучения направлены вдоль одной из трех взаимноортогональных координатный осей, а все термодинамические параметры потока остаются постоянными на поверхностях, ортогональных этой оси.  

По существу, уверенно определяются только спектральный индекс а (см. рис. 53) и полный поток излучения, от которого не так просто перейти к спектральной интенсивности, ибо размеры объекта и расстояния до него оцениваются с известной неопределенностью.  

Как мы уже знаем, волна характеризуется переносом энергии. Следовательно, электромагнитные волны тоже несут с собой энергию. Рассмотрим некоторую поверхность площадью S. Положим, что через нее электромагнитные волны переносят энергию.

На следующем рисунке представлена такая поверхность.

Плотность потока электромагнитного излучения

Линиями обозначены направления распространения электромагнитных волн. Линии, перпендикулярные поверхности, во всех точках которых колебания происходят в одинаковых фазах, называются лучами. А эти поверхности называются волновыми поверхностями.

Плотность потока электромагнитного излучения – это отношение электромагнитной энергии ∆W, проходящей через перпендикулярную лучам поверхность площадью S, за время ∆t, к произведению S на ∆t.

I = ∆W/(S*∆t)

Единицей измерения плотности магнитного потока в систему СИ являются ватты на квадратный метр (Вт/м^2). Выразим плотность потока через скорость его распространения и плотность электромагнитной энергии.

Возьмем поверхность S, перпендикулярную лучам. Построим на ней цилиндр с основанием c*∆t.

Здесь c – скорость распространения электромагнитной волны. Объем цилиндра вычисляется по формуле:

∆V = S*c*∆t.

Энергия электромагнитного поля сосредоточенного внутри цилиндра будет вычисляться по следующей формуле:

Здесь ω - плотность электромагнитной энергии. Эта энергия за время ∆t пройдет через правое основание цилиндра. Получаем следующую формулу:

I = (ω*c*S*∆t)/(S*∆t) = ω*c.

Энергия по мере удаления от источника будет уменьшаться. Будет верна следующая закономерность, зависимости плотности тока от расстояния до источника. Плотность потока излучения направленного от точечного источника будет убывать обратно пропорционально квадрату расстояния до источника.

I = ∆W/(S*∆t) = (∆W/(4*pi∆t))*(1/R^2).

Электромагнитные волны излучаются при ускоренном движении заряженных частиц. При этом напряженность электрического поля и вектор магнитной индукции электромагнитной волны будут прямо пропорциональны ускорению частиц.

Если рассматривать гармонические колебания, то ускорение будет прямо пропорционально квадрату циклической частоты. Полная плотность энергии электромагнитного поля будет равняться сумме плотности энергии электрического поля и энергии магнитного поля.

Согласно формуле I = ω*c, плотность потока пропорциональна полной плотности энергии электромагнитного поля.

Учитывая всё вышесказанное, имеем.

Характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению. Энергия светового пучка неравномерно распределена по волнам различных длин. Зависимость частоты от длины волны описывается как λv=c

Для характеристики распределения излучения по частотам используют интенсивность, приходящуюся на единичный интервал частот. Эта величина называется спектральной плотностью интенсивности излучения и обозначается как I(v) .

Интегральное излучение - это излучение, соответствующее всему спектру частот (длин волн) в пределах от нуля до бесконечности.

89) Дайте определение понятиям: поток и плотность потока спектрального излучение: поток и плотность потока интегрального излучения? Спектральная плотность излучения - характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.

Интегральный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью интегрального излучения (Вт/м 2)


Суммарное излучение с поверхности тела по всем длинам волн спектра называется интегральным или полным потоком излучения Q

94) ПОГЛОЩАТЕЛЬНАЯ СПОСОБНОСТЬ

тела- отношение поглощаемого телом потока излучения к падающему на него монохроматич. потоку излучения частоты v ; то же, что монохроматический поглощения коэффициент. П. с. зависит от вещества, из которого тело состоит, от формы тела и от его температуры. Если П. с. тела в некотором диапазоне частоты темп-р равна 1, говорят, что оно при этих условиях является абсолютно чёрным телом. поглощательная способность наряду со спектральной испускательной способностью входит в Кирхгофа закон излучения и характеризует отклонение поглощающих свойств данного тела от свойств абсолютно чёрного тела. П. с. – важнейшая характеристика теплового излучения. Сумма П. с., пропускания коэффициента и отражения коэффициента тела равна 1

Пропускательная способность тела.

Данная величина характеризует долю потока энергии теплового

излучения, пропускаемого телом d Ф проп от величины падающего

потока энергии d Ф пад и определяется следующим образом:

d (λ , T) = . (1.4)

Данная величина характеризует интенсивность процесса рыбо-

обработки по глубине объекта.

ОТРАЖАТЕЛЬНАЯ СПОСОБНОСТЬ - величина, характеризующая способность поверхности тела или границ раздела двух сред отражать падающий на неё поток эл--магн. излучения или упругих волн. Количеств, характеристика О. с. - коэф. отражения. О. с. зависит от угла падения и поляризации падающего эл--магн. излучения. Зависимость О. с. поверхности от длины волны излучения в области видимого света воспринимается глазом человека как окраска отражающей поверхности.

96) Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Законы описывающие излучение: 1-й 2-й законы Вина, Закон Релея-Джинса, Закон Планка, Закон Стефана-Больцмана, Закон смещения Вина

97) Не уверен что это правильно!!!

99 . Дать определение понятию «Спектральная степень черноты». Как она меняется у реал. тел при измен. длины волны (на пр. Ме и огнеупоров)?

Спектральная степень черноты – коэффициент, связывающий спектральные плотности потоков собственного излучения данного тела и абсолютно черного тела при одинаковых температурах(ИЛИ отношение энергии излучения тела по данной длине волны к энергии излучения абсолютно черного тела на этой же длине волны при одинаковой температуре).

В области длин волн, характерных для теплового излучения, неокисленная поверхность металла характеризуется непрерывным уменьшением, а диэлектрическая поверхность(огнеупоры) –увеличением спектральной степени черноты при возрастание длины волны.

100 . Что такое Интегральная степень черноты, как с ее пом. определить плотность потока собственного излучения?

Интегральная степень черноты- характеризует интенсивность собственного излучения тела во всем диапазоне длин волн(ИЛИ отношение полной энергии, излучаемой во всем диапазоне длин волн, к полной энергии излучения абсолютно черного тела при этой же температуре).

Плотность потока собственного излучения(по закону Стефана-Больцмана):

q СОБ =ε σ 0 T 4 , где

Т-абсолютная температура тела, К

σ 0 – постоянная Стефана-Больцмана

102 . С какой целью создана модель серого тела. В чем особенность излучения серого тела по сравнению с реальным телом?

Серое тело - тело, коэффициент поглощения которого меньше 1 и не зависит от длины волны излучения

Создано с целью облегчения расчетов радиационного т/обмена в реальных системах в качестве приближения к описанию излучения реальных тел.

Для реальных тел степень черноты зависит от длины волны, а у серых тел степень черноты не зависит ни от t, ни от длины волны и является постоянной.

103 Что больше поток эффективного излучения или поток собственного излучения и в каком случае эти потоки равны?

Поток эффективное излучение – сумма собственного излучения других тел и излучения, отраженного этими телами в процессе радиационного теплообмена:

Q ЭФ = Q СОБ + Q ОТР

Т.е. поток эффективного излучения всегда больше потока собственного излучения, кроме случая когда Q ОТР =0

106 Перечислите основные свойства угловых коэффициентов.

Свойство замкнутости

Свойство взаимности

Свойство невогнутости: угловой коэффициент излучения с некоторой поверхности на саму себя для невогнутых поверхностей равен нулю

108 . В чем особенности излучения газовой среды по сравнению с твёрдыми и жидкими телами и как это сказывается на определении потока собственного излучения газа?

Особенности:

Нет сплошного излучения

Газообразные тела излучают только в определённом спектре волн- спектральное излучение

Для каждого газа присущ свой спектр.

109 Дайте определение результирующему потоку излучения. Как он выражается через поток падающего излучения, и как – через поток собственного излучения?

Поток результирующего излучения – разность между потоками поглощенного и собственного излучения:

Для непрозрачного тела (при R=1-A) справедливо выражение для потока результирующего излучения:

110 . Особенности излучения и поглощения лучистой энергии газами. Определение их оптических свойств.

Спектр излучения газов имеет линейный характер. Газы испускают лучи не всех длин волн. Такое излучение называется селективным.

111 Перенос лучистой энергии в излучённой и поглощенной среде.

113 .Расчет радиационного теплообмена в системе с излучающей и поглощающей средой.

Используют для расчёта зональный метод α среды: 1-газовый объем, 2-замкн. поверхность, ограничив. газ V

Эффективное излучение оси поверхностей является диффузионным.

Расчёт производится в 2 этапа:

    Для всех зон определяются потоки эффективного излучения

    По найденным значениям эффективных потоков, для зон поверх-х находим потоки результирующего излучения, а для зон объёмных определяем температуры

Величину П. и. измеряют по его действию на неселективный приёмник излучения. П о л н ы й п о т о к излучения можно измерить по его тепловому действию при поглощении излучения приёмником в виде абсолютно чёрного тела.

Р е д у ц и р о в а н н ы й П. и.- мощность, оцениваемая по действию, вызванному излучением на спектрально-избирательный приёмник. Редуцированный П. и. может выражаться в спец. единицах. Различают: Ф - поток, действующий на глаз; ф о т о а к т и н и ч н ы й - на фотоматериалы и т. п. Осн. единица энергетич. П. и.- Вт, светового потока - лм. Соотношение между этими единицами наз. механическим эквивалентом света.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПОТОК ИЗЛУЧЕНИЯ

Отношение энергии, переносимой эл.-магн. излучением через к.-л. поверхность, ко времени , значительно превышающему период эл.-магн. колебаний. П. и.- синоним понятия мощность излучения; характеризует энергию излучения, распространяющегося внутри нек-рого телесного угла через к.-л. поверхность в единицу времени. П. и. измеряется в Вт и оценивается по действию излучения на неселективный спектрально-избират. приёмник. В метрологии таким приёмником, как правило, служит с приёмным элементом в виде чернёной полости, коэф. поглощения к-рой близок к единице и с достаточной для практич. целей точностью не зависит от длины l. Для характеристики действия оптич. излучения на селективный приёмник (глаз человека, биол. объект и т. п.) пользуются понятием редуцированного П. и., примером к-рого является световой поток, характеризующий излучения на глаз человека и измеряемый в люменах (лм). Отношение П. и. к.-л. монохроматич. излучения к содержащемуся в нём световому потоку наз. механическим эквивалентом света; 1 Вт излучения с l = 555 нм соответствует световой поток, равный 683 лм.

Лит.: ГОСТ 26148-84. Фотометрия. Термины и определе-ления; Гуревич М. М., Фотометрия, 2 изд., Л., 1983.

М. А. Бухштаб.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ПОТОК ИЗЛУЧЕНИЯ" в других словарях:

    Размерность ML2T 3 Единицы измерения СИ Вт СГС … Википедия

    поток излучения - (Фe[P]) Мощность излучения, определяемая отношением энергии, переносимой излучением, ко времени переноса, значительно превышающему период электромагнитных колебаний. [ГОСТ 7601 78] поток излучения (Фe, P) [ГОСТ 7601 78] [ГОСТ 26148 84] поток… … Справочник технического переводчика

    - (лучистый поток мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения (применимо к промежуткам времени, значительно превышающим периоды световых колебаний … Большой Энциклопедический словарь

    ПОТОК ИЗЛУЧЕНИЯ - число частиц или квантов, проникающих внутрь элементарной сферы в единицу времени. Обычно П. и. относят к 1 секунде и соответственно определяют его единицу: секунда в минус первой степени. Если рассматривают не количество частиц или квантов, а… … Российская энциклопедия по охране труда

    - (лучистый поток, мощность излучения), полная энергия, переносимая светом в единицу времени через данную поверхность. Понятие поток излучения применимо к промежуткам времени, значительно превышающим периоды световых колебаний. * * * ПОТОК… … Энциклопедический словарь

    поток излучения - , лучистый поток, мощность излучения полная энергия, переносимая оптическим излучением (всех его частот) в единицу времени через данную поверхность. Для поглощающей поверхности поток излучения сумма поглощенной и отраженной энергии … Энциклопедический словарь по металлургии

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Energijos kiekis, kurį elektromagnetinė banga perneša per vienetinį laiko tarpą per tam tikrą paviršių. atitikmenys: angl. flux of radiation; radiant flux; radiant… …

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išskiriamos, perduodamos arba gaunamos spinduliuotės galia. Matavimo vienetas – vatas (W). atitikmenys: angl. flux of radiation; radiant flux; radiant power;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Išspinduliuotų, perduodamų arba priimamų elektromagnetinių bangų galia. atitikmenys: angl. flux of radiation; radiant flux; radiant power; radiation flux vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    поток излучения - spinduliuotės srautas statusas T sritis fizika atitikmenys: angl. flux of radiation; radiant flux; radiation flux vok. Strahlungsfluß, m rus. лучистый поток, m; поток излучения, m pranc. flux de radiation, m; flux de rayonnement, m … Fizikos terminų žodynas

Книги

  • Поток энергии Солнца и его изменения , . В книге рассмотрены и обобщены современные данные о потоке излучения Солнца в различных областях спектра по измерениям с Земли и с космических аппаратов. Большое внимание уделено погрешностям…
  • Энергетический спектр частиц с энергией более 10 эВ и поток электромагнитных вспышек в приземном слое , В. Ф. Сокуров. В монографии прямым методом измерен энергетический спектр частиц с энергиями 10, 5-1017 эВ по потоку черенковских вспышек с плотностью излучения 17-1480 фотон см 2 эВ Получен излом в спектре…
СГС Примечания Поток излучения \Phi_e - физическая величина , одна из энергетических фотометрических величин . Характеризует мощность , переносимую оптическим излучением через какую-либо поверхность. Равен отношению энергии, переносимой излучением через поверхность, ко времени переноса. Подразумевается, что длительность переноса выбирается так, чтобы она значительно превышала период электромагнитных колебаний . В качестве обозначения используется \Phi_e или P .

Таким образом, для \Phi_e выполняется:

\Phi_e=\frac{dQ_e}{dt}, Вт .

где dQ_e - энергия излучения , переносимая через поверхность за время dt.

Среди световых величин аналогом понятия «Поток излучения» является термин «световой поток ». Различие между этими величинами такое же, как и различие между энергетическими и световыми величинами вообще.

Спектральная плотность потока излучения

Если излучение немонохроматично, то во многих случаях оказывается полезным использовать такую величину, как спектральная плотность потока излучения. Спектральная плотность потока излучения представляет собой поток излучения, приходящийся на малый единичный интервал спектра . Точки спектра при этом могут задаваться их длинами волн, частотами, энергиями квантов излучения, волновыми числами или любым другим способом. Если переменной, определяющей положение точек спектра, является некоторая величина x, то соответствующая ей спектральная плотность потока излучения обозначается как \Phi_{e,x} и определяется как отношение величины d \Phi _e(x), приходящейся на малый спектральный интервал, заключённый между x и x+dx, к ширине этого интервала:

\Phi_{e,x}(x)=\frac{d\Phi_e(x)}{dx}.

Соответственно, в случае использования длин волн для спектральной плотности потока излучения будет выполняться:

\Phi_{e,\lambda}(\lambda)=\frac{d\Phi_e(\lambda)}{d\lambda},

а при использовании частоты -

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}.

Следует иметь в виду, что значения спектральной плотности потока излучения в одной и той же точке спектра, получаемые при использовании различных спектральных координат, друг с другом не совпадают. То есть, например, \Phi_{e,\nu}(\nu)\ne\Phi_{e,\lambda}(\lambda). Нетрудно показать, что с учетом

\Phi_{e,\nu}(\nu)=\frac{d\Phi_e(\nu)}{d\nu}=\frac{d\lambda}{d\nu}\frac{d\Phi_e(\lambda)}{d\lambda} и \lambda=\frac{c}{\nu}

правильное соотношение приобретает вид:

\Phi_{e,\nu}(\nu)=\frac{\lambda^2}{c}\Phi_{e,\lambda}(\lambda).

См. также

Напишите отзыв о статье "Поток излучения"

Примечания

Отрывок, характеризующий Поток излучения

В русском войске по мере отступления все более и более разгорается дух озлобления против врага: отступая назад, оно сосредоточивается и нарастает. Под Бородиным происходит столкновение. Ни то, ни другое войско не распадаются, но русское войско непосредственно после столкновения отступает так же необходимо, как необходимо откатывается шар, столкнувшись с другим, с большей стремительностью несущимся на него шаром; и так же необходимо (хотя и потерявший всю свою силу в столкновении) стремительно разбежавшийся шар нашествия прокатывается еще некоторое пространство.
Русские отступают за сто двадцать верст – за Москву, французы доходят до Москвы и там останавливаются. В продолжение пяти недель после этого нет ни одного сражения. Французы не двигаются. Подобно смертельно раненному зверю, который, истекая кровью, зализывает свои раны, они пять недель остаются в Москве, ничего не предпринимая, и вдруг, без всякой новой причины, бегут назад: бросаются на Калужскую дорогу (и после победы, так как опять поле сражения осталось за ними под Малоярославцем), не вступая ни в одно серьезное сражение, бегут еще быстрее назад в Смоленск, за Смоленск, за Вильну, за Березину и далее.
В вечер 26 го августа и Кутузов, и вся русская армия были уверены, что Бородинское сражение выиграно. Кутузов так и писал государю. Кутузов приказал готовиться на новый бой, чтобы добить неприятеля не потому, чтобы он хотел кого нибудь обманывать, но потому, что он знал, что враг побежден, так же как знал это каждый из участников сражения.
Но в тот же вечер и на другой день стали, одно за другим, приходить известия о потерях неслыханных, о потере половины армии, и новое сражение оказалось физически невозможным.
Нельзя было давать сражения, когда еще не собраны были сведения, не убраны раненые, не пополнены снаряды, не сочтены убитые, не назначены новые начальники на места убитых, не наелись и не выспались люди.
А вместе с тем сейчас же после сражения, на другое утро, французское войско (по той стремительной силе движения, увеличенного теперь как бы в обратном отношении квадратов расстояний) уже надвигалось само собой на русское войско. Кутузов хотел атаковать на другой день, и вся армия хотела этого. Но для того чтобы атаковать, недостаточно желания сделать это; нужно, чтоб была возможность это сделать, а возможности этой не было. Нельзя было не отступить на один переход, потом точно так же нельзя было не отступить на другой и на третий переход, и наконец 1 го сентября, – когда армия подошла к Москве, – несмотря на всю силу поднявшегося чувства в рядах войск, сила вещей требовала того, чтобы войска эти шли за Москву. И войска отступили ещо на один, на последний переход и отдали Москву неприятелю.
Для тех людей, которые привыкли думать, что планы войн и сражений составляются полководцами таким же образом, как каждый из нас, сидя в своем кабинете над картой, делает соображения о том, как и как бы он распорядился в таком то и таком то сражении, представляются вопросы, почему Кутузов при отступлении не поступил так то и так то, почему он не занял позиции прежде Филей, почему он не отступил сразу на Калужскую дорогу, оставил Москву, и т. д. Люди, привыкшие так думать, забывают или не знают тех неизбежных условий, в которых всегда происходит деятельность всякого главнокомандующего. Деятельность полководца не имеет ни малейшего подобия с тою деятельностью, которую мы воображаем себе, сидя свободно в кабинете, разбирая какую нибудь кампанию на карте с известным количеством войска, с той и с другой стороны, и в известной местности, и начиная наши соображения с какого нибудь известного момента. Главнокомандующий никогда не бывает в тех условиях начала какого нибудь события, в которых мы всегда рассматриваем событие. Главнокомандующий всегда находится в средине движущегося ряда событий, и так, что никогда, ни в какую минуту, он не бывает в состоянии обдумать все значение совершающегося события. Событие незаметно, мгновение за мгновением, вырезается в свое значение, и в каждый момент этого последовательного, непрерывного вырезывания события главнокомандующий находится в центре сложнейшей игры, интриг, забот, зависимости, власти, проектов, советов, угроз, обманов, находится постоянно в необходимости отвечать на бесчисленное количество предлагаемых ему, всегда противоречащих один другому, вопросов.