Полный вакуум. Давление абсолютное, избыточное, вакуум

) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.

Следует различать понятия физического вакуума и технического вакуума .

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума (λ < < l )(5000-10000 молекул на 1см3). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ > > l молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10 -5 Торр)(1000 молекул на 1 см3). Сверхвысокий вакуум соответствует давлению 10 -9 Торр и ниже. К сожалению в земных условиях пока не получен. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 -30 Торр и ниже(1 молекула на 1 см3).Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему . А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

См. также

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Физический вакуум" в других словарях:

    физический вакуум - absoliutusis vakuumas statusas T sritis fizika atitikmenys: angl. absolute vacuum; perfect vacuum; physical vacuum vok. absolutes Vakuum, n; physikalisches Vakuum, n rus. абсолютный вакуум, m; совершенный вакуум, m; физический вакуум, m pranc.… … Fizikos terminų žodynas

    физический вакуум - Состояние системы квантовых полей с наинизшей энергией, определенное перенормированным гамильтонианом теории, включающим физические (наблюдаемые) массы, заряды и поля … Политехнический терминологический толковый словарь

    Ртутный вакуумный барометр Эванджелисты Торричелли учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения … Википедия

    В квантовой теории поля низшее энергетич. состояние квантованных полей, характеризующееся отсутствием к. л. реальных ч ц. Все квант. числа В. ф. (импульс, электрич. заряд и др.) равны нулю. Однако возможность виртуальных процессов в В. ф.… … Физическая энциклопедия

    Вакуум физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. ≈ среда, в… …

    - (от лат. vacuum пустота), состояние газа при давлении меньше атмосферного. Понятие «В.» применяется к газу в замкнутом или откачиваемом сосуде, но нередко распространяется и на газ в свободном пр ве, напр. к космосу. Степень В. определяют,… … Физическая энциклопедия

    I Вакуум (от лат. vacuum пустота) состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве,… … Большая советская энциклопедия

    ВАКУУМ - в житейском понимании пустота, отсутствие реальных частиц. В квантовой механике вводится понятие физического вакуума как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента,… … Философия науки: Словарь основных терминов

    Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

И технике под ним подразумевают среду, в которой газ содержится под давлением меньше атмосферного. Что такое разреженные газы, когда о них узнали впервые?

Страницы истории

Идея пустоты на протяжении многих веков была предметом спора. Разреженные газы пытались анализировать древнегреческие и древнеримские философы. Демокрит, Лукреций, их ученики считали: если бы между атомами не было свободного пространства, их движение было бы невозможно.

Аристотель и его последователи опровергали эту концепцию, по их мнению, в природе не должно быть «пустоты». В средние века в Европе идея «боязни пустоты» стала приоритетной, ее использовали в религиозных целях.

Механики Древней Греции при создании технических устройств основывались на К примеру, водяные насосы, которые функционировали при создании над поршнем разрежения, появились во времена Аристотеля.

Разреженное состояние газа, воздуха, стало основой для изготовления поршневых вакуумных насосов, которые широко применяются в настоящее время в технике.

Их прототипом был знаменитый поршневой шприц Герона Александрийского, созданный им для вытягивания гноя.

В середине семнадцатого века была разработана первая вакуумная камера, а спустя шесть лет немецкому ученому Отто фон Герику удалось изобрести первый вакуумный насос.

Этот поршневой цилиндр легко откачивал воздух из герметичной емкости, создавал там вакуум. Это позволило изучить основные характеристики нового состояния, проанализировать его эксплуатационные свойства.

Технический вакуум

На практике разреженное состояние газа, воздуха именуют техническим вакуумом. В больших объемах невозможно получать такое идеальное состояние, так как при определенной температуре материалы имеют ненулевую плотность насыщенных паров.

Причиной невозможности получения идеального вакуума также является пропускание стеклянными, металлическими стенками сосудов газообразных веществ.

В небольших количествах вполне можно получать разреженные газы. В качестве меры разряжения используют длину беспрепятственного пробега молекул газа, которые хаотично сталкиваются, а также линейный размер используемого сосуда.

Между высоковакуумным насосом и атмосферным воздухом ставится форвакуумный нанос, который создает предварительное разрежение. В случае последующего понижения в камере давления наблюдается увеличение длины пробега частиц газообразного вещества.

При показателях давления от 10 -9 Па создается сверхвысокий вакуум. Именно такие разреженные газы используют для проведения экспериментов с применением сканирующего туннельного микроскопа.

Получить такое состояние в порах некоторых кристаллов удается даже при атмосферном давлении, так как диаметр пор намного меньше длины пробега свободной частицы.

Приборы на основе вакуума

Разреженное состояние газа активно применяется в приборах, которые называются вакуумными насосами. Для всасывания газов и получения определенной степени вакуума применяют геттеры. Вакуумная техника также подразумевает многочисленные приборы, которые необходимы для контроля и измерения данного состояния, а также для управления предметами, проведения различных технологических процессов. Самыми сложными техническими устройствами, в которых применяются разреженные газы, являются высоковакуумные насосы. Например, диффузионные приборы функционируют на основе движения молекул остаточных газов под действием потока рабочего газа. Даже в случае идеального вакуума при достижении конечной температуры существует незначительное тепловое излучение. Это объясняет основные свойства разреженных газов, например, наступление теплового равновесия через определенный временной промежуток между телом и стенками вакуумной камеры.

Разреженный одноатомный газ является отличным термоизолятором. В нем перенос тепловой энергии осуществляется только с помощью излучения, теплопроводность и конвекция не наблюдаются. Данное свойство применяется в (термосах), состоящих из двух емкостей, между которыми располагается вакуум.

Вакуум нашел широкое применение и в радиолампах, например, магнетронах кинескопов, микроволновых печей.

Физический вакуум

В квантовой физике под таким состоянием подразумевают основное (низшее) энергетическое состояние квантового поля, которое характеризуется нулевыми значениями

В таком состоянии одноатомный газ не является абсолютно пустым. Согласно квантовой теории, в физическом вакууме систематически появляются и исчезают виртуальные частицы, что вызывает нулевые колебания полей.

Теоретически одновременно могут существовать несколько разнообразных вакуумов, которые отличаются между собой плотностью энергии, а также иными физическими характеристиками. Эта идея стала основой в инфляционной теории огромного взрыва.

Ложный вакуум

Под ним подразумевается состояние поля в квантовой теории, не являющееся состоянием с минимальной энергией. Оно стабильно на протяжении определенного временного промежутка. Есть вероятность «туннелирования» ложного состояния в истинный вакуум при достижении необходимых значений основных физических величин.

Космическое пространство

Рассуждая над тем, что значит разреженный газ, необходимо остановиться и на понятии «космического вакуума». Его можно считать близким к физическому вакууму, но существующему в межзвездном пространстве. У планет, их естественных спутников, многих звезд существуют определенные силы притяжения, которые удерживают на определенном расстоянии атмосферы. По мере удаления от поверхности звездного объекта, меняется плотность разреженного газа.

Например, существует линия Кармана, которая считается общим определением с космическим пространством границы планеты. За ней резко снижается величина изотропного давления газа в сравнении с солнечным излучением и динамическим давлением солнечного ветра, поэтому трудно интерпретировать давление разреженного газа.

В космическом пространстве много фотонов, реликтовых нейтрино, которые сложно обнаружить.

Особенности измерения

Степень вакуума принято определять тем количеством вещества, которое осталось в системе. Основной характеристикой измерения этого состояния является абсолютное давление, кроме того, учитывается химический состав газа, его температура.

Важным параметром для вакуума является среднее значение длины пробега газов, оставшихся в системе. Существует подразделение вакуума на определенные диапазоны в соответствии с технологией, которая необходима для проведения измерений: ложный, технический, физический.

Вакуумная формовка

Это изготовление изделий из современных термопластичных материалов в горячем виде с помощью воздействия низкого давления воздуха или действия вакуума.

Вакуумную формовку считают способом вытяжки, в результате которой происходит нагревание листового пластика, находящегося над матрицей, до некоторого температурного значения. Далее происходит повторение листом формы матрицы, это объясняется созданием между ней и пластиком вакуума.

Электровакуумные приборы

Ими являются устройства, которые предназначены для создания, усиления, а также преобразования электромагнитной энергии. В таком приборе из рабочего пространства удален воздух, а для защиты от окружающей среды используется непроницаемая оболочка. Примерами подобных устройств являются электронные вакуумные приборы, где электроны подходят в вакууме. Лампы накаливания также можно считать электровакуумными приборами.

Газы при низких давлениях

Газ называют разреженным, если величина его плотности незначительна, и длина пробега молекул сравнима с размерами того сосуда, в котором находится газ. В подобном состоянии наблюдается уменьшение количества электронов пропорционально плотности газа.

В случае сильно разреженного газа практически отсутствует внутреннее трение. Вместо этого появляется внешнее трение перемещающегося газа о стенки, которое объясняется изменением величины импульса молекулами при сталкивании с сосудом. В подобной ситуации существует прямая пропорциональность между скоростью движения частиц и плотностью газа.

В случае низкого вакуума наблюдаются частые столкновения между частицами газа в полном объеме, которые сопровождаются стабильным обменом тепловой энергией. Это объясняет явление переноса (диффузию, теплопроводность), активно используется в современной технике.

Получение разреженных газов

Научное изучение и развитие вакуумных приборов началось в середине семнадцатого века. В 1643 году итальянцу Торричелли удалось определить величину атмосферного давления, а после изобретения О. Герике механического поршневого насоса со специальным водяным уплотнителем, появилась реальная возможность для проведения многочисленных исследований характеристик разряженного газа. Одновременно исследовались возможности воздействия вакуума на живые существа. Опыты, проводимые в условиях вакуума с электрическим разрядом, способствовали открытию отрицательного электрона, рентгеновского излучения.

Благодаря теплоизолирующей способности вакуума появилась возможность объяснить способы передачи тепла, использовать теоретические сведения для развития современной криогенной техники.

Применение вакуума

В 1873 году был изобретен первый электровакуумный прибор. Им стала лампа накаливания, созданная русским физиком Лодыгиным. Именно с этого времени расширилось практическое использование вакуумной техники, появились новые методы получения, а также изучения данного состояния.

За незначительный временной промежуток были созданы различные виды вакуумных насосов:

  • вращательный;
  • криосорбционный;
  • молекулярный;
  • диффузионный.

В начале двадцатого века академику Лебедеву удалось усовершенствовать научные основы вакуумной промышленности. До середины прошлого века ученые не допускали возможности получения давления меньше 10-6 Па.

В настоящее время создают цельнометаллическими, чтобы избежать утечки. Вакуумные криогенные насосы применяют не только в научно-исследовательских лабораториях, но и в различных сферах промышленности.

Например, после разработки специальных откачных средств, которые не загрязняют используемый объект, появились новые перспективы использования вакуумной техники. В химии такие системы активно используются для качественного и количественного анализа свойств разделения смеси на компоненты, анализа скорости протекания различных процессов.

1.1 . Основные термины и определения

Вакуумом называют состояние газа или пара при давлении ниже атмосферного. Количественной характеристикой вакуума служит абсолютное давление (разница между атмосферным и вакуумным). Вакуумная техника - прикладная наука, рассматривающая проблемы изучения и поддержания вакуума, а так же вопросы разработки конструирования и применение вакуумных систем и их элементов.
Вакуум бывает: низкий; средний; высокий; сверхвысокий.
Низкий и средний вакуум используются в осветительных приборах. Высокий - используется в приемно-усилительных генераторных лампах.
Сверхвысокий вакуум используется в металлургии (плавка и переплавка в вакууме) для получения различных сплавов, для получения сверхчистых веществ, полупроводников, диэлектриков и т. д.; кристаллизация (искусственные сапфиры); диффузионная сварка (для соединения деталей из металлов с сильно различающимися температурами плавления).

Химическая промышленность - вакуумные сушильные аппараты, вакуумные фильтры, кристаллизирующие вакуумные аппараты.
Электротехническая промышленность производство кабелей, электродвигателей с использованием вакуумной пропитки.
Оптическая промышленность - производство зеркал (вакуумное алюминирование), просветленная оптика, производство биноклей, очков и т. д.
Пищевая промышленность - вакуумные упаковки, доильные аппараты, пылесосы.
Транспорт - вакуумные усилители тормозных систем.
Медицина - производство и хранение медикаментов.
Интенсивность протекания физико-химических процессов в вакууме зависит от соотношения между числом столкновения молекул газа со стенками ограничивающего сосуда и числом взаимных столкновений молекул, характеризуется отношением средней длины свободного пути молекул к характерному размеру сосуда. Это число называется числом Кнудсена.

где: - средняя длина свободного пути молекулы; l - характерный размер сосуда.
На основании числа Кнудсена идет деление по степеням вакуума. Степень вакуума определяется равновесным давлением, которое устанавливается в откачиваемом объеме под действием противоположных процессов, откачки газа насосом и поступления газа в объем за счет натекания через неплотности диффузионных и технологических газовыделений и проницаемости газа через стенки сосуда.
Низкий вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул значительно меньше характерного линейного размера сосуда. Эта область давлений от 10 до 100 МПа.
Средний вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул приближенно равна характерному линейному размеру сосуда. Эта область давлений от 100 до 0,1 МПа.
Высокий вакуум
Характеризуется давлением газа, при котором средняя длина пробега молекул значительно больше характерного линейного размера сосуда. Эта область давлений от 0,1 до 10 МПа.
Сверхвысокий вакуум
Характеризуется давлением газа, при котором не происходит заметного изменения свойств поверхности первоначально свободной от абсорбирующего газа за время, существующее для рабочего процесса.
Газ - состояние вещества, при котором движение молекул практически неограниченно межмолекулярными силами и занимает весь объем.
Давление в точке газового пространства - отношение скорости переноса нормальной составляющей количества движения. Откачка - уменьшение молекулярной концентрации газа при помощи устройств поглощающих газ.
Время откачки - время необходимое для уменьшения давления в откачивающей системе насосом конкретного типа.
Остаточный газ - газ оставшийся после откачки в вакуумной системе.
Предельное остаточное давление - наименьшее давление, которое может быть достигнуто при конкретных устройств для откачки.
Форвакуум - вакуум, создаваемый насосом более низкого вакуума при последовательной работе нескольких насосов.
Молекулярная концентрация - число молекул газа в единице объема.
Длина свободного пути молекулы - длина пути молекулы между двумя последовательными столкновениями с другими молекулами.
Средняя длина свободного пути молекулы - среднеарифметическое расстояние, которое молекула проходит между двумя последними столкновениями.
Диффузия газа - движение газа в другой среде под влиянием градиента концентраций.
Коэффициент диффузии - отношение абсолютной скорости потока молекул через единицу поверхности к градиенту концентраций.
Вязкостное течение - течение газа в канале при условии, когда длина свободного пути молекулы очень мала по сравнению с наименьшим поперечным сечением канала.
Температурная транспирация - течение газа между соединенными сосудами.
Поток молекул - число молекул, проходящих через некоторое сечение в единицу времени. Плотность потока молекул - отношение результирующего потока молекул к поверхности, которую он пересекает.
Результирующий поток молекул - отношение потока молекул определенного разностью между числом молекул пересекающих поверхность за данный интервал температуры в заданном направлении и числом молекул через эту поверхность в обратном направлении к этому времени.
Массовый поток газа - масса газа пресекающего определенную поверхность за единицу времени.
Проводимость - отношение потока к разности средних давлений в двух сечениях потока при изотермическом равновесии. Сопротивление величина обратная проводимости.
Сорбция - поглощение газа или пара твердым веществом или жидкостью. Десорбция-обратный процесс.
Коэффициент аккомодации - отношение средней энергии реально передаваемой поверхности налетающими частицами средней энергии, которая может быть передана в случае достижения полного теплового равновесия.
Частота столкновений - отношение числа сталкивающихся с поверхностью молекул в заданный интервал времени к этому интервалу и площади поверхности.
Скорость прилипания - число молекул, сорбированных на единице площади поверхности в единицу времени.
Время удерживания - среднее время, в течении которого молекулы удерживаются на поверхности в состоянии сорбции.
Миграция - движение молекулы на поверхности.
Газовыделение - самопроизвольное выделение газа из материала в вакуум.
Обезгаживание - принудительное удаление газа из материала.
Проницаемость твердой перегородки - отношение потока газа через перегородку к потоку через тоже течение при отсутствии перегородки является функцией давления по обе стороны перегородки и ее структуры.
Коэффициент проницаемости - отношение произведения проницаемости на толщину перегородки к ее площади.
Натекание - проникновение газа из окружающей среды в откачиваемый сосуд.

1.2. Давление в вакууме

Основой физики вакуума являются следующие постулаты:
1. Газ состоит из отдельных, движущихся молекул.
2. Существует постоянное распределение молекул газа по скоростям, т. е. одной и той же скоростью обладает всегда одинаковое число молекул.
3. При движении молекул газа нет преимущественных направлений, пространство газовых молекул изотропно.
4. Температура газа величина пропорциональная средней кинетической энергии его молекул.
5. При взаимодействии с поверхностью твердого тела молекула газа абсорбируется.
При взаимодействии газа с поверхностью твердого тела нормальная составляющая изменения количества движения молекулы будет равна:,
где θ - угол между нормалью поверхности и вектором скорости; v - скорость молекулы; m - масса молекулы.
Рассмотрим случай, когда между поверхностью и газовой средой существует энергетическое равновесие, в этом случае суммарное изменение количества движения абсорбированной и десорбированной молекул будет равняется .
Согласно второму закону Ньютона, давление молекулы на поверхность:

, (1.1)

где: Δt - время взаимодействия молекулы с поверхностью; ΔF - площадь поверхности.
Число молекул в элементарном объеме dV, движущихся в направлении площадки ΔF, пропорционально согласно третьему постулату, пропорционально телесному углу dW, под которым из центра dV видна площадка ΔF.

. (1.2)
Телесный угол
, (1.3)
где r - расстояние между выделенным объектом и поверхностью.
Объем в полярной системе координат:

Давление газа на поверхность найдем интегрированием по объему полусферы, из которой молекулы достигают поверхности за время Δt с радиусом .
С учетом (1.1) получаем:

(1.5)

Подставляя (1.2), (1.3), (1.4) в (1.5), получим:

где n - молекулярная концентрация.
Согласно постулату 2, введем вместо постоянной среднеквадратичную скорость молекулы.

,
тогда

(1.7).
Учитывая, что плотность газа ρ=nm, получим .
Условия равновесия, использованные при выводе уравнения (1.7) могут, не выполнятся, например, в случае конденсирующей поверхности, с которой из-за очень большого времени адсорбции не происходит десорбция молекул газа, и наоборот, тело в космическом пространстве десорбирует молекулы с поверхности, а количеством молекул ударяющихся об это тело, можно пренебречь. В этих случаях необходимо точно знать соотношение потоков падающих и вылетающих молекул газа.

1.3. Газовые законы

Если в объеме находится смесь из К газов, то давление смеси:

(1.8)

или (1.9) - закон Дальтона.

Т. к. температура, согласно 4 постулату, пропорциональна кинетической энергии молекулы, можно записать ,
где с - некоторая постоянная.
Тогда (1.7) можно записать в виде:
.
Обозначим , тогда (1.10),
а средняя кинетическая энергия молекулы:

(1.11)

Уравнение (1.10) называют уравнением газового состояния, оно связывает три основных параметра: давление, молекулярную концентрацию и температуру. Константа k=1.38∙10-23Дж/к - постоянная Больцмана.
Уравнение (1.10) также можно представить в виде:

, (1.12),
где М - молекулярная масса газа; V - объём газа; NA=М/m=6.02∙1028 к моль-1 - число Авагадро; R=kNA=8.31∙103, Дж/Кмоль - универсальная газовая постоянная.
1.4. Частота соударений молекул с поверхностью

Число молекул, соударяющихся об единицу поверхности в единицу времени:

(1.13)

С учетом функции распределения молекул по скоростям получаем

, (1.14)

где Vар - средняя арифметическая скорость.
Объем газа, ударяющегося об единицу поверхности в единицу времени можно выразить через частоту соударений и молекулярную концентрацию

(1.15)

Данное выражение не зависит от давления и определяет максимальную быстроту действия идеального вакуумного насоса, откачивающего все молекулы газа, которые попадают в него через входное отверстие.

1.5. Распределение молекул газа по скоростям

При соударении друг с другом или со стенками вакуумной камеры молекулы изменяют свои скорости, как по величине, так и по направлению. Используя гипотезы о стационарном распределении по скоростям и изотропности пространства, Максвелл получил функцию распределения молекул по скоростям

, (1.16)

где dnV - число молекул скорости, которых находятся в пределах от V до 0.
Скорость, при которой наблюдаются максимальные функции распределения, называют наиболее вероятной скоростью

. (1.17)

Если ввести обозначения , то получим .
Используются безразмерная дифференциальная - f(c)=dnV/(ndc) b и интегральная - F(c)= функции распределения молекул по скоростям.
В расчетах также используют среднеарифметическую скорость

(1.18)
и среднеквадратичную
(1.19).

Соотношение между скоростями Vвер, Vар, Vкв составляет 1:1,128:1,225.

Таблица 1.1.
Среднеарифметические скорости газов при различных температурах


Газ

Кислород

Кроме распределения по скоростям молекул имеются функции распределения по энергии
;

; (1.20)

, (1.21),
здесь .
Существуют наиболее вероятная энергия и среднеарифметическая .
1.6. Средняя длина свободного пути

Направленный молекулярный поток, содержащий в начальный момент N0 молекул газа с хаотично движущимися молекулами с частотой К за время dt, уменьшается на величину:
, интегрируя, получаем .

Средняя длина свободного пути молекул газа , определяемая как отношение скорости молекул к числу столкновений в единицу времени. - длина пути молекулы за время t, столкновение произойдет в том случае, если расстояние между центрами молекул будет не более диаметра молекулы . Будем считать, что одна молекула имеет радиус , а все остальные математические точки с нулевым радиусом. При движении со скоростью с молекулярной концентрацией n, за одну секунду такая воображаемая молекула опишет объем , и испытает столкновений. Средняя длина свободного пути в таком случае будет равна
. (1.23)

С учетом относительных скоростей движения молекулы газа, которые не учитывались при выводе уравнения (1.23), для длины свободного пути можно получить более точное выражение
. (1.24)

Из (1.24) видно, что при постоянной молекулярной концентрации, длина свободного пути не должна зависеть от температуры.
Однако из опытных данных следует, что при n = const, средняя длина свободного пути увеличивается , данный фактор учитывается введением дополнительного модуля, тогда
, (1.25)

где С - постоянная Сезерленда, равная температуре при которой, в случае постоянной молекулярной концентрации газа, средняя длина свободного пути молекул уменьшается вдвое по сравнению со значением соответствующей бесконечно большой температуре [K] .
Для учета взаимодействия молекул между собой вводят понятие эффективного диаметра молекулы dТ, который уменьшается с увеличением температуры

Молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

Следует различать понятия физического вакуума и технического вакуума .

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера сосуда, в котором находится газ.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр ) говорят о достижении низкого вакуума () (10 16 молекул на 1 см³ ). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10 −5 торр ) (10 11 молекул на 1 см³ ). Сверхвысокий вакуум соответствует давлению 10 −9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа . Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 −16 торр и ниже (1 молекула на 1 см³ ).

Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов - это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

Вакуум широко применяется в электровакуумных приборах - радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва .

См. также

  • Диэлектрическая проницаемость вакуума
  • Вакуумное среднее
  • Вакуумный конденсат

Применения:

Примечания

Литература

  • L. B. Okun On the concepts of vacuum and mass and the search for higgs (англ.) // Modern Physics Letters A . - 2012. - Vol. 27. - P. 1230041. - DOI :10.1142/S0217732312300418 - arΧiv :1212.1031

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Вакуум" в других словарях:

    Первая часть сложных слов. Обозначает отнесённость к вакууму, пространству с выкачанным воздухом; вакуумный. Вакуум аппарат, вакуум камера, вакуум измерительный, вакуум костюм, вакуум насос, вакуум процесс, вакуум установка, вакуум фильтр, вакуум … Энциклопедический словарь

    - (лат., от vacare делать пустым). Пустое безвоздушное пространство. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ВАКУУМ безвоздушное пространство. В. аппарат котел, в котором вываривают, под безвоздушным… …

    ВАКУУМ, область чрезвычайно низкого давления. В межзвездном пространстве царит высокий вакуум, со средней плотностью менее 1 молекулы на кубический сантиметр. Самый разреженный вакуум, созданный человеком, менее 100000 молекул на кубический… … Научно-технический энциклопедический словарь

    Вакуум... вакуум... (… Словарь иностранных слов русского языка

    Разрежение, пустота; пустое пространство, форвакуум, монжюс, отсутствие, недостаток Словарь русских синонимов. вакуум см. пустота Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

    вакуум - Состояние среды, абсолютное давление которой меньше атмосферного [ГОСТ 5197 85] вакуум Состояние жидкости, характеризующееся отрицательным избыточным давлением. [СО 34.21.308 2005] вакуум разрежение Давление газа ниже атмосферного. Примечание… … Справочник технического переводчика

    - (от латинского vacuum пустота), состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (например, в вакуумных приборах), которому соответствует область давлений p>1 мм ртутного столба; средний: 10 3 мм ртутного… … Современная энциклопедия

    - (от лат. vacuum пустота) состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (в вакуумных приборах и установках ему соответствует область давлений p выше 100 Па), средний (0,1 Па p 100 Па), высокий (10 5 Па p… … Большой Энциклопедический словарь

    ВАКУУМ: ВАКУУМ... и ВАКУУМ... Первая часть сложных слов со знач. относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Вакуум... и ВАКУУМ... Первая часть сложных слов со относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением

абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление. Следовательно, абсолютное давление равно

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от атмосферного давления, т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Например:

Абсолютное давление равно 1,5 кг/см 2 ;

Избыточное давление равно 0,5 кг/см 2 ;

Вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль - давление, вызываемое силой, равномерно распределенной по нормальной к ней поверхности площадью, т.е.. Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа):

В технике в настоящее время в некоторых случаях продолжают применять также техническую МКГСС (метр, килограмм-сила, секунда, а) и физическую СГС (сантиметр, грамм, секунда) системы единиц. Используются также внесистемные единицы - техническую атмосферу и бар:

Не следует также смешивать техническую атмосферу с физической, которая все ещё имеет некоторое распространение в качестве единицы давления:

2.1.3. Свойства гидростатического давления

Гидростатическое давление обладает двумя основными свойствами.

1-ое свойство. Силы гидростатического давления в покоящейся жидкости всегда направлены внутрь по нормали к площадке действия, т.е. являются сжимающими.

Это свойство доказывается от противного. Если предположить, что силы направлены по нормали наружу, то это равносильно появлению в жидкости растягивающих напряжений, которых она воспринимать не может (это вытекает из свойств жидкости).

2-ое свойство . Величина гидростатического давления в любой точке жидкости по всем на­правлениям одинаково, т.е. не зависит от ориентации в пространстве площадки, на которую оно действует

где - гидростатические давления по направлению координатных осей;

То же по произвольному направлению .

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и (рис. 2.3).

Рис. 2.3. Схема для доказательства свойства

о независимости гидростатического давления от направления

Введем обозначения: - гидростатическое давление, действующее на грань, нормальную к оси ;

Давление на грань, нормальную к оси ;

Давление на грань, нормальную к оси ;

Давление, действующее на наклонную грань;

Площадь этой грани;

Плотность жидкости.

Запишем условия равновесия для тетраэдра (как для твердого тела) в виде трех уравнений проекций сил и трех уравнений моментов:

При уменьшении в пределе объема тетраэдра до нуля система действующих сил преобразуется в систему сил проходящих через одну точку, и, таким образом, уравнения моментов теряют смысл.

Таким образом, внутри выделенного объема на жидкость действует единичная массовая сила, проекции ускорений которой равны , , и . В гидравлике принято массовые силы относить к единице массы, а так как , то проекция единичной массовой силы численно будет равна ускорению.

где ,,- проекции единичной массовой силы на оси координат;

Масса жидкости;

Ускорение.

Составим уравнение равновесия выделенного объема жидкости в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости:

где - проекция силы от гидростатического давления;

Проекция силы от давления ;