Спектр ик излучения. Подробно о инфракрасном излучении

ВВЕДЕНИЕ

Несовершенство собственной природы, компенсируемое гибкостью интеллекта, непрерывно толкало человека к поиску. Желание летать как птица, плавать как рыба, или, скажем, видеть ночью подобно кошке, воплощались в действительность по мере достижения требуемых знаний и технологий. Научные изыскания часто подстегивались нуждами военной деятельности, а результаты определялись существующим технологическим уровнем.

Расширение диапазона зрения для визуализации недоступной для глаз информации является одной из наиболее трудных задач, так как требует серьезной научной подготовки и значительной технико-экономической базы. Первые успешные результаты в этом направлении были получены в 30-х годах XX века. Особенную актуальность проблема наблюдения в условиях низкой освещенности приобрела в ходе Второй мировой войны.

Естественно, усилия, затраченные в этом направлении, привели к прогрессу в научных исследованиях, медицине, техники связи и других областях.

ФИЗИКА ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны (=
м) и коротковолновым радиоизлучением(=
м).Открыто инфракрасное излучение было в 1800 г. английским ученым У. Гершелем. Спустя 123 года после открытия инфракрасного излучения советский физик А.А. Глаголева-Аркадьева получила радиоволны с длиной волны равной приблизительно 80 мкм, т.е. располагающиеся в инфракрасном диапазоне длин волн. Это доказало, что свет, инфракрасные лучи и радиоволны имеют одинаковую природу, все это лишь разновидности обычных электромагнитных волн.

Инфракрасное излучение также называют «тепловым» излучением, так как что все тела, твердые и жидкие, нагретые до определенной температуры излучают энергию в инфракрасном спектре.

ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ

ОСНОВНЫЕ ИСТОЧНИКИ ИК ИЗЛУЧЕНИЯ НЕКОТОРЫХ ОБЪЕКТОВ

Инфракрасное излучение баллистических ракет и космических объектов

Инфракрасное излучение самолетов

Инфракрасное излучение надводных кораблей

Факел маршевого

двигателя, предста- вляющий собой поток горящих газов, несущих взвешенные твердые частицы золы и сажи, которые образуются при сгорании ракетного топлива.

Корпус ракеты.

Земля, которая отражает часть солнечных лучей, попавших на нее.

Сама Земля.

Отраженное от планера самолета излучение Солнца, Земли, Луны и других источников.

Собственное тепловое излучение удлинительной трубы и сопла турбореак-тивного двигателя или выхлопных патрубков поршневых двигателей.

Собственное тепловое излу-чение струи выхлопных газов.

Собственное тепловое излучение обшивки самолета, возникающее за счет аэродина-мического нагрева при полете с большими скоростями.

Кожух дымовой трубы.

Выхлопное

отверстие дымовой трубы

ОСНОВНЫЕ СВОЙСТВА ИК ИЗЛУЧЕНИЯ

1. Проходит через некоторые непрозрачные тела, также сквозь дождь,

дымку, снег.

2. Производит химическое действие на фотопластинки.

3. Поглощаясь веществом, нагревает его.

4. Вызывает внутренний фотоэффект у германия.

5. Невидимо.

6. Способно к явлениям интерференции и дифракции.

7. Регистрируют тепловыми методами, фотоэлектрическими и

фотографическими.

ХАРАКТЕРИСТИКИ ИК ИЗЛУЧЕНИЯ

Собственное Отраженное Ослабление Физические

тепловое объектами ИК ИК излучения особенности ИК

излучение излучение в атмосфере излучения фонов

Характе-ристики

Осн. понятия

Собствен-ное тепловое излуче-ние нагретых тел

Фундаментальное понятие - абсолютно черное тело. Абсолютно черным телом называется тело, поглощающее все падающие на него излучения на любых длинах волн. Распределение интенсивности излучения черного тела (з/н Планка):
,где -спектральная яркость излучения при температуре Т,-длина волны в мкм, С1 и С2 - постоянные коэффициенты: С1=1,19*
Вт*мкм*см*ср,

С2=1,44*
мкм*град. Максимумдлины волны(закон Вина):
, где Т-абсолютная температура тела.

Интегральная плотность излучения- закон Стефана - Больцмана:

Отраженное объек-тами ИК излуче-ние

Максимум солнечного излучения, определяющий отраженную составляющую, соответствует длинам волн короче 0,75 мкм, а 98% всей энергии излучения Солнца приходится на участок спектра до 3 мкм. Часто эту длину волны считают граничной, разделяющей отраженную (солнечную) и собственную составляющие ИК излучения объектов. Следовательно, можно принять, что в ближней части ИК спектра (до 3 мкм) определяющей является отраженная составляющая и распределение лучистости по объектам зависит от распределения коэффициента отражения и облученности. Для дальней части ИК спектра определяющим является собственное излучение объектов, а распределение лучистости по их площади зависит от распределения коэффициентов излучения и температуры.

В средневолновой части ИК спектра необходимо учитывать все четыре параметра.

Ослабле-ние ИК излуче-ния в атмосфе-ре

В ИК-диапазоне длин волн имеется несколько окон прозрачности и зависимость пропускания атмосферы от длины волны имеет весьма сложный вид. Ослабление ИК излучения определяется полосами поглощения водяных паров и газовых составляющих, главным образом углекислого газа и озона, а также явлениями рассеивания излучения. Смотреть рисунок «Поглощение ИК излучения».

Физи-ческие особен-ности ИК излуче-ния фонов

ИК излучение имеет две составляющие: собственное тепловое излучение и отраженное (рассеянное) излучение Солнца и других внешних источников. В диапазоне длин волн короче 3 мкм доминирует отраженное и рассеянное солнечное излучение. В этом диапазоне длин волн, как правило, можно пренебречь собственным тепловым излучением фонов. Наоборот, в диапазоне длин волн более 4 мкм преобладает собственное тепловое излучение фонов и можно пренебречь отраженным (рассеянным) солнечным излучением. Диапазон длин волн 3-4 мкм является как бы переходным. В этом диапазоне наблюдается ярко выраженный минимум яркости фоновых образований.

ПОГЛОЩЕНИЕ ИК ИЗЛУЧЕНИЯ

Спектр пропускания атмосферы в ближней и средней инфракрасной области (1,2-40 мкм) на уровне моря (нижняя кривая на графиках) и на высоте 4000 м (верхняя кривая); в субмиллиметровом диапазоне (300-500 мкм) излучение до поверхности Земли не доходит.

ВОЗДЕЙСТВИЕ НА ЧЕЛОВЕКА

С древних времен люди хорошо знали благотворную силу тепла или, говоря научным языком, инфракрасного излучения.

В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм(так называемая длинноволновая часть инфракрасного диапазона), оказывающая на организм человека по - настоящему уникальное полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела с максимумом на длине волны около 10 мкм. Поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё». Самый известный естественный источник инфракрасных лучей на нашей Земле - это Солнце, а самый известный на Руси искусственный источник длинноволновых инфракрасных лучей - это русская печь, и каждый человек обязательно испытывал на себе их благотворное влияние. Приготовление пищи с помощью инфракрасных волн делает пищу особенно вкусной, сохраняет витамины и минералы, при этом не имеет ничего общего с микроволновыми печами.

Воздействуя на организм человека в длинноволновой части инфракрасного диапазона, можно получить явление, называемое «резонансным поглощением», при котором внешняя энергия будет активно поглощаться организмом. В результате этого воздействия повышается потенциальная энергия клетки организма, и из нее уходит не связанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови.

ОСОБЕННОСТИ ИЗОБРАЖЕНИЙ ОБЪЕКТОВ В ИК ДИАПАЗОНЕ

Инфракрасные изображения имеют непривычное для наблюдателя распределение контрастов между известными предметами вследствии иного распределения оптических характеристик поверхностей объектов в ИК диапазоне по сравнению с видимой частью спектра. ИК излучения позволяют обнаружить на ИК снимках предметы, не заметные на обычных фотоснимках. Можно выявлять участки поврежденных деревьев и кустарников, а также вскрывать факты использования свежесрезанной растительности для маскировки объектов. Различная передача тонов на изображениях, привела к созданию так называемой многозональной съемки, при которой один и тот же участок плоскости предметов одновременно фотографируется в разных зонах спектра многозональной камерой.

Другая особенность ИК изображений, свойственная тепловым картам, состоит в том, что в их формировании кроме отраженного излучения участвует и собственное, а в ряде случаев лишь оно одно. Собственное излучение определяется излучательной способностью поверхностей предметов и их температурой. Это дает возможность выявлять на тепловых картах нагретые поверхности или их участки, совершенно не обнаруживающиеся на фотоснимках, и использовать тепловые изображения как источник информации о температурном состо-янии предмета.

ИК изображения позволяют получать информацию и об объектах, которые уже отсутствуют в момент съемки. Так, например, на поверхности площадки в месте стоянки самолета сохраняется в течение некоторого времени его тепловой портрет, который может быть зарегистрирован на ИК снимке.

Четвертой особенностью тепловых карт является возможность регистрации объектов как при отсутствии падающего излучения, так и при отсутствии температурных перепадов; только за счет различий в излучательной способности их поверхностей. Это свойство позволяет наблюдать объекты в полной темноте и в таких условиях, когда темпе-ратурные различия выравнены до невоспринимаемых. В таких условиях особенно четко выявляются неокрашенные металлические поверхности, имеющие низкую излучательную способность, на фоне неметаллических предметов, выглядящих более светлыми ("темными"), хотя их температуры одинаковы.

Еще одна особенность тепловых карт связана с динамичностью тепловых процессов, протекающих в течение суток В связи с естественным суточным ходом температур все предметы на земной поверхности участвуют в постоянно протекающем теплообменном процессе. При этом температура каждого тела зависит от условий теплообмена, физических свойств окружающей среды, собственных свойств данного объекта (теплоемкость, теплопроводность) и др. В зависимости от этих факторов соотношение температур смежных предметов изменяется в течение суток, поэтому тепловые карты, полученные в разное время даже от одних и тех же объектов, отличаются друг от друга.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

В двадцать первом веке началось внедрение инфракрасных излучений в нашу жизнь. Теперь оно находит применение в промышленности и в медицине, в быту и сельском хозяйстве. Оно универсально и может применяться для самых разнообразных целей. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов. Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане.

Приборы ночного видения - история поколений

Нулевое поколение

«Стакан Холста»

Трех- и двухэлектродная системы

    Фотокатод

    Манжета

  1. Фокусирующий электрод

середина 30-х годов

вательском центре фирмы "Филипс", Голландия

За рубежом - Зворыкин, Фарнсворд, Мортон и фон Арденна; в СССР - Г.А. Гринберг, А.А. Арцимович

Этот ЭОП представлял собой два вложенных друг в друга стакана, на плоские донышки которых и наносились фотокатод и люминофор. Приложенное к этим слоям высоковольтное напряжение, создавало

электростатическое поле, обеспечивающее прямой перенос электронного изображения с фотокатода на экран с люминофором. В качестве фоточувствительного слоя в "стакане Холста" использовался серебряно-кислородно-цезиевый фотокатод, имевший довольно низкую чувствительность, хотя и работоспособный в диапазоне до 1,1 мкм. К тому же, этот фотокатод обладал высоким уровнем шумов, для устранения которых требовалось охлаждение до минус 40 °С.

Достижения электронной оптики позволили заменить прямой перенос изображения фокусировкой электростатическим полем. Наибольшим недостатком ЭОП с электростатическим переносом изображения является резкий спад разрешающей способности от центра поля зрения к краям из-за несовпадения криволинейного электронного изображения с плоским фотокатодом и экраном. Для решения этой проблемы их стали делать сферическими, что существенно усложнило конструкцию объективов, рассчитываемых обычно на плоские поверхности.

Первое поколение

Многокаскадные ЭОП

СССР, М.М. Бутслов

фирмами RCA, ITT (США), Philips (Нидерланды)

На базе волоконно-оптических пластин (ВОП), представляющих собой пакет из множества светодиодов, были разработаны плосковогнутые линзы, которые и стали устанавливать взамен входного и выходного окон. Оптическое изображение, спроецированное на плоскую поверхность ВОП, без искажений передается на вогнутую сторону, что и обеспечивает сопряжение плоских поверхностей фотокатода и экрана с криволинейным электронным полем. В результате применения ВОП разрешающая способность стала по всему полю зрения такой же, как и в центре.

Второе поколение

Вторично-эмиссионный усилитель

Псевдобинокуляр

1- фотокатод

3- микроканальная пластина

4– экран

В 70-е годы

фирмами США

фирма "Praxitronic" (ФРГ)

Этот элемент представляет собой сито с регулярно расположенными каналами диаметром около 10 мкм и толщиной не более 1 мм. Число каналов равно числу элементов изображения и имеет порядок 10 6 . Обе поверхности микроканальной пластины (МКП) полируются и металлизируются, между ними прикладывается напряжение в несколько сотен вольт.

Попадая в канал, электрон испытывает соударения со стенкой и выбивает вторичные электроны. В тянущем электрическом поле этот процесс многократно повторяется, позволяя получить коэффициент усиления NxlO 4 раз. Для получения каналов МКП используется разнородное по химическому составу оптическое волокно.

Были разработаны ЭОП с МКП бипланарной конструкции, то есть без электростатической линзы, своего рода технологический возврат к прямому, как и в "стакане Холста", переносу изображения. Полученные миниатюрные ЭОП позволили разработать очки ночного видения (ОНВ) псевдобинокулярной системы, где изображение с одного ЭОП разводится на два окуляра с помощью светоделительной призмы. Оборот изображения здесь осуществляется в дополнительных мини-объективах.

Третье поколение

ЭОП П + и SUPER II +

начато в 70-х годах до нашего времени

в основном американские компании

Длительная научная разработка и сложная технология изготовления, определяющие высокую стоимость ЭОП третьего поколения, компенсируется предельно высокой чувствительностью фотокатода. Интегральная чувствительность некоторых образцов достигает 2000 мА/Вт, квантовый выход (отношение числа эмитированных электронов к числу падающих на фотокатод квантов с длиной волны в области максимальной чувствительности) превышает 30%! Ресурс таких ЭОП составляет около 3 000 часов, стоимость от 600 до 900$, в зависимости от конструкции.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭОП

Поколения ЭОП

Тип фото-катода

Интегральная

чувствитель-ность,

Чувствитель-ность на

длинах волн 830-850

Коэффи-циент усиления,

Доступная

дальность

распознования

фигуры человека в

условиях естественной ночной освещенности, м

"Стакан Холста"

около 1, ИК подсветка

только при свете луны или ИК осветителе

Super II + или II ++

Инфракрасное излучение - электромагнитное излучение в диапазоне длин волн от
м до
м.В качестве источника инфракрасного (ИК) излучения может рассматриваться любое тело (газообразное, жидкое, твердое) с температурой выше абсолютного нуля (-273°С). Зрительный анализатор человека не воспринимает лучи в инфракрасном диапазоне. Поэтому видовые демаскирующие признаки в этом диапазоне добываются с помощью специальных приборов (ночного видения, тепловизоров), имеющих худшее разрешение, чем глаз человека. В общем случае к демаскирующим признакам объекта в ИК-диапазоне относятся следующие: 1)геометрические характеристики внешнего вида объекта (форма, размеры, детали поверхности); 2) температура поверхности. Инфракрасные лучи абсолютно безопасны для организма человека в отличие от рентгеновских, ультрафиолетовых или СВЧ. Нет такой области, где бы не пригодился природный метод передачи тепла. Ведь всем известно, умнее природы человеку не стать, мы можем лишь подражать ей.

СПИСОК ЛИТЕРАТУРЫ

1. Курбатов Л.Н. Краткий очерк истории разработок приборов ночного видения на основе электронных оптических преобразователей и усилителей изображения// Вопр. Оборон. Техники. Сер. 11. - 1994

2. Кощавцев Н.Ф., Волков В.Г. Приборы ночного видения//Вопр. Оборон. Техники. Сер. П.- 1993 - Вып. 3 (138).

3. Леконт Ж., Инфракрасное излучение. М.: 2002. 410 с.

4. Меньшаков Ю.К., М51 Защита объектов и информации от технических средств разведки. М.: Российск. Гос. Гуманит. У-т, 2002. 399 с.

Умеем делать? Не-а.

Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет - это вовсе не то, что можно увидеть в . Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей - часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете - пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.

Для начала - небольшое отступление. То, что мы называем видимым светом - всего лишь узкая полоска электромагнитного излучения .
Вот, например я упер с википедии такую картинку:


Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди - изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается - иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…

Камера

Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит - то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:


Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.

На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не - посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо - оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть - нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.

К сожалению, я потерял свои фотки, поэтому покажу фотку из ее блога , которая делала тоже самое, но с веб-камерой.


Вот тот осколок стекла в углу - как раз и есть фильтр. Был фильтр.

Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться - у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.

Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!

Краски и вещества

Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.

Плащ из черного стал розовым! Ну, кроме пуговиц.

Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.

Таблетки из зеленых превратились в сиреневые.

Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.

Искусственная кожа осталась черной, а ткань - оказалось розовой.

Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже - он практически весь стал сиреневым.

Как и сумка для фотоаппарата. И обложка электронной книги

Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.

Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.

Причем таким свойством обладает все красная краска, что я замечал.

Огонь и температура

Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами - а их кончики освещают им лица.

Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона - умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.

Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!

Горелка выглядит практически одинаково - ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).

А вот если нагреть горелкой стеклянную палочку - стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)

Причем палочка будет светиться довольно долго и после прекращения нагрева

А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.

Лампы и свет

Буква М на входе в метро горит гораздо ярче - в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость - значит там люминесцентные лампы.

Двор ночью выглядит немного странно - сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.

На этой фотографии получилась забавная ситуация - одно и то же дерево освещают два фонаря с разными лампами - слева лампой НЛ (оранжевая уличная), а справа - светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.


А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны - энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.

А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок - одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания - горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир - люминесцентные теплого света(желтая стрелка).

Восход. Просто восход.

Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.

Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая - нет. В инфракрасном свете наоборот - дохлая лампа светит гораздо ярче, чем живая.

Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной - это почти прожектор.

Подсветку можно включить и днем, закрыв пальцем датчик освещения.

Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.

Живая природа

Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.

Зеленые яблоки стали желтыми, а красные - ярко-сиреневыми!

Белые перцы стали желтыми. А привычные зеленый огурцы - каким-то инопланетным фруктом.

Яркие цветки стали практически однотонными:

Цветок почти не отличается по цвету от окружающей травы.

Да и яркие ягоды на кусте стало очень трудно увидеть в листве.

Да что ягоды - даже разноцветная листва стала однотонной.

Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.

Но почему на фотографиях все розовое?

Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.


Это фильтр байера - массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково - синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются - на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем - ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром - пропорция цветов получается другой. Например вот такой:


Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.

Но почему растения получаются такими яркими?

На самом деле, этот вопрос состоит из двух - почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение - максимально, что и показывает график):

Виновен в этом хлорофил. Вот его спектр поглощения:

Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.

А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):

А почему ярко выглядит фрукты?

У плодов в кожуре зачастую нет хлорофилла, но тем не менее - они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск - тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же - надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.

Но блин, почему рака-богомола?

Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:

Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на (кнопка «подписаться»)

Теги:

  • инфракрасный диапазон
  • другой мир
Добавить метки

Инфракрасное излучение (ИК ) - это электромагнитное излучение с большей длиной волны, чем видимый свет , простирающийся от номинального красного края видимого спектра на 0,74 мкм (микрон) до 300 мкм. Этот диапазон длин волн соответствует частоте диапазона примерно от 1 до 400 ТГц, и включает в себя большую часть теплового излучения, испускаемого объектами вблизи комнатной температуры. Инфракрасное излучение испускается или поглощается молекулами, когда они меняют свои вращательно-колебательные движения . Наличие инфракрасного излучения было впервые обнаружено в 1800 году астрономом Уильямом Гершелем.


Большая часть энергии от Солнца поступает на Землю в виде инфракрасного излучения. Солнечный свет в зените обеспечивает освещённость чуть более 1 киловатта на квадратный метр над уровнем моря. Из этой энергии, 527 ватт инфракрасного излучения, 445 Вт является видимым светом, и 32 ватта ультрафиолетовым излучением.

Инфракрасный свет используется в промышленных, научных и медицинских нуждах. Приборы ночного видения с помощью инфракрасной подсветки позволяют людям наблюдать за животными, которые невозможно заметить в темноте. В астрономии изображение в инфракрасном диапазоне позволяет наблюдать объекты скрытые межзвездной пылью. Инфракрасные камеры используются для обнаружения потери тепла в изолированных системах, наблюдать изменение кровотока в коже, а также для обнаружения перегрева электрооборудования.

Сравнение света

Название

Длина волны

Частота (Гц)

Энергия фотона (эВ)





Гамма лучи

менее 0,01 нм

более чем на 10 EHZ

124 кэВ - 300 + ГэВ





Рентгеновые лучи

0,01 нм до 10 нм

124 эВ до 124 кэВ





Ультрафиолетовые лучи

10 нм - 380 нм

30 PHZ - 790 ТГц

3,3 эВ до 124 эВ





Видимый свет

380 нм - 750 нм

790 ТГц - 405 ТГц

1,7 эВ - 3,3 эВ





Инфракрасное излучение

750 нм - 1 мм

405 ТГц - 300 ГГц

1,24 мэВ - 1,7 эВ





Микроволны

1 мм - 1 метр

300 ГГц - 300 МГц

1,24 мкэВ - 1,24 мэВ





1 мм - 100 км

300 ГГц - 3 Гц

12,4 фэВ - 1,24 мэВ





Инфракрасные изображения широко используются для военных и гражданских целей. Военные применения включают в себя такие цели как наблюдение, ночное наблюдение, наведение и слежение. Не для военного применения включают тепловую эффективность анализа, мониторинга окружающей среды, промышленной инспекции объектов, дистанционное зондирование температуры, короткодействующую беспроводную связь, спектроскопию и прогноз погоды. Инфракрасная астрономия использует датчик оборудованный телескопами для того, чтобы проникнуть в пыльные области пространства, такие как молекулярные облака, и обнаруживать объекты, такие как планеты .

Хотя ближневолновая инфракрасная область спектра (780-1000 нм) уже давно считается невозможной из-за шума в зрительных пигментах, ощущение ближнего инфракрасного света сохранилось у карпа и в трех видах циклид. Рыбы используют ближневолновую инфракрасную область спектра, чтобы захватить добычу и для фототактической ориентации во время плавания. Ближневолновая инфракрасная область спектра для рыбы может быть полезна в условиях плохой освещенности в сумерках и в мутных поверхностях воды.

Фотомодуляция

Ближний инфракрасный свет, или фотомодуляция, используется для лечения химиотерапией индуцированных язв, а также заживления ран. Существует ряд работ, связанных с лечением вируса герпеса. Исследовательские проекты включают в себя работу над изучением центральной нервной системы и лечебным воздействием через регуляцию цитохром и оксидаз и другие возможные механизмы.

Опасность для здоровья

Сильное инфракрасное излучение в определенной отрасли и режиме высоких температур может быть опасно для глаз, в результате может привести к повреждению зрения или слепоте по отношению к пользователю. Поскольку излучение невидимо, необходимо надевать специальные инфракрасные очки в таких местах.

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от солнца и вновь возвращают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом, капли облаков и водяные пары, а также диоксид углерода, метан, окись азота, гексафторид серы и хлорфторуглерод поглощают инфракрасное излучение, и вновь возвращают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект сохраняет атмосферу и поверхность гораздо теплее, чем если бы инфракрасные амортизаторы отсутствовали в атмосфере.

История науки об инфракрасном излучении

Открытие инфракрасного излучения приписывается Уильяму Гершелю, астроному, в начале 19 века. Гершель опубликовал результаты своих исследований в 1800 году до Лондонского королевского общества. Гершель использовал призму, чтобы преломить свет от солнца и обнаружить инфракрасное излучение, вне красной части спектра, через увеличение температуры, зарегистрированной на термометре. Он был удивлён результатом и назвал их «тепловыми лучами». Термин «инфракрасное излучение» появились только в конце 19 века.

Другие важные даты включают:

  • 1737: Эмили дю Шатле предсказал, то, что сегодня известно как инфракрасное излучение в своей диссертации.
  • 1835: Маседонио Мельони делает первые термобатареи с инфракрасным детектором.
  • 1860: Густав Кирхгоф формулирует теорему абсолютно чёрного тела.
  • 1873: Уиллоуби Смит обнаружил фотопроводимость селена.
  • 1879: Опытным путем сформулирован закон Стефана-Больцмана, согласно которому энергия , излученная абсолютно чёрным телом пропорциональна.
  • 1880-е и 1890-е года: Лорд Рэлей и Вильгельм Вин оба решают часть уравнения абсолютно чёрного тела, но оба решения - приблизительные. Эту проблему называли «ультрафиолетовой катастрофой и инфракрасной катастрофой».
  • 1901: Макс Планк Макс Планк издал уравнение абсолютно чёрного тела и теорему. Он решил проблему квантования допустимых энергетических переходов.
  • 1905: Альберт Эйнштейн разрабатывает теорию фотоэлектрического эффекта, которая определяет фотоны. Также Уильям Коблентз в спектроскопии и радиометрии.
  • 1917: Теодор Кейз разрабатывает датчик таллия-сульфида; британцы разрабатывают первый прибор инфракрасного поиска и слежения в Первой мировой войне и обнаруживают самолеты в диапазоне 1,6 км.
  • 1935: Свинцовые соли - раннее ракетное руководство во Второй мировой войне.
  • 1938: Тью Та предсказал, что пироэлектрический эффект может использоваться, чтобы обнаружить инфракрасную радиацию.
  • 1952: Н. Уилкер обнаруживает антимониды, соединения сурьмы с металлами.
  • 1950: Поль Круз и техасские инструменты образуют инфракрасные изображения до 1955 года.
  • 1950-е и 1960-е годы: Спецификация и радиометрические подразделения, определенные Фредом Никодеменасом, Робертом Кларком Джоунсом.
  • 1958: У. Д. Лоусон (Королевское Радарное Учреждение в Мальверне) обнаруживает свойства обнаружения ИК-фотодиодом.
  • 1958: Фэлкон разработал ракеты с использованием инфракрасного излучения и появляется первый учебник по инфракрасным датчикам Поля Круза, и др.
  • 1961: Джей Купер изобрёл пироэлектрическое обнаружение.
  • 1962: Kruse и Родат продвигают фотодиоды; элементы сигналов и линейных массивов доступны.
  • 1964: У. Г. Эванс обнаруживает инфракрасные терморецепторы у жука.
  • 1965: Первый инфракрасный справочник, первые коммерческие тепловизоры; сформирована лаборатория ночного видения в армии Соединённых Штатов Америки (в настоящее время лаборатория управления ночного видения и электронными датчиками.
  • 1970: Уиллард Бойл и Джордж Э.Смит предлагают прибор с зарядовой связью для телефона с изображениями.
  • 1972: Создан общий программный модуль.
  • 1978: Инфракрасная астрономия изображений достигает совершеннолетия, запланировано создание обсерватории, массовое производство антимонидов и фотодиодов и других материалов.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.


Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.


ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.


Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.


Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.


Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет


Об инфракрасном излучении


Из истории изучения инфракрасного излучения

Инфракрасное излучение или тепловое излучение не является открытием 20 или 21 века. Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Он обнаружил, что «максимум тепла» лежит за пределами красного цвета видимого излучения. Это исследование положило начало изучению инфракрасного излучения. Очень многие известные ученые приложили свои головы к изучению данного направления. Это такие имена как: немецкий физик Вильгельм Вин (закон Вина), немецкий физик Макс Планк (формула и постоянная Планка), шотландский ученый Джон Лесли (устройство измерения теплового излучения – куб Лесли), немецкий физик Густав Кирхгоф (закон излучения Кирхгофа), австрийский физик и математик Йозеф Стефан и австрийский физик Стефан Людвиг Больцман (закон Стефана-Больцмана).

Использование и применение знаний по тепловому излучению в современных отопительных устройствах вышло на передний план лишь в 1950-х годах. В СССР теория лучистого отопления разработана в трудах Г. Л. Поляка, С. Н. Шорина, М. И. Киссина, А. А. Сандера. С 1956 года в СССР было написано или переведено на русский язык множество технических книг по данной тематике (список литературы ). В связи с изменением стоимости энергоресурсов и в борьбе за энергоэффективность и энергосбережение, современные инфракрасные обогреватели получили широкое применение в отоплении бытовых и промышленных зданий.


Солнечное излучение - природное инфракрасное излучение

Наиболее известным и значительным природным инфракрасным обогревателем является Солнце. По сути, это природный и самый совершенный метод обогрева, известный человечеству. В пределах Солнечной системы Солнце это самый мощный источник теплового излучения, обусловливающий жизнь на Земле. При температуре поверхности Солнца порядка 6000К максимум излучения приходится на 0,47 мкм (соответствует желтовато-белому). Солнце находится на расстоянии многих миллионов километров от нас, однако, это не мешает ему передавать энергию через все это громадное пространство, практически не расходуя ее (энергию), не нагревая его (пространство). Причина в том, что солнечные инфракрасные лучи, проходят долгий путь в космосе, практически не имеют потерь энергии. Когда же на пути лучей встречается, какая либо поверхность, их энергия, поглощаясь, превратится в тепло. Нагревается непосредственно Земля, на которую попадают солнечные лучи, и другие предметы, на которые так же попадают солнечные лучи. И уже земля и другие, нагретые Солнцем предметы, в свою очередь, отдают тепло окружающему нас воздуху, тем самым нагревая его.

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. Различные составляющие солнечного спектра по-разному проходят через земную атмосферу.
У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. На внешней границе земной атмосферы, поток лучистой энергии Солнца составляет 1370 Вт/м² ; (солнечная постоянная), а максимум излучения приходится на λ=470 нм (синий цвет). Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м² ; (в Москве, в момент летнего солнцестояния - 930 Вт/м² ), а максимум излучения приходится на λ=555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз и только четверть от этого излучения приходится на длинноволновую область излучения, включая вторичные излучения.

Однако, природа солнечной лучистой энергии весьма отлична от лучистой энергии, отдаваемой инфракрасными обогревателя, используемыми для обогрева помещений. Энергия солнечного излучения состоит из электромагнитных волн, физические и биологические свойства которых существенно отличаются от свойств электромагнитных волн, исходящих от обычных инфракрасных обогревателей, в частности, бактерицидные и лечебные (гелиотерапия) свойства солнечного излучения полностью отсутствуют у источников излучения с низкой температурой. И все же инфракрасные обогреватели дают тот же тепловой эффект , что и Солнце, являясь наиболее комфортными и экономичными из всех возможных источников тепла.


Природа возникновения инфракрасных лучей

Выдающийся немецкий физик Макс Планк , изучая тепловое излучение (инфракрасное излучение), открыл его атомный характер. Тепловое излучение - это электромагнитное излучение, испускаемое телами или веществами и возникающее за счет его внутренней энергии, обусловленное тем, что атомы тела или вещества под действием теплоты движутся быстрее, а в случае твердого материала быстрее колеблются по сравнению с состоянием равновесия. При этом движении атомы сталкиваются, а при их столкновении происходит их ударное возбуждение с последующим излучением электромагнитных волн.
Все предметы непрерывно излучают и поглощают электромагнитную энергию . Это излучение является следствием непрерывного движения элементарных заряженных частиц внутри вещества. Один из основных законов классической электромагнитной теории гласит, что движущаяся с ускорением заряженная частица излучает энергию. Электромагнитное излучение (электромагнитные волны) это распространяющееся в пространстве возмущение электромагнитного поля, то есть изменяющийся во времени периодический электромагнитный сигнал в пространстве, состоящем из электрических и магнитных полей. Это и есть тепловое излучение. Тепловое излучение содержит электромагнитные поля различных длин волн. Поскольку атомы движутся при любой температуре, все тела при любой температуре, больше чем температура абсолютного нуля (-273°С) , излучают тепло. Энергия электромагнитных волн теплового излучения, то есть сила излучения, зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Тепловое излучение происходит по всем длинам волн - от самых коротких до предельно длинных, однако принимают во внимание лишь то тепловое излучение, имеющее практическое значение, которое приходится в диапазоне длин волн: λ = 0,38 – 1000 мкм (в видимой и инфракрасной части электромагнитного спектра). Однако не всякий свет имеет особенности теплового излучения (на пример люминесценция), поэтому в качестве основного диапазона теплового излучения можно принять только диапазон инфракрасного спектра (λ = 0,78 – 1000 мкм) . Еще можно сделать дополнение: участок с длиной волны λ = 100 – 1000 мкм , с точки зрения отопления - не интересен.

Таким образом, тепловое излучение, представляет собой одну из форм электромагнитного излучения, возникающее за счёт внутренней энергии тела и имеющего сплошной спектр, то есть это часть электромагнитного излучения, энергия которого при поглощении вызывает тепловой эффект. Тепловое излучение присуще всем телам.

Все тела, имеющие температуру больше чем температура абсолютного нуля (-273°С), даже если они не светятся видимым светом, являются источником инфракрасных лучей и испускают непрерывный инфракрасный спектр. Это означает, что в излучении присутствуют волны со всеми без исключения частотами, и говорить об излучении на какой-либо определенной волне, совершенно бессмысленно.


Основные условные области инфракрасного излучения

На сегодня не существует единой классификации в разделении инфракрасного излучения на составляющие участки (области). В целевой технической литературе встречается более десятка схем деления области инфракрасного излучения на составляющие участки, и все они различаются между собой. Так как все виды теплового электромагнитного излучения имеют одинаковую природу, поэтому классификация излучения по длинам волн в зависимости от производимого ими эффекта носит лишь условный характер и определяются главным образом различиями в технике обнаружения (тип источника излучения, тип прибора учета, его чувствительность и т.п.) и в методике измерения излучения. Математически, с использованием формул (Планка, Вина, Ламберта и т.п.), так же нельзя определить точные границы областей. Для определения длины волны (максимума излучения) существуют две разные формулы (по температуре и по частоте), дающие различные результаты, с разницей примерно в 1,8 раз (это так называемый закон смещения Вина) и плюс к этому все расчеты делаются для АБСОЛЮТНО ЧЕРНОГО ТЕЛА (идеализированного объекта), которых в реальности не существует. Реальные тела, встречающиеся в природе, не подчиняются этим законам и в той или иной степени от них отклоняются. Информация взята Компанией ЭССО из технической литературы российских и зарубежных ученых" data-lightbox="image26" href="images/26.jpg" title="Развернуть области инфракрасного излучения">
Излучение реальных тел зависит от ряда конкретных характеристик тела (состояния поверхности, микроструктуры, толщины слоя и т. д.). Это так же является причиной указания в разных источниках совершенно разных величин границ областей излучения. Всё это говорит о том, что использовать температуру для описания электромагнитного излучения надо с большой осторожностью и с точностью до порядка. Еще раз подчеркиваю, деление весьма условное!!!

Приведем примеры условного деления инфракрасной области (λ = 0,78 – 1000 мкм) на отдельные участки (информация взята только из технической литературы российских и зарубежных ученых). На приведенном рисунке видно насколько разнообразно это деление, поэтому не стоит привязываться ни к одной из них. Просто нужно знать, что спектр инфракрасного излучения можно условно разбить на несколько участков, от 2-х до 5-и. Область, которая находится ближе в видимому спектру обычно называют: ближняя, близкая, коротковолновая и т.п.. Область которая находится ближе к микроволновым излучениям - дальняя, далекая, длинноволновая и т.п.. Если верить Википедии, то обычная схема деления выглядит так: Ближняя область (Near-infrared, NIR), Коротковолновая область (Short-wavelength infrared, SWIR), Средневолновая область (Mid-wavelength infrared, MWIR), Длинноволновая область (Long-wavelength infrared, LWIR), Дальняя область (Far-infrared, FIR).


Свойства инфракрасных лучей

Инфракрасные лучи - это электромагнитное излучение, имеющее ту же природу, что и видимый свет, поэтому оно так де подчиняется законам оптики. Поэтому, чтобы лучше себе представить процесс теплового излучения, следует проводить аналогию со световым излучением, которое нам всем известно и доступно наблюдению. Однако не надо забывать, что оптические свойства веществ (поглощение, отражение, прозрачность, преломление и т.п.) в инфракрасной области спектра, значительно отличаются от оптических свойств в видимой части спектра. Характерной особенностью инфракрасного излучения является то, что в отличие от других основных видов передачи теплоты здесь нет необходимости в передающем промежуточном веществе. Воздух и тем более вакуум считается прозрачным для инфракрасного излучения, хотя с воздухом это не совсем так. При прохождении инфракрасного излучения через атмосферу (воздух), наблюдается некоторое ослабление теплового излучения. Это обусловлено тем, что сухой и чистый воздух практически прозрачен для тепловых лучей, однако при наличии в нем влаги в виде пара, молекул воды (Н 2 О) , углекислого газа (СО 2) , озона (О 3) и других твердых или жидких взвешенных частиц, которые отражают и поглощают инфракрасные лучи, он становится не совсем прозрачной средой и в результате этого поток инфракрасного излучения рассеивается по разным направлениям и ослабевает. Обычно рассеяние в инфракрасной области спектра меньше, чем в видимой. Однако когда потери, вызванные рассеянием в видимой области спектра, велики, и в инфракрасной области они также значительны. Интенсивность рассеянного излучения изменяется обратно пропорционально четвертой степени длины волны. Оно существенно только в коротковолновой инфракрасной области и быстро уменьшается в более длинноволновой части спектра.

Молекулы азота и кислорода в воздухе не поглощают инфракрасное излучение, а ослабляют его лишь в результате рассеяния. Взвешенные частицы пыли так же приводят к рассеиванию инфракрасного излучения, причём величина рассеяния зависит от соотношения размеров частиц и длины волны инфракрасного излучения, чем больше частицы, тем больше рассеивание.

Пары воды, углекислый газ, озон и другие примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение. Например, пары воды, очень сильно поглощают инфракрасное излучение во всей инфракрасной области спектра , а углекислый газ поглощает инфракрасное излучение в средней инфракрасной области.

Что касается жидкостей, то они могут быть как прозрачными, так и не прозрачными для инфракрасного излучения. Например, слой воды толщиной в несколько сантиметров прозрачен для видимого излучения и непрозрачен для инфракрасного излучения с длиной волны более 1 мкм.

Твердые вещества (тела), в свою очередь, в большинстве случаев не прозрачны для теплового излучения , но бывают и исключения. Например, пластины кремния, непрозрачные в видимой области, прозрачны в инфракрасной области, а кварц, наоборот, прозрачен для светового излучения, но непрозрачен для тепловых лучей с длиной волны более 4 мкм. Именно по этой причине кварцевые стекла не применяются в инфракрасных обогревателях. Обычное стекло, в отличии от кварцевого, частично прозрачно для инфракрасных лучей, оно так же может поглощать значительную часть инфракрасного излучения в определенных интервалах спектра, но за то не пропускает ультрафиолетовое излучение. Каменная соль, так же, прозрачна для теплового излучения. Металлы, в своем большинстве, имеют отражательную способность для инфракрасного излучения значительно больше, чем для видимого света, которая возрастает с увеличением длины волны инфракрасного излучения. Например, коэффициент отражения алюминия, золота, серебра и меди при длине волны около 10 мкм достигает 98% , что значительно выше, чем для видимого спектра, это свойство широко используется в конструкции инфракрасных обогревателей.

Достаточно привести здесь в качестве примера остекленные рамы парников: стекло практически пропускает большую часть солнечного излучения, а с другой стороны, разогретая земля излучает волны большой длины (порядка 10 мкм ), в отношении которых стекло ведет себя как непрозрачное тело. Благодаря этому внутри парников длительное время поддерживается температура, значительно более высокая, чем температура наружного воздуха, даже после того, как солнечное излучение прекращается.


Важную роль в жизни человека играет лучистый теплообмен. Человек отдает окружающей среде теплоту, вырабатываемую в ходе физиологического процесса, главным образом путем лучистого теплообмена и конвекции. При лучистом (инфракрасном) отоплении лучистая составляющая теплообмена тела человека сокращается из-за более высокой температуры, возникающей как на поверхности отопительного прибора, так и на поверхности некоторых внутренних ограждающих конструкций, поэтому при обеспечении одного и того же тепло ощущения конвективные теплопотери могут быть больше, т.е. температура воздуха в помещении может быть меньше. Таким образом, лучистый теплообмен играет решающую роль в формировании ощущения теплового комфорта у человека.

При нахождении человека в зоне действия инфракрасного обогревателя, ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи.

При инфракрасном длинноволновом излучении проникновение лучей значительно меньше по сравнению с коротковолновым излучением . Поглощающая способность влаги, содержащейся в тканях кожи, очень велика, и кожа поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты.


Инфракрасные лучи оказывают как местное, так и общее воздействие. Коротковолновое инфракрасное излучение , в отличии от длинноволнового инфракрасного излучения, может вызвать покраснение кожи в месте облучения, которое рефлекторно распространяется на 2-3 см. вокруг облучаемой области. Причина этого в том, что капиллярные сосуды расширяются, кровообращение усиливается. Вскоре на месте облучения может появиться волдырь, который позднее превращается в струп. Так же при попадании коротковолновых инфракрасных лучей на органы зрения может возникнуть катаракта.

Перечисленные выше, возможные последствия от воздействия коротковолнового ИК обогревателя , не следует путать с воздействием длинноволнового ИК обогревателя . Как уже было сказано, длинноволновые инфракрасные лучи поглощаются в самой верхней части слоя кожи и вызывает только простое тепловое воздействие.

Использование лучистого отопления не должно подвергать человека опасности и создавать дискомфортный микроклимат в помещении.

При лучистом отоплении можно обеспечить комфортные условия при более низкой температуре. При применении лучистого отопления воздух в помещении чище, поскольку меньше скорость воздушных потоков, благодаря чему уменьшается загрязнение пылью. Так же при данном отоплении не происходит разложение пыли, так как температура излучающей пластины длинноволнового обогревателя никогда не достигает температуры, необходимой для разложения пыли.

Чем холоднее излучатель тепла, тем он безвреднее для организма человека, тем дольше может находиться человек в зоне действия обогревателя.

Длительное нахождение человека вблизи ВЫСОКОТЕМПЕРАТУРНОГО источника тепла (более 300°С) вредно для здоровья человека.

Влияние на здоровье человека инфракрасного излучения.

Организм человека, как излучает инфракрасные лучи , так и поглощает их. ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи. Длинноволновое излучение проникает в организм человека значительно меньше по сравнению с коротковолновым излучением . Влага, находящаяся в тканях кожи, поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты. Коротковолновое ИК излучение наиболее глубоко проникает в организм, вызывая его максимальный прогрев. В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови. Однако длительное воздействие коротковолнового инфракрасного излучения на организм человека - нежелательно. Именно на этом свойстве основан эффект теплового лечения , широко используемого в физиотерапевтических кабинетах наших и зарубежных клиник и замете, длительность процедур - ограничена. Однако данные ограничения не распространяются на длинноволновые инфракрасные обогреватели. Важная характеристика инфракрасного излучения – длина волны (частота) излучения. Современные исследования в области биотехнологий показали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны , но оно само нуждается также и в постоянной подпитке длинноволновым теплом . Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы.

С таким отоплением не будет болеть голова от духоты, вызываемой перегретым воздухом под потолком, как при работе конвективного отопления , - когда постоянно хочется открыть форточку и впустить свежий воздух (при этом выпуская нагретый).

При воздействии ИК-излучения интенсивностью 70-100 Вт/м2 в организме повышается активность биохимических процессов, что ведет к улучшению общего состояния человека. Однако существуют нормативы и их стоит придерживаться. Есть нормативы по безопасному отоплению бытовых и промышленных помещений, по длительности лечебных и косметологических процедур, по работе в ГОРЯЧИХ цехах и т.п. Не стоит об этом забывать. При правильном использовании инфракрасных обогревателей - отрицательного воздействия на организм ПОЛНОСТЬЮ ОТСУТСТВУЕТ.

Инфракрасное излучение, инфракрасные лучи, свойства инфракрасных лучей, спектр излучения инфракрасных обогревателей

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, ИНФРАКРАСНЫЕ ЛУЧИ, СВОЙСТВА ИНФРАКРАСНЫХ ЛУЧЕЙ, СПЕКТР ИЗЛУЧЕНИЯ ИНФРАКРАСНЫХ ОБОГРЕВАТЕЛЕЙ Калининград

ОБОГРЕВАТЕЛИ СВОЙСТВА ИЗЛУЧЕНИЕ СПЕКТР ОБОГРЕВАТЕЛЕЙ ДЛИНА ВОЛНЫ ДЛИННОВОЛНОВЫЕ СРЕДНЕВОЛНОВЫЕ КОРОТКОВОЛНОВЫЕ СВЕТЛЫЕ ТЕМНЫЕ СЕРЫЕ ВРЕД ЗДОРОВЬЕ ВЛИЯНИЕ НА ЧЕЛОВЕКА Калининград