Степень с натуральным показателем 1.2.3. Свойство возведения степени в степень

§ 1 Степень с натуральным показателем

Вспомним такую известную нам операцию как сложение нескольких одинаковых слагаемых. Например, 5 + 5 + 5. Такую запись математик заменит более короткой:

5 ∙ 3. Или 7 + 7 + 7 + 7 + 7 + 7 запишет как 7 ∙ 6

А писать а + а + а + …+ а (где n слагаемых а) - вообще не будет, а напишет а ∙ n. Точно так же математик не будет длинно писать произведение нескольких одинаковых множителей. Произведение 2 ∙ 2 ∙ 2 запишется как 23 (2 в третьей степени). А произведение 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 как 46(4 в шестой степени). Но если необходимо, то можно короткую запись заменить более длинной. Например, 74 (7 в четвёртой степени) записать как 7∙7∙7∙7. Теперь дадим определение.

Под записью аn (где n - натуральное число) понимают произведение n множителей, каждый из которых равен а.

Саму запись аn называют степенью числа а, число а - основанием степени, число n - показателем степени.

Запись аn можно прочитать как «а в энной степени» или как «а в степени эн». Записи а2 (а во второй степени) можно прочитать как « а в квадрате», а запись а3 (а в третьей степени) можно прочитать как «а в кубе». Ещё один особый случай - это степень с показателем 1. Здесь необходимо отметить следующее:

Степенью числа а с показателем 1 называют само это число. Т.е. а1 = а.

Любая степень числа 1 равна 1.

А теперь давайте рассмотрим несколько степеней с основанием 10.

Вы заметили, что степени десяти - это единица с таким количеством нулей, каков показатель степени? Вообще, 10n = 100..0 (где в записи n нулей).

§ 2 Примеры по теме урока

Пример 1. Записать произведение (-2)∙(-2)∙(-2)∙(-2) в виде степени.

Так как здесь 4 одинаковых множителя каждый из которых равен -2, то имеем запись (-2)4.

Пример2. Вычислить 1,52.

Показатель 2 говорит о том, что нам надо найти произведение двух одинаковых множителей, каждый из которых равен 1,5. Т.е. вычислить произведение 1,5∙1,5 = 2, 25.

Пример 3. Вычислить произведение 102 ∙ (-1)3.

Сначала вычислим 102 = 100. Затем вычислим (-1)3 = -1. И наконец, перемножим 100 и -1. Получим -100.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/[А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

На этом уроке мы начнем изучение степени с натуральным показателем. Вначале обсудим, зачем математикам понадобилось вводить понятие степени, дадим определение степени с натуральным показателем, рассмотрим ряд примеров на степень. Далее дадим определение степени с единичным показателем и в конце решим несколько примеров на вычисление степени.

Тема: Степень с натуральным показателем и ее свойства

Урок: Что такое степень с натуральным показателем

Откуда появилась степень.

Выражение а+а+а в математике можно заменить на а+а+а=3а.

Выражение а+а+а+а+а можно представить в виде а+а+а+а+а=5а.

То есть, если в выражении n одинаковых слагаемых, каждое из которых а , то его можно кратко записать na .

А умножение , можно кратко записать так: а 3 , читается: а а .

- а в пятой степени или пятая степень числа а .

А если в выражение n одинаковых сомножителей, каждый из которых а , то мы будем писать:

= a n - n -ная степень числа а.

Определение. Степенью a n называется произведение n одинаковых сомножителей, , где n - натуральное число n ={2,3,…..} ; а - любое число.

Терминология: a n

а - основание степени,

n - показатель степени,

a n - степень, или а в n -ой степени, или n -ая степень числа а.

Пример 1: Записать произведение в виде степени, назвать основание и показатель степени, вычислить, если возможно.

1. - это по определению 4 в кубе или третья степень числа 4 , 4 - основание степени, 3 - показатель степени. Результат:

Ответ: 64

2. - по определению, это x в четвертой степени, x - основание степени, 4 - показатель степени. Дальше вычислять нельзя, потому что x нужно присвоить конкретное значение.

Ответ :

Это в пятой степени, - это основание степени, 5 - показатель степени, он показывает сколько раз основание умножается на себя. Замечание: от переменных мест сомножителей произведение не меняется, запишем это выражение по-другому:

Значит, выражение .

Ответ: .

4. - это в кубе, 3 - это показатель степени, - основание степени.

Ответ :

5.

Вторая степень числа 13 , - вторая степень числа 5 .

Ответ: 4225

Третья степень числа 2 , - вторая степень числа 3 .

1. Записать произведение в виде степени, назвать основание и показатель степени, вычислить, если возможно.

2. Вычислить (-2) n , если

а) n =2 б) n =3 в) n =4

3. Вычислить: а 5 , где

а) а=1

б) а=-2

4. Вычислить площадь квадрата, сторона которого равна а/2 , где

Видеоурок 2: Степень с натуральным показателем и ее свойства

Лекция:


Степень с натуральным показателем


Под степенью некоторого числа "а" с некоторым показателем "n" понимают произведение числа "а" само на себя "n" раз.

Когда говорят о степени с натуральным показателем, это означает, что число "n" должно быть целым и не отрицательным.

а - основание степени, которое показывает, какое число следует умножать само на себя,

n - показатель степени - он говорит, сколько раз основание нужно умножить само на себя.


Например:

8 4 = 8 * 8 * 8 * 8 = 4096.

В данном случае под основанием степени понимают число "8", показателем степени считается число "4", под значением степени понимается число "4096".

Самой большой и распространенной ошибкой при подсчете степени является умножение показателя на основание - ЭТО НЕ ВЕРНО!


Когда речь идет о степени с натуральным показателем, имеется в виду, что только показатель степени (n) должен быть натуральным числом.


В качестве основания можно брать любые числа с числовой прямой.


Например,

(-0,1) 3 = (-0,1) * (-0,1) * (-0,1) = (-0,001).

Математическое действие, которое совершается над основанием и показателем степени, называется возведение в степень.

Сложение \ вычитание - математические действия первой ступени, умножение \ деление - действие второй ступени, возведение степени - это математическое действие третьей ступени, то есть одной из высших.

Данная иерархия математических действий определяет порядок при расчете. Если данное действие встречается в задачах среди двух предыдущих, то оно делается в первую очередь.


Например:

15 + 6 *2 2 = 39

В данном примере необходимо сначала возвести 2 в степень, то есть

затем полученный результат умножить на 6, то есть

Степень с натуральным показателем используется не только для конкретных вычислений, но и для удобства записи больших чисел. В данном случае еще используется понятие "стандартный вид числа" . Данная запись подразумевает умножение некоторого числа от 1 до 9 на основание степени равное 10 с некоторым показателем степени.


Например , для записи радиуса Земли в стандартном виде используют следующую запись:

6400000 м = 6,4 * 10 6 м,

а масса Земли, например, записывается следующим образом:

Свойства степени

Для удобства решений примеров со степенями необходимо знать основные их свойства:


1. Если Вам необходимо умножить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.

a n * a m = a n+m

Например:

5 2 * 5 4 = 5 6 .

2. Если необходимо разделить две степени, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть. Обратите внимани, для действий со степенями с натуральным показателем показатель степени делимого должен быть больше показателя степени делителя. В противном случае, частным данного действия будет число с отрицательным показателем степени.

a n / a m = a n-m

Например,

5 4 * 5 2 = 5 2 .

3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.

(a n) m = a n*m

Например,

4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.

(a * b) m = a m * b m

Например,

(5 * 8) 2 = 5 2 * 8 2 .


5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.

(a / b) m = a m / b m

6. Любое число, которое возводится в показатель степени, равный единице, равно первоначальному числу.

а 1 = а

Например,

7. При возведении любого числа в степень с показателем ноль, результатом данного вычисления всегда будет единица.

а 0 = 1

Например ,




I. Произведение n сомножителей, каждый из которых равен а называется n -й степенью числа а и обозначается а n .

Примеры. Записать произведение в виде степени.

1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.

Решение.

1) mmmm=m 4 , так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m , будет четвертой степенью числа m .

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3 .

II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, а n – степень, а – основание степени, n – показатель степени. Например:

2 3 — это степень. Число 2 — основание степени, показатель степени равен 3 . Значение степени 2 3 равно 8, так как 2 3 =2·2·2=8.

Примеры. Написать следующие выражения без показателя степени.

5) 4 3 ; 6) a 3 b 2 c 3 ; 7) a 3 -b 3 ; 8) 2a 4 +3b 2 .

Решение.

5) 4 3 = 4·4·4; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = aaa-bbb; 8) 2a 4 +3b 2 = 2aaaa+3bb.

III. а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 25 0 =1.
IV. а 1 =а Любое число в первой степени равно самому себе.

V. a m a n = a m + n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.

Примеры. Упростить:

9) a·a 3 ·a 7 ; 10) b 0 +b 2 ·b 3 ; 11) c 2 ·c 0 ·c·c 4 .

Решение.

9) a·a 3 ·a 7 =a 1+3+7 =a 11 ; 10) b 0 +b 2 ·b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 ·c 0 ·c·c 4 = 1·c 2 ·c·c 4 =c 2+1+4 =c 7 .

VI. a m : a n = a m - n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Примеры. Упростить:

12) a 8:a 3 ; 13) m 11:m 4 ; 14) 5 6:5 4 .

12) a 8:a 3 =a 8-3 =a 5 ; 13) m 11:m 4 =m 11-4 =m 7 ; 14) 5 6:5 4 =5 2 =5·5=25.

VII. (a m ) n = a mn При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Примеры. Упростить:

15) (a 3) 4 ; 16) (c 5) 2 .

15) (a 3) 4 =a 3·4 =a 12 ; 16) (c 5) 2 =c 5·2 =c 10 .

Обратите внимание , что, так как от перестановки множителей произведение не меняется, то :

15) (a 3) 4 =(a 4) 3 ; 16) (c 5) 2 =(c 2) 5 .

V I II . (a∙b) n =a n ∙b n При возведении произведения в степень возводят в эту степень каждый из множителей.

Нижеприведенная формула будет являться определением степени с натуральным показателем (a — основание степени и повторяющийся множитель, а n — показатель степени, который показывает сколько раз повторяется множитель):

Данное выражение означает, что степень числа a с натуральным показателем n является произведением n сомножителей, при том, что каждый из множителей равняется a .

17^5=17 \cdot 17 \cdot 17 \cdot 17 \cdot 17=1\,419\,857

17 — основание степени,

5 — показатель степени,

1419857 — значение степени.

Степень с нулевым показателем равна 1 , при условии, что a \neq 0 :

a^0=1 .

Например: 2^0=1

Когда нужно записать большое число обычно используют степень числа 10 .

Например, один из самых древних динозавров на Земле жил около 280 млн. лет назад. Его возраст записывается следующим образом: 2,8 \cdot 10^8 .

Каждое число большее 10 можно записать в виде a \cdot 10^n , при условии, что 1 < a < 10 и n является положительным целым числом . Такую запись называют стандартным видом числа .

Примеры таких чисел: 6978=6,978 \cdot 10^3, 569000=5,69 \cdot 10^5 .

Можно говорить как и «a в n -ой степени», так и «n -ая степень числа a » и «a в степени n ».

4^5 — «четыре в степени 5 » или «4 в пятой степени» или также можно сказать «пятая степень числа 4 »

В данном примере 4 — основание степени, 5 — показатель степени.

Приведем теперь пример с дробями и отрицательными числами. Для избежания путаницы принято записывать основания, отличные от натуральных чисел, в скобках:

(7,38)^2 , \left(\frac 12 \right)^7 , (-1)^4 и др.

Заметьте также разницу:

(-5)^6 — означает степень отрицательного числа −5 с натуральным показателем 6.

5^6 — соответствует числу противоположному 5^6 .

Свойства степеней с натуральным показателем

Основное свойство степени

a^n \cdot a^k = a^{n+k}

Основание остается прежним, а складываются показатели степеней.

Например: 2^3 \cdot 2^2 = 2^{3+2}=2^5

Свойство частного степеней с одинаковыми основаниями

a^n: a^k=a^{n-k}, если n > k .

Показатели степени вычитаются, а основание остается прежним.

Данное ограничение n > k вводится для того, чтобы не выходить за рамки натуральных показателей степени. Действительно, при n > k показатель степени a^{n-k} будет являться натуральным числом, иначе он будет либо отрицательным числом (k < n ), либо нулем (k-n ).

Например: 2^3: 2^2 = 2^{3-2}=2^1

Свойство возведения степени в степень

(a^n)^k=a^{nk}

Основание остается прежним, перемножаются лишь показатели степеней.

Например: (2^3)^6 = 2^{3 \cdot 6}=2^{18}

Свойство возведения в степень произведения

В степень n возводится каждый множитель.

a^n \cdot b^n = (ab)^n

Например: 2^3 \cdot 3^3 = (2 \cdot 3)^3=6^3

Свойство возведения в степень дроби

\frac{a^n}{b^n}=\left(\frac{a}{b} \right) ^n, b \neq 0

В степень возводится и числитель и знаменатель дроби. \left(\frac{2}{5} \right)^3=\frac{2^3}{5^3}=\frac{8}{125}