Виды сил в природе физика. Силы в природе

1. Силы в природе:

а) упругость;

б) трение;

в) сила тяжести;

2. Закон всемирного тяготения;

3. Невесомость

1. В окружающем нас мире бесчисленное количество тел, которые взаимодействуют друг с другом. Но, несмотря на многообразие сил, принято выделять несколько их видов.

Силой упругости называют силу, которая возникает в теле при изменении его формы или размеров. Это происходит, если тело сжимают, растягивают, изгибают или скручивают. Например, сила упругости, возникшая в пружине, действует на кирпич. Она возникла в результате сжатия пружины.

Сила упругости всегда направлена противоположно той силе, которая вызвала изменение формы или размеров тела. В нашем примере упавший кирпич сжал пружину, то есть подействовал на нее с силой, направленной вниз. В результате в пружине возникла сила упругости, направленная в противоположную сторону, то есть вверх.

Силой тяготения называют силу, с которой все тела в мире притягиваются друг к другу. Разновидностью силы тяготения является сила тяжести – сила, с которой тело, находящееся вблизи какой-либо планеты, притягивается к ней. Например, ракета, стоящая на Марсе, притягивается к нему – на ракету действует сила тяжести.

Сила тяжести всегда направлена к центру планеты. Например, Земля притягивает мальчика и мяч с силами, направленными вниз, то есть к центру планеты.

Силой трения называют силу, препятствующую проскальзыванию одного тела по поверхности другого. Резкое торможение автомобиля сопровождается «визгом тормозов». Он возникает из-за проскальзывания шин по поверхности асфальта. При этом между колесом и дорогой действует сила трения, препятствующая такому проскальзыванию.

Сила трения всегда направлена противоположно направлению проскальзывания рассматриваемого тела по поверхности другого. Например, при торможении автомобиля его колеса проскальзывают вперед, значит, действующая на них сила трения о дорогу направлена в противоположную сторону, то есть назад.

Выталкивающей силой (или силой Архимеда) называют силу, с которой жидкость или газ действуют на погруженное в них тело. Вода в пруду действует на пузырьки воздуха – выталкивает их на поверхность. Вода также действует на рыбу и камни – подталкивает их вверх, уменьшая их вес (силу, с которой камни давят на дно пруда). Архимедова сила обычно направлена вверх, противоположно силе тяжести.

2. Ньютоновский закон всемирного тяготения для силы, действующей между двумя телами с массами m 1 и m 2 , записывается следующим образом:

F=G ,

Где r – расстояние между телами, G= 6,67 Н - гравитационная постоянная (1 Н = 1 ньютон – это величина силы, с которой Земля притягивает тело массой 0,1 кг, находящееся на её поверхности).

Сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорционально их массам, обратно пропорционально квадрату расстояния между ними и направлено вдоль соединяющей их прямой.

Гравитационная постоянная является мировой константой, её определение возможно при проведении прямых лабораторных опытов по измерению силы гравитационного притяжения двух известных масс. Впервые опыт по определению G был поставлен Г. Кавендишем в 1797 г. зная величину G, можно определить массу Земли, массы других планет Солнечной системы, массу Солнца. Для определения массы Солнца необходимо знать расстояние от Земли до Солнца и время, за которое Земля совершает один оборот вокруг Солнца.

Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов.

Еще до того как Ньютон постулировал закон всемирного тяготения, И. Кеплер, анализируя движения планет Солнечной системы, предложил три простых закона, очень точно описывающих эти движения не только для всех планет, но и для их спутников.

Лекция № 4

Тема: 1.1.3. Импульс. Закон сохранения импульса и

Реактивное движение

План:

1. Общее понятие. Импульс тела;

2. Закон сохранения импульса;

3. Реактивное движение.

1. Определение: импульсом (количеством движением) тела р называется произведение массы на его скорость.

Мы знаем, что причиной изменения скорости тела является действия других тел. Выясним, какая сила требуется для того, чтобы за время t увеличить скорость тела от 0 до некоторого значения υ . По второму закону Ньютона F=ma , и согласно формуле a=υ/t

Таким образом,

F = mv/t

В правую часть полученного выражения входит произведение массы тела на его скорость. Обозначим это произведение p :

Физическая величина, равная произведению массы тела на его скорость, называется импульсом тела:

р - импульс тела.

Если тело покоится, то его импульс равен нулю. При увеличении скорости импульс возрастает.

Импульс-величина векторная.

Единицей импульса в СИ является килограмм-метр в секунду (1 кг м/с)

Понятие импульса была ведено введено в физику Рене Декартом (1596-1650). Сам Декарт назвал эту величину не импульсом, а количеством движения.

2. Для импульса справедлив фундаментальный закон природы, называемый законом сохранения импульса (или количества движения). Открывший этот закон Декарт в одном из своих писем написал: «Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает»

В наиболее простом случае закон сохранения импульса может быть сформулирован следующим образом.

В природе существует четыре типа сил: гравитационные, электромагнитные, ядерные и слабые.

Гравитационные силы, или силы тяготения, действуют между всеми телами. Но эти силы заметны, если хотя бы одно из тел имеет размеры, соизмеримые с размерами планет. Силы притяжения между обычными телами настолько малы, что ими можно пренебречь. Поэтому гравитационными можно считать силы взаимодействия между планетами, а также между планетами и Солнцем или другими телами, имеющими очень большую массу. Это могут быть звёзды, спутники планет и т.п.

Электромагнитные силы действуют между телами, имеющими электрический заряд.

Ядерные силы (сильные) являются самыми мощными в природе. Они действуют внутри ядер атомов на расстояниях 10 -13 см.

Слабые силы , как и ядерные, действуют на малых расстояниях порядка 10 -15 см. В результате их действия происходят процессы внутри ядра.

Механика рассматривает гравитационные силы, силы упругости и силы трения.

Гравитационные силы

Гравитация описывается законом всемирного тяготения. Этот закон был изложен Ньютоном в середине XVII в. в работе «Математические начала натуральной философии».

Гравитацией называют силу тяготения, с которой любые материальные частицы притягиваются друг у другу.

Сила, с которой материальные частицы притягиваются друг к другу, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними .

G – гравитационная постоянная, численно равная модулю силы тяготения, с которой тело, имеющее единичную массу, действует на тело, имеющее такую же единичную массу и находящееся на единичном расстоянии от него.

G = 6,67384(80)·10 −11 м 3 ·с −2 ·кг −1 , или Н·м²·кг −2 .

На поверхности Земли сила гравитации (сила тяготения) проявляется в виде силы тяжести .

Мы видим, что любой предмет, брошенный в горизонтальном направлении, всё равно падает вниз. Падает вниз также и любой предмет, подброшенный вверх. Происходит это под действием силы тяжести, которая действует на любое материальное тело, находящееся вблизи поверхности Земли. Сила тяжести действует на тела и на поверхности других астрономических тел. Эта сила всегда направлена вертикально вниз.

Под действием силы тяжести тело движется к поверхности планеты с ускорением, которое называется ускорением свободного падения .

Ускорение свободного падения на поверхности Земли обозначается буквой g .

F t = mg ,

следовательно,

g = F t / m

g = 9, 81 м/с 2 на полюсах Земли, а на экваторе g = 9,78 м/с 2 .

При решении простых физических задач величину g принято считать равной 9,8 м/с 2 .

Классическая теория тяготения применима только для тел, имеющих скорость намного ниже скорости света.

Силы упругости

Силами упругости называются силы, которые возникают в теле в результате деформации, вызывающей изменение его формы или объёма. Эти силы всегда стремятся вернуть тело в его первоначальное положение.

При деформации происходит смещение частиц тела. Сила упругости направлена в сторону, противоположную направлению смещения частиц. Если деформация прекращается, сила упругости исчезает.

Английский физик Роберт Гук, современник Ньютона, открыл закон, устанавливающий связь между силой упругости и деформацией тела.

При деформации тела возникает сила упругости, прямо пропорциональная удлинению тела, и имеющая направление, противоположное перемещению частиц при деформации.

F = k l ,

где к – жёсткость тела, или коэффициент упругости;

l – величина деформации, показывающая величину удлинения тела под воздействием сил упругости.

Закон Гука действует для упругих деформаций, когда удлинение тела мало, а тело восстанавливает свои первоначальные размеры после того, как исчезают силы, вызвавшие эту деформацию.

Если деформация велика, и тело не возвращается в свою исходную форму, закон Гука не применяется. При очень больших деформациях происходит разрушение тела.

Силы трения

Сила трения возникает, когда одно тело движется по поверхности другого. Она имеет электромагнитную природу. Это следствие взаимодействия между атомами и молекулами соприкасающихся тел. Направление силы трения противоположно направлению движения.

Различают сухое и жидкое трение. Сухим называют трение, если между телами нет жидкой или газообразной прослойки.

Отличительная особенность сухого трения – трение покоя, которое возникает при относительном покое тел.

Величина силы трения покоя всегда равна величине внешней силы и направлена в противоположную сторону. Сила трения покоя препятствует движению тела.

В свою очередь, сухое трение разделяется на трение скольжения и трение качения .

Если величина внешней силы превышает величину силы трения, то в этом случае появится проскальзывание, и одно из контактирующих тел начнёт поступательно перемещаться относительно другого тела. А сила трения будет называться силой трения скольжения . Её направление будет противоположно направлению скольжения.

Сила трения скольжения зависит от силы, с которой тела давят друг на друга, от состояния трущихся поверхностей, от скорости движения, но не зависит от площади соприкосновения.

Сила трения скольжения одного тела по поверхности другого вычисляется по формуле:

F тр. = k · N ,

где k – коэффициент трения скольжения;

N – сила нормальной реакции, действующая на тело со стороны поверхности.

Сила трения качения возникает между телом, которое перекатывается по поверхности, и самой поверхностью. Такие силы появляются, например, при соприкосновении шин автомобиля с дорожным покрытием.

Величина силы трения качения вычисляется по формуле

где F t – сила трения качения;

f – коэффициент трения качения;

R – радиус катящегося тела;

N – прижимающая сила.

Тема: “Силы в природе. Гравитационные силы”

1. Выяснить какие типы сил встречаются в природе. Дать определение гравитационной силы. Сформулировать закон всемирного тяготения.
2. Развивать мышление учащихся, интерес к изучению физики.
3. Воспитывать положительное отношение к труду.

Ход урока:

1. Оргмомент.

Здравствуйте ребята. Тема нашего урока “Силы в природе. Гравитационные силы”. Откройте тетради и запишите число и тему урока. Сегодня на уроке мы выясним какие типы сил встречаются в природе. Дадим определение гравитационной силы и сформулируем закон всемирного тяготения. Но сначала давайте повторим пройденный материал.

2. Фронтальный опрос учащихся.

1)Что такое динамика?

2)Сформулируйте первый закон Ньютона.

3)Какие системы отсчета называются инерциальными?

4)Сформулируйте второй закон Ньютона.

5)Сформулируйте третий закон Ньютона.

6)Что такое сила?

3. Объяснение новой темы сопровождается презентацией

Приложение 1 .

1). Типы сил в природе:

Гравитационные – все тела притягиваются друг к другу.

Электромагнитные – действуют между частицами, имеющими электрические заряды (в атомах, молекулах, твердых, жидких и газообразных телах, живых организмах).

Ядерные – внутри атомных ядер (сказываются только на расстоянии 10 -12 см).

Слабые взаимодействия – проявляются на еще меньших расстояниях. Они вызывают превращение элементарных частиц друг в друга.

2). Гравитационная сила.

Попытки объяснить строение Солнечной системы, занимали умы многих людей. Особенно волновал вопрос о том, что связывает планеты и Солнце в единую систему? Он встал, после того как Коперник “поместил” Солнце в центр, а все планеты заставил обращаться вокруг него. Именно Солнце естественно считать причиной обращения вокруг него Земли и планет. Но не только планеты притягиваются к Солнцу. Солнце тоже притягивается к планетам. Это доказал И. Ньютон. Выражение для силы тяготения Ньютон получил в 1666 году, когда ему было 24 года. Изучая в течение многих лет движение тел, в частности движение Луны вокруг Земли и планет вокруг Солнца, Ньютон пришел к смелой мысли о том, что все тела во Вселенной притягивают друг друга.

Взаимное притяжение между всеми телами было названо всемирным тяготением . (Определение записать в тетрадь)

Силы всемирного тяготения иначе называют гравитационными . (Определение записать в тетрадь)

3). Закон всемирного тяготения

Ньютон установил, как зависит от расстояния ускорение свободного падения. Вблизи поверхности Земли, на расстоянии 6400 км от центра оно составляет 9,8 м/с 2 . А на расстоянии в 60 раз больше, то есть у Луны это ускорение в 3600 раз меньше, чем на Земле. Вывод: ускорение убывает обратно пропорционально квадрату расстояния от центра Земли. По второму закону динамики, ускорение прямо пропорционально силе, а сила в свою очередь прямо пропорциональна массам. Обобщив все это, Ньютон сформулировал закон всемирного тяготения :

Два любых тела притягиваются друг к другу с силой прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними:

F=(G m 1 m 2) /r 2

F –модуль вектора силы гравитационного притяжения между телами с массами m 1 и m 2 , находящимися на расстоянии r друг от друга.

G –гравитационная постоянная (закон и формулу закона записать в тетрадь)

Если m 1= m 2 =1кг, то G численно равна силе F.

G=6,67*10 -11 (Н*м 2)/кг 2 (записать в тетрадь)

Это величайшее открытие английский поэт Байрон описывает так в своем произведении “Дон Жуан”:

Так человека яблоко сгубило,
Но яблоко его же и спасло,
Ведь Ньютона открытие разбило
Неведения мучительное зло
Дорогу к новым звездам проложило
И новый выход страждущим дано.
Уж скоро мы, природы властелины
И на Луну пошлем свои машины.

Взаимное притяжение между материальными телами было обнаружено впервые “на небе”. Но закон Ньютона относится ко всем материальным частицам, независимо от их местонахождения, и потому притяжение должно существовать и между земными телами. Такое притяжение было обнаружено в XVII веке, через 50 лет после открытия Ньютона, французскими учеными Бугером и Кондамином в результате эксперимента. Более точные опыты провел в 1798 году английский ученый Кавендиш.

4). Опыт Кавендиша (учебник страница 83, рисунок 81 и рисунок на экране)

Два шарика 1, имеющие одинаковую массу m 1, укреплены на концах легкого коромысла 2, подвешенного на упругой нити 3. Шарики находятся на расстоянии r от более массивных шаров 4 массой m 2. Под действием силы притяжения малых шаров к большим, коромысло поворачивается. По углу закручивания нити определяется сила гравитационного притяжения F 12 шариков массами m 1 и m 2 . Кавендиш нашел числовое значение гравитационной постоянной.

5). Применение формулы закона для расчетов (записать в тетрадь)

Формула закона всемирного тяготения дает точный результат при расчете:

а) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними;
б) если оба тела однородны и имеют шарообразную форму;
в) если одно из взаимодействующих тел – шар, размеры и масса которого, значительно больше, чем у второго тела.

4. Закрепление.

Тест. Букву, под которой находится правильный ответ записать в таблицу. В результате получится ключевое слово.

1. Кто открыл закон всемирного тяготения?

З Ньютон;
В Кавендиш;
Р Коперник.

2. Формула, определяющая силу всемирного притяжения между двумя телами.

Е F=(m 1 m 2) /r 2 ;
A F=(Gm 1 m 2)/r 2 ;
O F=(Gm 1 m 2)/r.

3. Как изменится сила притяжения между двумя шарами, если один из них заменить другим масса которого вдвое больше?

Н не изменится;
К увеличится в два раза;
З уменьшится в два раза.

4. Чему равна гравитационная постоянная?

О 6,67*10 -11 Н*м 2 /кг 2 ;
Е 6,67*10 -11 Н*м/кг;
И 6,67*10 -1 Н*м 2 /кг 2 .

5. Как изменится сила притяжения между двумя шарами, если расстояние между ними увеличить вдвое?

К уменьшится в два раза;
Т увеличится в четыре раза;
Н уменьшится в четыре раза.

5. Расслабление глаз

(музыка).

Сесть спокойно и устойчиво. Закрыть глаза и расслабить веки. Мысленно погладить глаза теплыми мягкими пальцами. Почувствовать, как глазные яблоки совершенно пассивно лежат в глазницах. Лицо и тело расслаблены. Чувства тепла и тяжести сменяются легкостью, а в дальнейшем – полной потерей ощущения глаз.

Причиной изменения движения: появления ускорения у тел является сила. Силы возникают при взаимодействии тел друг с другом. Но какие существуют виды взаимодействий и много ли их?

На первый взгляд может показаться, что различных видов воздействий тел друг на друга, а следовательно, и различных видов сил существует очень много. Ускорение можно сообщить телу, толкнув или потянув его рукой; с ускорением плывёт корабль, когда дует попутный ветер; с ускорением движется любое тело, падающее на Землю; натянув и отпустив тетиву лука, мы сообщаем ускорение стреле. Во всех рассмотренных случаях действуют силы, и все они кажутся совершенно различными. А можно назвать ещё и другие силы. Все знают о существовании электрических и магнитных сил, о силе прилива и отлива, о силе землетрясений и ураганов.

Но действительно ли в природе существует так много разных сил?

Если мы говорим о механическом движении тел, то здесь мы встречаемся только с тремя видами сил: сила тяготения, сила упругости и сила трения. К ним сводятся, все рассмотренные выше силы. Силы упругости, тяготения и трения являются проявлением сил всемирного тяготения и электромагнитных сил природы. Получается, что в природе из указанных существует только две силы.

Электромагнитные силы. Между наэлектризованными телами действует особая сила, которая называется электрической силой, которая может быть как силой притяжения, так и силой отталкивания. В природе существуют заряды двух видов: положительные и отрицательные. Два тела с различными зарядами притягиваются, а тела с одноимёнными зарядами отталкиваются.

Электрические заряды обладают одним особенным свойством: когда заряды движутся, между ними, кроме электрической силы, возникает и другая – магнитная сила.

Магнитная и электрическая силы тесно связаны друг с другом и действуют одновременно. А так как чаще всего приходится иметь дело с движущимися зарядами, то действующие между ними силы нельзя разграничить. И эти силы называют электромагнитными силами.

Как же возникает «электрический заряд», который может быть у тела, а может и не быть?

Все тела состоят из молекул и атомов. Атомы состоят ещё из более мелких частиц – атомного ядра и электронов. Они, ядра и электроны, обладают определёнными электрическими зарядами. Ядро имеет положительный заряд, а электроны – отрицательный.

В нормальных условиях атом не имеет заряда – он нейтрален, потому что суммарный отрицательный заряд электронов равен положительному заряду ядра. И тела, которые состоят их таких нейтральных атомов, электрически нейтральны. Между такими телами практически нет электрических сил взаимодействия.

Но в одном и том же жидком (или твёрдом) теле соседние атомы настолько близко расположены один к другому, что силы взаимодействия между зарядами, из которых они состоят, весьма значительны.

Силы взаимодействия атомов зависят от расстояний между ними. Силы взаимодействия между атомами способны изменять своё направление при изменении расстояния между ними. Если расстояние между атомами очень мало, то они отталкиваются друг от друга. Но если расстояние между ними увеличить, то атомы начинают притягиваться. При некотором расстоянии между атомами силы их взаимодействия становятся равными нули. Естественно, что на таких расстояниях атомы и располагаются друг относительно друга. Отметим, что расстояния эти очень малы, и приблизительно равны размерам самих атомов.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.