Золотое сечение число фибоначчи 1.618. Спираль фибоначчи — зашифрованный закон природы

Здравствуйте, дорогие читатели!

Золотое сечение - что это такое? Числа Фибоначчи - это ? В статье - ответы на эти вопросы кратно и понятно, простыми словами.

Эти вопросы вот уже несколько тысячелетий будоражат умы всё новых и новых поколений! Оказывается математика может быть не скучной, а захватывающей, интересной, завораживающей!

Другие полезные статьи:

Числа Фибоначчи - это что?

Поразителен тот факт, что при делении каждого последующего числа числовой последовательности на предыдущее получается число, стремящееся к 1,618.

Обнаружил эту загадочную последовательность счастливчик математик средневековья Леонардо Пизанский (более известный под именем Фибоначчи) . До него Леонардо да Винчи обнаружил в строении тела человека, растений и животных удивительным образом повторяющуюся пропорцию Фи = 1,618 . Это число (1,61) ученые еще называют «Числом Бога».


До Леонардо да Винчи эта последовательность чисел была известна в Древней Индии и Древнем Египте . Египетские пирамиды построены с применением пропорции Фи = 1,618.

Но и это еще не все, оказывается законы природы Земли и Космоса каким-то необъяснимым образом подчиняются строгим математическим законам последовательности чисел Фидоначчи .

Например, и ракушка на Земле, и галактика в Космосе построены с применением чисел Фибоначчи. Абсолютное большинство цветов имеет 5, 8, 13 лепестков. В подсолнухе, на стеблях растений, в закрученных вихрях облаков, в водоворотах и даже в графиках изменения курсов валют на Форексе, всюду работают числа Фибоначчи.

Посмотрите простое и занимательное пояснение, что такое последовательность чисел Фибоначчи и Золотое сечение в этом КОРОТКОМ ВИДЕО (6 минут):

Что такое Золотое сечение или Божественная пропорция?

Итак, что такое Золотое сечение или Золотая или Божественная пропорция? Фибоначчи также обнаружил, что последовательность, которая состоит из квадратов чисел Фибоначчи является еще большей загадкой. Попробуем графически изобразить в виде площади последовательность:

1², 2², 3², 5², 8²…


Если вписать спираль в графическое изображение последовательности квадратов чисел Фибоначчи, то мы получим Золотое сечение, по правилам которого построено все во вселенной, включая растения, животных, спираль ДНК, человеческое тело, … Список этот можно продолжать до бесконечности.


Золотое сечение и Числа Фибоначчи в природе ВИДЕО

Предлагаю посмотреть короткий фильм (7 минут), в котором раскрываются некоторые загадки Золотого сечения. При размышлениях о законе чисел Фибоначчи, как о первостепенном законе, который управляет живой и неживой природой, появляется вопрос: Эта идеальная формула для макромира и микромира возникла сама или ее кто-то создал и удачно применил?

Что ВЫ думаете по этому поводу? Давайте вместе подумаем над этой загадкой и быть может мы приблизимся к .

Очень надеюсь, что статья была полезной для Вас и Вы узнали, что это такое Золотое сечение *и Числа Фибоначчи ? До новых встреч на страницах блога, подписывайтесь на блог. Форма подписки — под статьей.

Всем желаю много новых идей и вдохновения для их реализации!

Леонардо Фибоначчи — один из знаменитейших математиков Средневековья. Одно из важнейших его достижений — числовой ряд, который определяет золотое сечение и прослеживается во всей природе нашей планеты.

Удивительное свойство этих чисел, что сумма всех предыдущих чисел равна последующему числу (проверьте сами):

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610… — ряд Фибоначчи

Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на две части. Отношение меньшей части линии к большей будет равно отношению большей части ко всей линии. Этот коэффицент пропорциональности, приблизительно равный 1,618, известен как золотое сечение.

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого сечения находят эту последовательность во всем растительном и в животном мире. Вот несколько удивительных примеров:

Расположение листьев на ветке, семян подсолнечника, шишек сосны проявляет себя как золотое сечение. Если смотреть на листья такого растения сверху, можно заметить, что они распускаются по спирали. Углы между соседними листьями образуют правильный математический ряд, известный под названием последовательности Фибоначчи. Благодаря этому каждый отдельно взятый лист, растущий на дереве, получает максимально доступное количество тепла и света.

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции — длина ее хвоста так относится к длине остального тела, как 62 к 38.

Ученый Цейзинг проделал колоссальную работу,чтобы обнаружить золотое сечение в теле человека. Он измерил около двух тысяч человеческих тел. Деление тела точкой пупа — важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. Пропорции золотого сечения проявляются и в отношении других частей тела — длина плеча, предплечья и кисти, кисти и пальцев и т.д.

В эпоху Возрождения считалось, что именно эта пропорция из ряда Фибоначчи, соблюденная в архитектурных сооружениях и других видах искусства, больше всего радует глаз. Вот несколько примеров использования золотого сечения в искусстве:

Портрет Моны Лизы

Портрет Монны Лизы долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника, который строится на принципах золотого сечения.

Парферон

Золотые пропорции присутствуют в размерах фасада древнегреческого храма Парфенона. Это древнее сооружение с его гармоническими пропорциями дарит нам такое же эстетическое наслаждение как и нашим предкам. Многие искусствоведы, стремившиеся раскрыть секрет того могучего эмоционального воздействия, которое это здание оказывает на зрителя, искали и находили в соотношениях его частей золотую пропорцию.

Рафаэль — «Избиение младенцев»

Картина строится на спирали, соблюдающей пропорции золотого сечения. Мы не знаем, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции»Избиение младенцев» или только»чувствовал» ее.

Наш мир чудесен и полон больших неожиданностей. Удивительная нить взаимосвязи соединяет множество обыденных для нас вещей. Золотое сечение легендарно тем, что оно объединило, казалось бы, две совершенно разные ветви познания — математику, царицу точности и порядка, и гуманитарную эстетику.

Последовательность Фибоначчи, ставшая известной большинству благодаря фильму и книге «Код да Винчи», это ряд чисел, выведенный итальянским математиком Пизанским Леонардо, более известным под псевдонимом Фибоначчи, в тринадцатом веке. Последователи ученого заметили, что формула, которой подчинен данный ряд цифр, находит свое отображение в окружающем нас мире и перекликается с другими математическими открытиями, тем самым открывая для нас дверь в тайны мироздания. В этой статье мы расскажем, что такое последовательность Фибоначчи, рассмотрим примеры отображения этой закономерности в природе, а также сравним с другими математическими теориями.

Формулировка и определение понятия

Ряд Фибоначчи - это математическая последовательность, каждый элемент которой равен сумме двух предыдущих. Обозначим некой член последовательности как х n. Таким образом, получим формулу, справедливую для всего ряда: х n+2 =х n +х n+1. При этом порядок последовательности будет выглядеть так: 1, 1, 2, 3, 5, 8, 13, 21, 34. Следующим числом будет 55, так как сумма 21 и 34 равна 55. И так далее по такому же принципу.

Примеры в окружающей среде

Если мы посмотрим на растение, в частности, на крону из листьев, то заметим, что они распускаются по спирали. Между соседними листьями образуются углы, которые, в свою очередь, образуют правильную математическую последовательность Фибоначчи. Благодаря этой особенности каждый отдельно взятый листочек, который растет на дереве, получает максимальное количество солнечного света и тепла.

Математическая загадка Фибоначчи

Известный математик представил свою теорию в виде загадки. Звучит она следующим образом. Можно поместить пару кроликов в замкнутое пространство для того, чтобы узнать, какое количество пар кроликов родится в течении одного года. Учитывая природу этих животных, то, что каждый месяц пара способна производить на свет новую пару, а готовность к размножению у них появляется по достижении двух месяцев, в итоге он получил свой знаменитый ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 - где показано количество новых пар кроликов в каждом месяце.

Последовательность Фибоначчи и пропорциональное соотношение

Этот ряд имеет несколько математических нюансов, которые обязательно нужно рассмотреть. Он, приближаясь медленнее и медленнее (асимптотически), стремится к некоему пропорциональному соотношению. Но оно иррациональное. Другими словами, представляет собой число с непредсказуемой и бесконечной последовательностью десятичных чисел в дробной части. Например, соотношение любого элемента ряда варьируется около цифры 1,618, то превосходя, то достигая его. Следующее по аналогии приближается к 0,618. Что есть обратно пропорциональным к числу 1,618. Если мы поделим элементы через один, то получим 2,618 и 0,382. Как вы уже поняли, они также являются обратно пропорциональными. Полученные числа называются коэффициентами Фибоначчи. А теперь объясним, для чего мы выполняли эти вычисления.

Золотое сечение

Все окружающие нас предметы мы различаем по определенным критериям. Один из них - форма. Какие-то нас привлекают больше, какие-то меньше, а некоторые и вовсе не нравятся. Замечено, что симметричный и пропорциональный объект гораздо легче воспринимается человеком и вызывает чувство гармонии и красоты. Цельный образ всегда включает в себя части различного размера, которые находятся в определенном соотношении друг с другом. Отсюда вытекает ответ на вопрос о том, что называют Золотым сечением. Данное понятие означает совершенство соотношений целого и частей в природе, науке, искусстве и т. д. С математической точки зрения рассмотрим следующий пример. Возьмем отрезок любой длины и разделим его на две части таким образом, чтобы меньшая часть относилась к большей как сумма (длина всего отрезка) к большей. Итак, примем отрезок с за величину один. Его часть а будет равна 0,618, вторая часть b , выходит, равна 0,382. Таким образом, мы соблюдаем условие Золотого сечения. Отношение отрезка c к a равняется 1,618. А отношение частей c и b - 2,618. Получаем уже известные нам коэффициенты Фибоначчи. По такому же принципу строятся золотой треугольник, золотой прямоугольник и золотой кубоид. Стоит также отметить, что пропорциональное соотношение частей тела человека близко к Золотому сечению.

Последовательность Фибоначчи - основа всего?

Попробуем объединить теорию Золотого сечения и известного ряда итальянского математика. Начнем с двух квадратов первого размера. Затем сверху добавим еще квадрат второго размера. Подрисуем рядом такую же фигуру с длиной стороны, равной сумме двух предыдущих сторон. Аналогичным образом рисуем квадрат пятого размера. И так можно продолжать до бесконечности, пока не надоест. Главное, чтобы величина стороны каждого последующего квадрата равнялась сумме величин сторон двух предыдущих. Получаем серию многоугольников, длина сторон которых является числами Фибоначчи. Эти фигуры называются прямоугольниками Фибоначчи. Проведем плавную линию через углы наших многоугольников и получим… спираль Архимеда! Увеличение шага данной фигуры, как известно, всегда равномерно. Если включить фантазию, то полученный рисунок можно проассоциировать с раковиной моллюска. Отсюда можем сделать вывод, что последовательность Фибоначи - это основа пропорциональных, гармоничных соотношений элементов в окружающем мире.

Математическая последовательность и мироздание

Если присмотреться, то спираль Архимеда (где-то явно, а где-то завуалированно) и, следовательно, принцип Фибоначчи прослеживаются во многих привычных природных элементах, окружающих человека. Например, все та же раковина моллюска, соцветия обычной брокколи, цветок подсолнечника, шишка хвойного растения и тому подобное. Если заглянем подальше, то увидим последовательность Фибоначчи в бесконечных галактиках. Даже человек, вдохновляясь от природы и перенимая ее формы, создает предметы, в которых прослеживается вышеупомянутый ряд. Тут самое время вспомнить и о Золотом сечении. Наряду с закономерностью Фибоначчи прослеживаются принципы данной теории. Существует версия, что последовательность Фибоначчи - это своего рода проба природы адаптироваться к более совершенной и фундаментальной логарифмической последовательности Золотого сечения, которая практически идентична, но не имеет своего начала и бесконечна. Закономерность природы такова, что она должна иметь свою точку отсчета, от чего отталкиваться для создания чего-то нового. Отношение первых элементов ряда Фибоначчи далеки от принципов Золотого сечения. Однако чем дальше мы его продолжаем, тем больше это несоответствие сглаживается. Для определения последовательности необходимо знать три его элемента, которые идут друг за другом. Для Золотой последовательности же достаточно и двух. Так как она является одновременно арифметической и геометрической прогрессией.

Заключение

Все-таки, исходя из вышесказанного, можно задать вполне логичные вопросы: "Откуда появились эти числа? Кто этот автор устройства всего мира, попытавшийся сделать его идеальным? Было ли всегда все так, как он хотел? Если да, то почему возник сбой? Что будет дальше?" Находя ответ на один вопрос, получаешь следующий. Разгадал его - появляются еще два. Решив их, получаешь еще три. Разобравшись с ними, получишь пять нерешенных. Затем восемь, далее тринадцать, двадцать один, тридцать четыре, пятьдесят пять…

Совместно с издательством « » мы публикуем отрывок из книги профессора прикладной математики Эдварда Шейнермана «Путеводитель для влюблённых в математику », посвященной нестандартным вопросам увлекательной математики, головоломкам, Вселенной чисел и фигур. Перевод с английского Алексея Огнёва.

Эта глава повествует о знаменитых числах Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21 и т. д. Этот ряд был назван в честь Леонардо Пизанского, больше известного как Фибоначчи. Леонардо Пизанский (1170–1250) - один из первых крупных математиков средневековой Европы. Прозвище Фибоначчи означает «сын Боначчи». Автор «Книги абака», излагающей десятичную систему счисления.

Квадраты и домино

Начнем с укладки квадратов и домино. Вообразим длинную горизонтальную рамку размерами 1 × 10. Мы хотим полностью заполнить ее квадратами 1 × 1 и костяшками домино 1 × 2, не оставив ни единой щели. Вот картинка:

Вопрос: сколькими способами это можно сделать?

Для удобства обозначим число вариантов F10. Перебирать их все и потом пересчитывать - тяжелый труд, чреватый ошибками. Гораздо лучше упростить задачу. Не будем с места в карьер искать F10, начнем с F1. Это проще простого! Нам нужно заполнить рамку 1 × 1 квадратами 1 × 1 и костяшками домино 1 × 2. Домино не поместится, остается единственное решение: взять один квадрат. Другими словами, F1 = 1.

Теперь разберемся с F2. Размер рамки 1 × 2. Можно заполнить ее двумя квадратами или одной костяшкой домино. Таким образом, есть два варианта, и F2 = 2.

Дальше: сколькими способами можно заполнить рамку 1 × 3? Первый вариант: три квадрата. Два других варианта: одна костяшка домино (две не влезут) и квадрат слева или справа. Итак, F3 = 3. Еще один шаг: возьмем рамку 1 × 4. На рисунке показаны все варианты заполнения:

Мы нашли пять возможностей, но где гарантия, что мы ничего не упустили? Есть способ проверить себя. В левом конце рамки может быть или квадрат, или костяшка домино. В верхнем ряду на рисунке - варианты, когда слева квадрат, в нижнем ряду - когда слева домино.

Допустим, слева квадрат. Оставшуюся часть нужно заполнить квадратами и домино. Другими словами, нужно заполнить рамку 1 × 3. Это дает 3 варианта, так как F3 = 3. Если слева домино, размер оставшейся части 1 × 2, и заполнить ее можно двумя вариантами, так как F2 = 2.

Таким образом, у нас есть 3 + 2 = 5 вариантов, и мы удостоверились, что F4 = 5.

Теперь ваша очередь. Подумайте пару минут и найдите все варианты заполнения для рамки 1 × 5. Их немного. Решение - в конце главы. Можете отвлечься и подумать.

Вернемся к нашим квадратам. Хочется верить, что вы нашли 8 вариантов, так как есть 5 способов укладки, где слева квадрат, и еще 3 способа, где слева домино. Таким образом, F5 = 8.

Подытожим. Мы обозначили FN количество способов заполнения рамки 1 × n квадратами и костяшками домино. Нам необходимо найти F10. Вот что мы уже знаем:

Двигаемся дальше. Чему равно F6? Можно нарисовать все варианты, но это скучно. Лучше разобьем вопрос на две части. Сколькими способами можно заполнить рамку 1 × 6, если слева (a) квадрат и (b) костяшка домино? Хорошая новость: мы уже знаем ответ! В первом случае нам остается пять квадратов, а мы знаем, что F5 = 8. Во втором случае нужно заполнить четыре квадрата; нам известно, что F4 = 5. Таким образом, F5 + F4 = 13.

Чему равно F7? Исходя из тех же соображений, F7 =F6+F5=13+8=21. А как насчет F8? Очевидно, F8 = F7 + F6 = 21 + 13 = 34. И так далее. Мы обнаружили следующую взаимосвязь: Fn = Fn-1 + Fn-2.

Еще несколько шагов - и мы найдем искомое число F10. Правильный ответ - в конце главы.

Числа Фибоначчи

Числа Фибоначчи - это последовательность:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Она выстраивается по таким правилам:

― первые два числа 1 и 1;

― каждое следующее число получаем сложением двух предыдущих.

Будем обозначать n-ный элемент последовательности Fn, начиная с нуля: F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, … Очередной элемент мы вычисляем по формуле: Fn = Fn-1 + Fn-2.

Как мы видим, задача об укладке квадратов и домино привела нас к последовательности чисел Фибоначчи [1 ]В задаче о квадратах и домино мы выяснили: F1 = 1, а F2 = 2. Но числа Фибоначчи начинаются с F0 = 1. Как это согласуется с условиями задачи? Сколько существует способов заполнить на тех же условиях рамку 0 × 1? Длина квадрата и длина костяшки домино, как ни крути, больше нуля, потому есть искушение сказать, что ответ равен нулю, но это не так. Прямоугольник 0 × 1 уже заполнен, там нет щелей; нам не понадобится ни квадрат, ни костяшка домино. Таким образом, есть всего один способ действия: не брать ни квадрата, ни костяшки домино. Понимаете? В таком случае я вас поздравляю. У вас душа математика!

Сумма чисел Фибоначчи

Попробуем сложить первые несколько чисел Фибоначчи. Что мы можем сказать о сумме F0 + F1 +… + Fn для любого n? Давайте проделаем кое-какие вычисления и посмотрим, что получится. Обратите внимание на результаты сложения внизу. Видите ли вы закономерность? Повремените немного, прежде чем двигаться дальше: будет лучше, если вы найдете ответ самостоятельно, а не прочтете уже готовое решение.

Хочется верить, вы увидели, что результаты суммирования, если к ним приплюсовать по единице, тоже выстраиваются в последовательность чисел Фибоначчи. Например, сложение чисел от F0 до F5 дает: F0 + F1 + F2 + F3 + F4 + F5 = 1 + 1 + 2 + 3 + 5 + 8 = 20 = F7 - 1. Сложение чисел от F0 до F6 дает 33, что на единицу меньше F8 = 34. Мы можем записать формулу для неотрицательных целых чисел n: F0 +F1 +F2 +…+Fn =Fn+2 –1. (*)

Вероятно, лично вам достаточно будет увидеть, что формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . работает в дюжине случаев, чтобы вы поверили, что она верна, но математики жаждут доказательств. Мы рады представить вам два возможных доказательства того, что она верна для всех неотрицательных целых чисел n.

Первое называется доказательством по индукции, второе - комбинаторным доказательством.

Доказательство по индукции

Формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечно много формул в свернутом виде. Доказать, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для конкретного значения n, скажем для n = 6, - простая арифметическая задача. Достаточно будет записать числа от F0 до F6 и сложить их: F0 +F2 +…+F6 =1+1+2+3+5+8+13=33.

Несложно увидеть, что F8 = 34, поэтому формула действует. Перейдем к F7. Не будем тратить время и складывать все числа: мы уже знаем сумму вплоть до F6. Таким образом, (F0 +F1 +…+F6)+F7 =33+21=54. Как и раньше, все сходится: F9 = 55.

Если сейчас мы начнем проверять, работает ли формула для n = 8, наши силы окончательно иссякнут. Но все же посмотрим, что мы уже знаем и что хотим выяснить:

F0 +F1 +…+F7 =F9.

F0 +F1 +…+F7 +F7 =?

Воспользуемся предыдущим результатом: (F0 +F1 +…+F7)+F8 =(F9-1)+F8.

Мы, конечно, можем вычислить (F9-1) + F8 арифметически. Но так мы устанем еще больше. В то же время мы знаем, что F8 + F9 = F10. Таким образом, нам не нужно ничего высчитывать или заглядывать в таблицу чисел Фибоначчи:

(F0 + F1 +… + F7) + F8 = (F9-1) + F8 = (F8 + F9-1) = F10-1.

Мы удостоверились, что формула работает для n = 8, на основе того, что знали про n = 7.

В случае n = 9 мы точно так же опираемся на результат для n = 8 (убедитесь в этом самостоятельно). Разумеется, доказав верность [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. для n, мы можем быть уверены, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно и для n + 1.

Мы готовы дать полное доказательство. Как уже было сказано, [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечное количество формул для всех значений n от нуля до бесконечности. Посмотрим, как работает доказательство.

Вначале мы доказываем [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. в простейшем случае, для n = 0. Мы просто проверяем, что F0 = F0+2 - 1. Так как F0 = 1, а F2 = 2, очевидным образом 1 = 2 - 1, а F0 = F2-1.

Дальше нам достаточно показать, что верность формулы для одного значения n (скажем, n = k) автоматически означает верность для n + 1 (в нашем примере n = k + 1). Нам лишь надо продемонстрировать, как устроено это «автоматически». Что нам нужно сделать?

Возьмем некоторое число k. Предположим, мы уже знаем, что F0+F1+…+Fk =Fk+2–1. Мы ищем величину F0 + F1 +… + Fk + Fk+1.

Мы уже знаем сумму чисел Фибоначчи вплоть до Fk, поэтому у нас получается:

(F0+F1+…+Fk)+Fk+1 =(Fk+2–1)+Fk+1.

Правая часть равна Fk+2 - 1 + Fk+1, и мы знаем, чему равна сумма следующих друг за другом чисел Фибоначчи:

Fk+2–1 + Fk+1 = (Fk+2 + Fk+1) - 1 = Fk+3– 1

Подставим в наше равенство:

(F0+F1+…+Fk)+Fk+1 =Fk+3–1

Сейчас я объясню, что мы сделали. Если мы знаем, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно, когда мы суммируем числа вплоть до Fk, тогда [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. должно быть верно, если мы приплюсуем Fk+1.

Подытожим:

Формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n = 0.

Если формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n, она верна и для n + 1.

Мы можем уверенно сказать, что [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для любых значений n. Верно ли [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. для n = 4987? Это так, если выражение верно для n = 4986, что основано на верности выражения для n = 4985, и так далее до n = 0. Следовательно, формула [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для всех возможных значений. Этот метод доказательства известен под названием математическая индукция (или доказательство по индукции) . Мы проверяем базовый случай и даем шаблон, по которому каждый следующий случай может быть доказан на основе предыдущего.

Комбинаторное доказательство

А вот совершенно другое доказательство тождества [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . Основной подход тут - воспользоваться тем фактом, что число Fn - это количество способов облицевать прямоугольник 1 × n квадратами и костяшками домино.

Напомню, что нам нужно доказать:

F0 + F1 + F2 +… + Fn = Fn+2- 1. (*)

Идея заключается в том, чтобы рассматривать обе части уравнения как решение задачи с облицовкой. Если мы докажем, что левая и правая часть - решение для одного и того же прямоугольника, они совпадут между собой. Эта техника носит название комбинаторного доказательства[2 ]Слово «комбинаторный» образовано от существительного «комбинаторика» - названия раздела математики, предметом которого является подсчет вариантов в задачах, схожих с облицовкой прямоугольника. Слово «комбинаторика», в свою очередь, образовано от слова «комбинации». .

На какой вопрос по комбинаторике уравнение [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. дает два верных ответа? Эта головоломка похожа на те, что встречаются в шоу Jeopardy! [3 ]Популярная в США телевикторина. Аналоги Jeopardy! выходят в разных странах; в России это - «Своя игра». - Прим. ред. , где участники должны формулировать вопрос, заранее зная правильный ответ.

Правая часть выглядит проще, поэтому начнем с нее. Ответ: Fn+2– 1. Каков вопрос? Если бы ответ был равен просто Fn+2, мы с легкостью сформулировали бы вопрос: сколькими способами можно облицевать прямоугольник 1 × (n + 2) с помощью квадратов и костяшек домино? Это почти то, что нужно, но ответ меньше на единицу. Попробуем мягко поменять вопрос и уменьшить ответ. Уберем один вариант облицовки и пересчитаем оставшиеся. Сложность состоит в том, чтобы найти один вариант, который кардинально отличается от остальных. Есть ли такой?

Каждый способ облицовки подразумевает использование квадратов или домино. Только квадраты задействованы в единственном варианте, в прочих есть хотя бы одна костяшка домино. Возьмем это за основу нового вопроса.

Вопрос: Сколько существует вариантов облицовки квадратами и костяшками домино прямоугольной рамки 1 × (n + 2), включающих по меньшей мере одну костяшку домино?

Сейчас мы найдем два ответа на этот вопрос. Так как оба будут верны, между числами мы сможем уверенно поставить знак равенства.

Один из ответов мы уже обсуждали. Есть Fn+2 вариантов укладки. Только один из них подразумевает использование исключительно квадратов, без домино. Таким образом, ответ № 1 на наш вопрос таков: Fn+2– 1.

Второй ответ должен быть - я надеюсь - левой частью уравнения [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. . Посмотрим, как это работает.

Нужно пересчитать варианты заполнения рамки, включающие хотя бы одну костяшку домино. Давайте подумаем, где будет расположена самая первая костяшка. Есть n + 2 позиций, и первая костяшка может располагаться в позициях от 1 до n + 1.

Рассмотрим случай n = 4. Мы ищем варианты заполнения рамки 1 × 6, задействующие хотя бы одну костяшку домино. Мы знаем ответ: F6 - 1 = 13 - 1 = 12, но нам необходимо получить его иным путем.

Первая костяшка домино может занимать следующие позиции:

Первая колонка демонстрирует случай, когда костяшка находится на первой позиции, вторая - когда костяшка на второй, и т. д.

Сколько вариантов в каждой колонке?

В первой колонке - пять вариантов. Если отбросить домино слева, мы получим ровно F4 = 5 вариантов для прямоугольника 1 × 4. Во второй колонке - три варианта. Отбросим домино и квадрат слева. Мы получим F3 = 3 варианта для прямоугольника 1 × 3. Аналогично для других колонок. Вот что мы обнаружили:

Таким образом, количество способов замостить квадратами и домино (хотя бы одной костяшкой) прямоугольную рамку 1 × 6 равно F4 + F3 + F2 + F1 + F0 = 12.

Вывод: F0+F1+F2+F3+F4=12=F6–1.

Рассмотрим общий случай. Нам дана рамка длиной n + 2. Сколько есть вариантов ее заполнения, при которых первая костяшка домино находится на некой позиции k? В этом случае первые k - 1 позиций заняты квадратами. Таким образом, в общей сложности занята k + 1 позиция [4 ]Число k может принимать значения от 1 до n + 1, но не больше, потому что иначе последняя костяшка домино высунется за пределы рамки. . Оставшиеся (n + 2) - (k + 1) = n - k + 1 можно заполнить любыми способами. Это дает Fn-k+1 вариантов. Построим диаграмму:

Если k меняется от 1 до n + 1, величина n - k + 1 меняется от 0 до n. Таким образом, количество вариантов заполнения нашей рамки с использованием хотя бы одной костяшки домино равно Fn + Fn-1 +… + F1 + F0.

Если поставить слагаемые в обратном порядке, мы получим левую часть выражения (*). Таким образом, мы нашли второй ответ на поставленный вопрос: F0 +F1 +…+Fn.

Итак, у нас есть два ответа на вопрос. Величины, полученные с помощью двух выведенных нами формул, совпадают, и тождество [* ]F0 +F1 +F2 +…+Fn =Fn+2 –1. доказано.

Соотношение чисел Фибоначчи и золотое сечение

Сложение двух следующих друг за другом чисел Фибоначчи дает очередное число Фибоначчи. В этом разделе мы затронем вопрос поинтереснее: что будет, если мы поделим число Фибоначчи на предшествующее ему в ряду? Посчитаем соотношение Fk1. Для возрастающих значений k.

В таблице вы можете видеть соотношения от F1/F0 до F20/19.

Чем больше становятся числа Фибоначчи, тем ближе соотношение Fk+1/Fk к константе, примерно равной 1,61803. Это число - вы будете удивлены - достаточно известное, и если вы введете его в поисковую систему, вывалится уйма страниц о золотом сечении. Что это такое? Соотношение соседних чисел Фибоначчи не одинаково. Однако оно почти одинаково, если числа достаточно велики. Давайте найдем формулу для числа 1,61803 и для этого на время будем считать, что все соотношения одинаковы. Введем обозначение x:

x=Fk+1/ Fk=/ Fk+2/ Fk+1= Fk+3/ Fk+2=…

Это значит, что Fk+1 = xFk, Fk+2 = xFk+1 и т. д. Можно переформулировать:

Fk+2 =xFk+1=x2>Fk.

Но мы же знаем, что Fk+2= Fk+1 + Fk. Таким образом, x2>FkFk = xFk + Fk.

Если мы поделим обе части на Fk и перегруппируем слагаемые, то получим квадратное уравнение: x2-x-1=0. Оно имеет два решения:

Соотношение должно быть положительным. И вот мы получили знакомое нам число. Обычно для обозначения золотого сечения используют греческую букву φ (фи):

Мы уже приметили, что соотношение соседних чисел Фибоначчи приближается (стремится) к φ. Это замечательно. Это дает нам еще один способ вычислять приблизительные значения чисел Фибоначчи. Последовательность чисел Фибоначчи - это ряд F0 F1, F2, F3, F4, F5… Если все соотношения Fk+1/Fk будут одинаковы, мы получим формулу:

Здесь с - еще одна константа. Сравним округленные значения Fn и φn для разных n:

Для больших значений n соотношение Fn/ φn≈0,723607. Это число равно в точности φ/корень5. Другими словами,

Обратите внимание: если округлить до ближайшего целого числа, мы получим в точности Fn.

Если вы не хотите утруждать себя округлениями до целого числа, то формула, названная названная в честь Жака Бине [5 ]Жак Бинe (1786–1856) - французский математик, механик и астроном. Формула для чисел Фибоначчи названа в честь Бине, хотя почти на сто лет раньше ее вывел Абрахам де Муавр (1667–1754). - Прим. пер. , даст вам точное значение:

Заполнение рамки 1 × 5

Нашу рамку можно заполнить квадратами и домино следующими способами:

Есть F4 = 5 вариантов, когда вначале стоит квадрат, и F3 = 3 варианта, когда вначале стоит костяшка домино. В общей сложности это дает F5 = F4 + F3 = 8 вариантов.

Величина F10 (ответ на следующий вопрос, касающийся укладки) равна 89.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

ВЫСШЕЕ НАЗНАЧЕНИЕ МАТЕМАТИКИ СОСТОИТ В ТОМ, ЧТОБЫ НАХОДИТЬ СКРЫТЫЙ ПОРЯДОК В ХАОСЕ, КОТОРЫЙ НАС ОКРУЖАЕТ.

Винер Н.

Человек всю жизнь стремится к знаниям, пытается изучить окружающий его мир. И в процессе наблюдений у него возникают вопросы, на которые требуется найти ответы. Ответы находятся, но появляются новые вопросы. В археологических находках, в следах цивилизации, отдаленных друг от друга во времени и в пространстве, встречается один и тот же элемент - узор в виде спирали. Некоторые считают его символом солнца и связывают с легендарной Атлантидой, но истинное его значение неизвестно. Что общего между формами галактики и атмосферного циклона, расположением листьев на стебле и семян в подсолнухе? Эти закономерности сводятся к так называемой «золотой» спирали, удивительной последовательности Фибоначчи, открытой великим итальянским математиком XIII века.

История возникновения чисел Фибоначчи

Впервые о том, что такое числа Фибоначчи, я услышал от учителя математики. Но, кроме того, каким образом складывается последовательность этих чисел, я не знал. Вот чем на самом деле знаменита эта последовательность, каким образом она влияет на человека, я и хочу вам рассказать. О Леонардо Фибоначчи известно немного. Нет даже точной даты его рождения. Известно, что он родился в 1170 году в семье купца, в городе Пизе в Италии. Отец Фибоначчи часто бывал в Алжире по торговым делам, и Леонардо изучал там математику у арабских учителей. Впоследствии он написал несколько математических трудов, наиболее известным из которых является «Книга об абаке», которая содержит почти все арифметические и алгебраические сведения того времени. 2

Числа Фибоначчи - это последовательность чисел, обладающая рядом свойств. Эту числовую последовательность Фибоначчи открыл случайно, когда пытался в 1202 году решить практическую задачу о кроликах. «Некто поместил пару кроликов в некоем месте, огороженном со всех сторон со всех сторон стеной, чтобы узнать, сколько пар кроликов родится в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения». При решении задачи он учел, что каждая пара кроликов порождает на протяжении жизни еще две пары, а затем погибает. Так появилась последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, … В этой последовательности каждое следующее число равно сумме двух предыдущих. Её назвали последовательностью Фибоначчи. Математические свойства последовательности

Мне захотелось исследовать эту последовательность, и я выявил некоторые её свойства. Эта закономерность имеет большое значение. Последовательность все медленнее приближается к некоему постоянному отношению, равному примерно 1, 618, а отношение любого числа к последующему примерно равно 0, 618.

Можно заметить ряд любопытных свойств чисел Фибоначчи: два соседних числа взаимно просты; каждое третье число четно; каждое пятнадцатое оканчивается нулем; каждое четвертое кратно трем. Если выбрать любые 10 соседних чисел из последовательности Фибоначчи и сложить их вместе, всегда получится число, кратное 11. Но это еще не все. Каждая сумма равна числу 11, умноженному на седьмой член взятой последовательности. А вот еще одна любопытная особенность. Для любого n сумма первыхn членов последовательности всегда будет равна разности (n+ 2) - го и первого члена последовательности. Этот факт можно выразить формулой: 1+1+2+3+5+…+an=a n+2 - 1. Теперь в нашем распоряжении имеется следующий трюк: чтобы найти сумму всех членов

последовательности между двумя данными членами, достаточно найти разность соответствующих (n+2)-x членов. Например, a 26 +…+a 40 =a 42 - a 27 . Теперь поищем связь между Фибоначчи, Пифагором и «золотым сечением». Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов: c 2 =b 2 +a 2 . С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника, как стороны трех построенных на них квадратов. Теорема Пифагора говорит о том, что общая площадь квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе. Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. С помощью последовательности Фибоначчи можно отыскать такие тройки. Возьмем любые четыре последовательные числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:1) произведение двух крайних чисел: 2*8=16;2) удвоенное произведение двух чисел в середине: 2*(3*5)=30;3) сумма квадратов двух средних чисел: 3 2 +5 2 =34; 34 2 =30 2 +16 2 . Этот метод работает для любых четырех последовательных чисел Фибоначчи. Предсказуемым образом ведут себя любые три последовательных числа ряда Фибоначчи. Если перемножить из них два крайних и результат сравнить с квадратом среднего числа, то результат всегда будет отличаться на единицу. Например, для чисел 5, 8 и 13 получим: 5*13=8 2 +1. Если рассмотреть это свойство с точки зрения геометрии, можно заметить нечто странное. Разделим квадрат

размером 8х8 (всего 64 маленьких квадратика) на четыре части, длины сторон которых равны числам Фибоначчи. Теперь из этих частей построим прямоугольник размером 5х13. Его площадь составляют 65 маленьких квадратиков. Откуда же берется дополнительный квадрат? Все дело в том, что идеальный прямоугольник не образуется, а остаются крошечные зазоры, которые в сумме и дают эту дополнительную единицу площади. Треугольник Паскаля также имеет связь с последовательностью Фибоначчи. Надо только написать строки треугольника Паскаля одну под другой, а затем складывать элементы по диагонали. Получится последовательность Фибоначчи.

Теперь рассмотрим «золотой» прямоугольник, одна сторона которого в 1,618 раз длиннее другой. На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее, давайте проделаем простой эксперимент с двумя обыкновенными банковскими картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на одной линии. Если в горизонтальной карте провести диагональную линию и продлить ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты - приятная неожиданность. Может быть, это случайность, а может, такие прямоугольники и другие геометрические формы, использующие «золотое сечение», особенно приятны глазу. Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром? Это кажется маловероятным. Однако можно утверждать, что он придавал большое значение связи между эстетикой и математикой.

Числа Фибоначчи в природе

Связь золотого сечения с красотой - вопрос не только человеческого восприятия. Похоже, сама природа выделила Ф особую роль. Если в «золотой» прямоугольник последовательно вписать квадраты, затем в каждом квадрате провести дугу, то получится элегантная кривая, которая называется логарифмической спиралью. Она вовсе не является математическим курьезом. 5

Наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса до рукавов галактик, и в элегантной спирали лепестков распустившейся розы. Связи между золотым сечением и числами Фибоначчи многочисленны и неожиданны. Рассмотрим цветок, внешне сильно отличающийся от розы, - подсолнечник с семенами. Первое, что мы видим, - семена расположены по спиралям двух видов: по часовой стрелке и против часовой стрелки. Если посчитаем спирали почасовой стрелки, то получим два, казалось бы, обычных числа: 21 и 34. Это не единственный пример, когда можно встретить числа Фибоначчи в структуре растений.

Природа даёт нам многочисленные примеры расположения однородных предметов, описываемых числами Фибоначчи. В разнообразных спиралевидных расположениях мелких частей растений обычно можно усмотреть два семейства спиралей. В одном из этих семейств спирали завиваются по часовой стрелке, а в другом - против. Числа спиралей одного и другого типов часто оказываются соседними числами Фибоначчи. Так, взяв молодую сосновую веточку, легко заметить, что хвоинки образуют две спирали, идущие слева снизу вправо вверх. На многих шишках семена расположены в трёх спиралях, полого навивающихся на стержень шишки. Они же расположены в пяти спиралях, круто навивающихся в противоположном направлении. В крупных шишках удаётся наблюдать 5 и 8, и даже 8 и 13 спиралей. Хорошо заметны спирали Фибоначчи и на ананасе: обычно их бывает 8 и 13.

Отросток цикория делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок ещё меньшего размера и снова выброс. Импульсы его роста постепенно уменьшаются в пропорции «золотого» сечения. Чтобы оценить огромную роль чисел Фибоначчи, достаточно лишь взглянуть на красоту окружающей нас природы. Числа Фибоначчи можно найти в количестве

ответвлений на стебле каждого растущего растения и в числе лепестков.

Пересчитаем лепестки некоторых цветов —ириса с его 3 лепестками, примулы с 5 лепестками, амброзии с 13 лепестками, нивяника с 34 лепестками, астры с 55 лепестками и т.д. Случайно ли это, или это закон природы? Посмотрите на стебли и цветы тысячелистника. Таким образом, суммарной последовательностью Фибоначчи можно легко трактовать закономерность проявлений «Золотых» чисел, встречаемых в природе. Эти законы действуют независимо от нашего сознания и желания принимать их или нет. Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Числа Фибоначчи в архитектуре

«Золотое сечение» проявляется и во многих замечательных архитектурных творениях на протяжении всей истории человечества. Оказывается, еще древнегреческие и древнеегипетские математики знали эти коэффициенты задолго до Фибоначчи и называли их «золотым сечением». Принцип «золотого сечения» греки использовали при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Достижения в области строительной техники и разработки новых материалов открыли новые возможности для архитекторов ХХ века. Американец Фрэнк Ллойд Райт был одним из главных сторонников органической архитектуры. Незадолго до смерти он спроектировал музей Соломона Гуггенхайма в Нью-Йорке, представляющий собой опрокинутую спираль, а интерьер музея напоминает раковину наутилуса. Польско-израильский архитектор Цви Хекер также использовал спиральные конструкции в проекте школы имени Хайнца Галински в Берлине, построенной в 1995 году. Хекер начал с идеи подсолнечника с центральным кругом, откуда

расходятся все архитектурные элементы. Здание представляет собой сочетание

ортогональных и концентрических спиралей, символизируя взаимодействие ограниченных человеческих знаний и управляемого хаоса природы. Его архитектура имитирует растение, которое следует за движением Солнца, поэтому классные комнаты освещены в течение всего дня.

В Куинси-парке, расположенном в Кембридже, штат Массачусетс (США), «золотую» спираль можно встретить часто. Парк был спроектирован в 1997 году художником Дэвидом Филлипсом и находится недалеко от Математического института Клэя. Это заведение является известным центром математических исследований. В Куинси-парке можно прогуливаться среди «золотых» спиралей и металлических кривых, рельефов из двух раковин и скалы с символом квадратного корня. На табличке написана информация о «золотой» пропорции. Даже парковка для велосипедов использует символ Ф.

Числа Фибоначчи в психологии

В психологии отмечены переломные моменты, кризисы, перевороты, знаменующие на жизненном пути человека преобразования структуры и функций души. Если человек успешно преодолел эти кризисы, то становится способным решать задачи нового класса, о которых раньше даже не задумывался.

Наличие коренных изменений дает основание рассматривать время жизни в качестве решающего фактора развития духовных качеств. Ведь природа отмеряет нам время не щедро, «ни сколько будет, столько и будет», а ровно столько, чтобы процесс развития материализовался:

    в структурах тела;

    в чувствах, мышлении и психомоторике — пока они не приобретут гармонию , необходимую для возникновения и запуска механизма

    творчества;

    в структуре энергопотенциала человека.

Развитие тела нельзя остановить: ребенок становится взрослым человеком. С механизмом же творчества не так все просто. Его развитие можно остановить и изменить его направление.

Существует ли шанс догнать время? Безусловно. Но для этого нужно выполнить огромную работу над собой. То, что развивается свободно, естественным путем, не требует специальных усилий: ребенок свободно развивается и не замечает этой огромной работы, потому что процесс свободного развития создается без насилия над собой.

Как понимается смысл жизненного пути в обыденном сознании? Обыватель видит его так: у подножия — рождение, на вершине — расцвет сил, а потом — все идет под горку.

Мудрец же скажет: все намного сложнее. Восхождение он разделяет на этапы: детство, отрочество, юность… Почему так? Мало, кто способен ответить, хотя каждый уверен, что это замкнутые, целостные этапы жизни.

Чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет: 0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

    1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

    2 — понимает речь и действует, пользуясь словесными указаниями;

    3 — действует посредством слова, задает вопросы;

    5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

    8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

    13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

    21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

    34— гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

    55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее…

Что же такое засечки «Чисел Фибоначчи»? Они могут быть сравнимы с плотинами на жизненном пути. Эти плотины ожидают каждого из нас. Прежде всего необходимо преодолеть каждую их них, а потом терпеливо поднимать свой уровень развития, пока в один прекрасный день она не развалится, открывая свободному течению путь к следующей.

Теперь, когда нам понятен смысл этих узловых точек возрастного развития, попробуем расшифровать, как все это происходит.

В1 год ребенок овладевает ходьбой. До этого он познавал мир передней частью головы. Теперь же он познает мир руками — исключительная привилегия человека. Животное передвигается в пространстве, а он, познавая, овладевает пространством и осваивает территорию, на которой живет.

2 года — понимает слово и действует в соответствии с ним. Это значит, что:

ребенок усваивает минимальное количество слов — смыслов и образов действий;

    пока что не отделяет себя от окружающей среды и слит в целостность с окружающим,

    поэтому действует по чужому указанию. В этом возрасте он самый послушный и приятный для родителей. Из человека чувственного ребенок превращается в человека познающего.

3 года — действие при помощи собственного слова. Уже произошло отделение этого человека от окружающей среды — и он учится быть самостоятельно действующей личностью. Отсюда он:

    сознательно противостоит среде и родителям, воспитателям в детском саду и т.д.;

    осознает свой суверенитет и борется за самостоятельность;

    старается подчинить своей воле близких и хорошо знакомых людей.

Теперь для ребенка слово — это действие. С этого начинается действующий человек.

5 лет — «возраст грации». Он — олицетворение гармонии. Игры, танцы, ловкие движения — все насыщено гармонией, которой человек старается овладеть собственными силами. Гармоничная психомоторика содействует приведению к новому состоянию. Поэтому ребенок направлен на психомоторную активность и стремится к максимально активным действиям.

Материализация продуктов работы чувствительности осуществляется посредством:

    способности к отображению окружающей среды и себя как части этого мира (мы слышим, видим, прикасаемся, нюхаем и т.д. — все органы чувств работают на этот процесс);

    способности к проектированию внешнего мира, в том числе и себя

    (создание второй природы, гипотез — сделать завтра то и другое, построить новую машину, решить проблему), силами критичности мышления, чувств и воображения;

    способности к созиданию второй, рукотворной природы, продуктов деятельности (реализация задуманного, конкретные умственные или психомоторные действия с конкретными предметами и процессами).

После 5 лет механизм воображения выходит вперед и начинает доминировать над остальными. Ребенок выполняет гигантскую работу, создавая фантастические образы, и живет в мире сказок и мифов. Гипертрофированность воображения ребенка вызывает у взрослых удивление, потому что воображение никак не соответствует действительности.

8 лет — на передний план выходят чувства и возникают собственные мерки чувств (познавательных, нравственных, эстетических), когда ребенок безошибочно:

    оценивает известное и неизвестное;

    отличает моральное от аморального, нравственное от безнравственного;

    прекрасное от того, что угрожает жизни, гармонию от хаоса.

13 лет — начинает работать механизм творчества. Но это не значит, что он работает на полную мощность. На первый план выходит один из элементов механизма, а все остальные содействуют его работе. Если и в этом возрастном периоде развития сохраняется гармония, которая почти все время перестраивает свою структуру, то отрок безболезненно доберется до следующей плотины, незаметно для себя преодолеет ее и будет жить в возрасте революционера. В возрасте революционера отрок должен сделать новый шаг вперед: отделиться от ближайшего социума и жить в нем гармоничной жизнью и деятельностью. Не каждый может решить эту задачу, возникающую перед каждым из нас.

21 год. Если революционер успешно преодолел первую гармоничную вершину жизни, то его механизм таланта способен выполнять талантливую

работу. Чувства (познавательные, моральные или эстетические) иногда затмевают мышление, но в общем все элементы работают слаженно: чувства открыты миру, а логическое мышление способно с этой вершины называть и находить меры вещей.

Механизм творчества, развиваясь нормально, достигает состояния, позволяющего получать определенные плоды. Он начинает работать. В этом возрасте вперед выходит механизм чувств. По мере того, как воображение и его продукты оцениваются чувствами и мышлением, между ними возникает антагонизм. Побеждают чувства. Эта способность постепенно набирает мощность, и отрок начинает ею пользоваться.

34 года — уравновешенность и гармоничность, продуктивная действенность таланта. Гармония мышления, чувств и воображения, психомоторики, которая пополняется оптимальным энергопотенциалом, и механизм в целом — рождается возможность исполнять гениальную работу.

55 лет — человек может стать творцом. Третья гармоничная вершина жизни: мышление подчиняет себе силу чувств.

Числа Фибоначчи называют этапы развития человека. Пройдет ли человек этот путь без остановок, зависит от родителей и учителей, образовательной системы, а дальше — от него самого и от того, как человек будет познавать и преодолевать самого себя.

На жизненном пути человек открывает 7 предметов отношений:

    От дня рождения до 2-х лет — открытие физического и предметного мира ближайшего окружения.

    От 2-х до 3-х лет — открытие себя: «Я — Сам».

    От 3-х до 5-ти лет — речь, действенный мир слов, гармонии и системы «Я — Ты».

    От 5-ти до 8-ми лет — открытие мира чужих мыслей, чувств и образов — системы «Я — Мы».

    От 8 до 13 лет — открытие мира задач и проблем, решенных гениями и талантами человечества — системы «Я — Духовность».

    От 13 до 21 года — открытие способностей самостоятельно решать всем известные задачи, когда мысли, чувства и воображение начинают активно работать, возникает система «Я — Ноосфера».

    От 21 до 34 лет — открытие способности создавать новый мир или его фрагменты — осознание самоконцепции «Я — Творец».

Жизненный путь имеет пространственно-временную структуру. Он состоит из возрастных и индивидуальных фаз, определяемых по многим параметрам жизни. Человек овладевает в определенной мере обстоятельствами своей жизни, становится творцом своей истории и творцом истории общества. Подлинно творческое отношение к жизни, однако, появляется далеко не сразу и даже не у всякого человека. Между фазами жизненного пути существуют генетические связи, и это обусловливает закономерный его характер. Отсюда следует, что в принципе можно предсказывать будущее развитие на основе знания о ранних его фазах.

Числа Фибоначчи в астрономии

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII в., с помощью ряда Фибоначчи нашёл закономерность и порядок в расстояниях между планетами солнечной системы. Но один случай, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Но после смерти Тициуса в начале XIX в. сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов.

Заключение

В процессе исследования я выяснил, что числа Фибоначчи нашли широкое применение в техническом анализе цен на бирже. Один из простейших способов применения чисел Фибоначчи на практике - определение отрезков времени, через которое произойдёт то или иное событие, например, изменение цены. Аналитик отсчитывает определённое количество фибоначчиевских дней или недель (13,21,34,55 и т.д.) от предыдущего сходного события и делает прогноз. Но в этом мне ещё слишком сложно разобраться. Хотя Фибоначчи и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни и две улицы, которые носят его имя: одна - в Пизе, а другая - во Флоренции. И всё-таки, в связи со всем увиденным и прочитанным мною возникают вполне закономерные вопросы. Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Что же будет дальше? Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появятся ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, тринадцатью и т.д. Не забывайте, что на двух руках по пять пальцев, два из которых состоят из двух фаланг, а восемь - из трёх.

Литература:

    Волошинов А.В. «Математика и искусство», М., Просвещение, 1992г.

    Воробьёв Н.Н. «Числа Фибоначчи», М., Наука, 1984г.

    Стахов А.П. «Код да Винчи и ряд Фибоначчи», Питер формат, 2006 г.

    Ф. Корвалан «Золотое сечение. Математический язык красоты», М., Де Агостини, 2014 г.

    Максименко С.Д. «Сенситивные периоды жизни и их коды».

    «Числа Фибоначчи». Википедия