Что такое генетический ряд металлов. Генетические ряды металлов и их соединений


Повторение. Генетическая связь классов неорганических соединений
Введение

Тема этого урока — «Повторение. Генетическая связь классов неорганических соединений». Вы повторите, как делятся все неорганические вещества, сделаете вывод, как из одного класса неорганических соединений можно получить другой. На основании полученных сведений узнаете, что такое генетическая связь таких классов, два основных пути таких связей.


Тема: Введение

Урок: Повторение. Генетическая связь классов неорганических соединений

Химия - это наука о веществах, их свойствах и превращениях друг в друга.

Рис. 1. Генетическая связь классов неорганических соединений

Все неорганические вещества можно разделить на:

Простые вещества

Сложные вещества.

Простые вещества делятся на:

Металлы

Неметаллы

Сложные вещества можно разделить на:

Основания

Кислоты

Соли. См. Рис.1.

Это бинарные соединения, состоящее из двух элементов, одним их которых является кислород в степени окисления -2. Рис.2.

Например, оксид кальция: Сa +2 О -2 ,оксид фосфора (V) P 2 O 5., оксид азота (IV)лисий хвост»


Рис. 2. Оксиды

Делятся на:

Основные

Кислотные

Основным оксидам соответствуют основания .

Кислотным оксидам соответствуют кислоты .

Соли состоят из катионов металла и анионов кислотного остатка .

Рис. 3. Пути генетических связей между веществами

Таким образом: из одного класса неорганических соединений можно получить другой класс.

Следовательно, все классы неорганических веществ взаимосвязаны .

Связь классов неорганических соединений часто называют генетической. Рис.3.

Генезис по - гречески означает «происхождение». Т.е. генетическая связь показывает взаимосвязь превращения веществ и их происхождение от единого вещества.

Существует два основных пути генетических связей между веществами. Один из них начинается металлом, другой - неметаллом.

Генетический ряд металла показывает:

Металл → Основной оксид → Соль →Основание → Новая соль.

Генетический ряд неметалла отражает такие превращения:

Неметалл→ Кислотный оксид →Кислота →Соль.

Для любого генетического ряда можно написать уравнения реакций, которые показывают превращения одних веществ в другие .

Для начала, нужно определить к какому классу неорганических соединений относится каждое вещество генетического ряда.

Подумать, как из вещества, стоящего до стрелочки, получить вещество стоящие после неё.

Пример №1. Генетический ряд металла.

Ряд начинается простым веществом металлом медью. Чтобы осуществить первый переход, нужно сжечь медь в атмосфере кислорода.

2Cu +O 2 →2CuO

Второй переход: нужно получить соль CuCl 2. Она образована соляной кислотой HCl, потому что соли соляной кислоты называются хлориды.

CuO +2 HCl → CuCl 2 + H 2 O

Третий шаг: чтобы получить нерастворимое основание, нужно к растворимой соли прибавить щелочь.

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Чтобы гидроксид меди(II) перевести в сульфат меди(II) прибавим к ней серную кислоту H 2 SO 4 .

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 + 2H 2 O

Пример №2. Генетический ряд неметалла.

Ряд начинается простым веществом неметаллом углеродом. Чтобы осуществить первый переход, нужно сжечь углерод в атмосфере кислорода.

C + O 2 → CO 2

Если к кислотному оксиду прибавить воду, получится кислота, которая называется угольной.

СO 2 + H 2 O → H 2 СO 3

Чтобы получить соль угольной кислоты - карбонат кальция, нужно к кислоте добавить соединение кальция, например гидроксид кальция Ca(OH) 2 .

H 2 СO 3 + Ca (OH) 2 → CaCO 3 + 2H 2 O

В состав любого генетического ряда входят вещества различных классов неорганических соединений.

Но в эти вещества обязательно входит один и тот же элемент. Зная, химические свойства классов соединений, можно подбирать уравнения реакций, при помощи которых можно осуществить данные превращения. Эти превращения используются и на производстве, для подбора наиболее рациональных методов получения тех или иных веществ.

Вы повторили, как делятся все неорганические вещества, сделали вывод, как из одного класса неорганических соединений можно получить другой. На основании полученных сведений узнали, что такое генетическая связь таких классов, два основных пути таких связей.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман.М.: Просвещение. 2011 г.176с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с.

1. №№ 10-а,10з (с.112) Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман.М.: Просвещение. 2011 г.176с.: ил.

2. Как двумя способами из оксида кальция получить сульфат кальция?

3. Составьте генетический ряд получения из серы сульфата бария. Напишите уравнения реакций.


Инструкция для обучающихся по заочному курсу «Общая химия для 12 класса» 1. Категория обучающихся: материалы данной презентации предоставляются обучающемуся для самостоятельного изучения темы «Вещества и их свойства», из курса общей химии 12 класса. 2. Содержание курса: включает 5 презентаций тем. Каждая учебная тема содержит четкую структуру учебного материала по конкретной теме, последний слайд контрольный тест – задания для самоконтроля. 3. Срок обучения по данному курсу: от одной недели до двух месяцев (определяется индивидуально). 4. Контроль знаний: учащийся предоставляет отчет о выполнении тестовых заданий – лист с вариантами заданий, с указанием темы. 5. Оценивание результата: «3» - выполнено 50% заданий, «4» - 75%, «5» % заданий. 6. Результат обучения: зачет (незачет) изученной темы.




Уравнения реакций: 1. 2Cu + о 2 2CuO оксид меди (II) 2. CuO + 2 HCl CuCl 2 + Н 2 О хлорид меди (II) 3. CuCl NaOH Cu(OH) Na Cl гидроксид меди (II) 4. Cu(OH) 2 + H 2 SO 4 CuSO 4 + 2Н 2 О сульфат меди (II)






Генетический ряд органических соединений. Если в основу генетического ряда неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии составляют вещества с одинаковым числом атомов углерода в молекуле.




Схема реакций: Каждой цифре над стрелкой соответствует определенное уравнение реакции: этаналь этанол этен этан хлорэтан этин Уксусная (этановая) кислота


Уравнения реакций: 1. С 2 Н 5 Cl + H 2 O С 2 Н 5 OH + HCl 2. С 2 Н 5 OH + O СН 3 СН O + H 2 O 3. СН 3 СН O + H 2 С 2 Н 5 OH 4. С 2 Н 5 OH + HCl С 2 Н 5 Cl + H 2 O 5. С 2 Н 5 Cl С 2 Н 4 + HCl 6. С 2 Н 4 С 2 Н 2 + H 2 7. С 2 Н 2 + H 2 O СН 3 СН O 8. СН 3 СН O + Ag 2 O СН 3 СOOH + Ag

Генетическая связь – это связь между веществами, которые относятся к разным классам.

Основные признаки генетических рядов:

1. Все вещества одного ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам химических веществ.

3. Вещества, образующие генетический ряд элемента, должны быть связаны между собой взаимопревращениями.

Таким образом, генетическим называют ряд веществ, которые представляют разные классы неорганических соединений, являются соединениями одного и того же химического элемента, связаны взаимопревращениями и отражают общность происхождения этих веществ.

Для металлов выделяют три ряда генетически связанных веществ, для неметаллов - один ряд.


1. Генетический ряд металлов, гидроксиды которых являются основаниями (щелочами):

металл основный оксид основание (щелочь) соль.

Например, генетический ряд кальция:

Ca → CaO → Ca(OH) 2 → CaCl 2

2. Генетический ряд металлов, которые образуют амфотерные гидроксиды:

соль

металл амфотерный оксид (соль) амфотерный гидроксид

Например: ZnCl 2

Zn → ZnO → ZnSO 4 → Zn(OH) 2
(H 2 ZnO 2)
Na 2 ZnO 2

Оксид цинка с водой не взаимодействует, поэтому из него сначала получают соль, а затем гидроксид цинка. Так же поступают, если металлу соответствует нерастворимое основание.

3. Генетический ряд неметаллов (неметаллы образуют только кислотные оксиды):

неметалл кислотный оксид кислота соль

Например, генетический ряд фосфора:

P → P 2 O 5 → H 3 PO 4 → K 3 PO 4

Переход от одного вещества к другому осуществляется с помощью химических реакций.

Материальный мир, в котором мы живем и кро­хотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов.

1. Все вещества этого ряда должны быть обра­зованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

2. Вещества, образованные одним и тем же эле­ментом, должны принадлежать к различным клас­сам, т. е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд од­ного элемента, должны быть связаны взаимопрев­ращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

уже можно рассматривать как полный: он начинал­ся простым веществом бромом и им же закончился.

Обобщая сказанное выше, можно дать следую­щее определение генетического ряда.

Генетический ряд - это ряд веществ - пред­ставителей разных классов, являющихся соедине­ниями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, реализующейся при любых взаимных превращени­ях веществ. Тогда, очевидно, под это определение подходит и первый приведенный ряд веществ.

Существует три разновидности генетических ря­дов:

Наиболее богат ряд металла, у которого проявляются разные сте­пени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например, генетический ряд серы со степенями окисления +4 и +6:

Затруднение может вызвать лишь последний переход. Руководствуйтесь правилом: чтобы полу­чить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое вос­становленное его соединение, например, летучее водородное соединение неметалла. В нашем случае:

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

3. Генетический ряд металла, которому соот­ветствуют амфотерные оксид и гидроксид, очень богат связями, т. к. они проявляют в зависимости от условий то кислотные, то основные свойства.

Например, рассмотрим генетический ряд цинка:

Генетическая связь между классами неорганических веществ

Характерными являются реакции между представителями разных генетических рядов. Вещества из одного генетического ряда, как правило, не вступают во взаимодействия.

Например:
1. металл + неметалл = соль

Hg + S = HgS

2Al + 3I 2 = 2AlI 3

2. основной оксид + кислотный оксид = соль

Li 2 O + CO 2 = Li 2 CO 3

CaO + SiO 2 =CaSiO 3

3. основание + кислота=соль

Cu(OH) 2 + 2HCl =CuCl 2 + 2H 2 O

FeCl 3 + 3HNO 3 = Fe(NO 3) 3 + 3HCl

соль кислота соль кислота

4. металл — основной оксид

2Ca + O 2 = 2CaO

4Li + O 2 =2Li 2 O

5. неметалл — кислотный оксид

S + O 2 = SO 2

4As + 5O 2 = 2As 2 O 5

6. основной оксид — основание

BaO + H 2 O = Ba(OH) 2

Li 2 O + H 2 O = 2LiOH

7. кислотный оксид — кислота

P 2 O 5 + 3H 2 O = 2H 3 PO 4

SO 3 + H 2 O =H 2 SO 4

Генетические ряды металлов и их соединений

Каждый такой ряд состоит состоит из металла, его основного оксида, основания и любой соли этого же металла:

Для перехода от металлов к основным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

2Сa + O 2 = 2СaO; 2Mg + O 2 = 2MgO;

Переход от основных оксидов к основаниям в первых двух рядах осуществляется путём известной вам реакции гидратации, например:

СaO + H 2 O = Сa(OH) 2 .

Что касается последних двух рядов, то содержащиеся в них оксиды MgO и FeO с водой не реагируют. В таких случаях для получения оснований эти оксиды сначала превращают в соли, а уже их – в основания. Поэтому, например, для осуществления перехода от оксида MgO к гидроксиду Mg(OH) 2 используют последовательные реакции:

MgO + H 2 SO 4 = MgSO 4 + H 2 O; MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 .

Переходы от оснований к солям осуществляются уже известными вам реакциями. Так, растворимые основания (щёлочи), находящиеся в первых двух рядах, превращаются в соли под действием кислот, кислотных оксидов или солей. Нерастворимые основания из последних двух рядов образуют соли под действием кислот.

Генетические ряды неметаллов и их соединений .

Каждый такой ряд состоит состоит из неметалла, кислотного оксида, соответствующей кислоты и соли, содержащей анионы этой кислоты:

Для перехода от неметаллов к кислотным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

4P + 5O 2 = 2 P 2 O 5 ; Si + O 2 = SiO 2 ;

Переход от кислотных оксидов к кислотам в первых трёх рядах осуществляется путём известной вам реакции гидратации, например:

P 2 O 5 + 3H 2 O = 2 H 3 PO 4 .

Однако, вы знаете, что содержащийся в последнем ряду оксид SiO 2 с водой не реагирует. В этом случае его сначала превращают в соответствующую соль, из которой затем получают нужную кислоту:

SiO 2 + 2KOH = K 2 SiO 3 + H 2 O; K 2 SiO 3 + 2HСl = 2KCl + H 2 SiO 3 ↓.

Переходы от кислот к солям могут осуществляться известными вам реакциями с основными оксидами, основаниями или с солями.

Следует запомнить:

· Вещества одного и того же генетического ряда друг с другом не реагируют.

· Вещества генетических рядов разных типов реагируют друг с другом. Продуктами таких реакций всегда являются соли (рис. 5):

Рис. 5. Схема взаимосвязи веществ разных генетических рядов.

Эта схема отображает взаимосвязь между различными классами неорганических соединений и объясняет многообразие химических реакций между ними.

Задание по теме:

Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения:

1. Na → Na 2 O → NaOH → Na 2 CO 3 → Na 2 SO 4 → NaOH;

2. P → P 2 O 5 → H 3 PO 4 → K 3 PO 4 → Ca 3 (PO 4) 2 → CaSO 4 ;

3. Ca → CaO → Ca(OH) 2 → CaCl 2 → CaCO 3 → CaO;

4. S → SO 2 → H 2 SO 3 → K 2 SO 3 → H 2 SO 3 → BaSO 3 ;

5. Zn → ZnO → ZnCl 2 → Zn(OH) 2 → ZnSO 4 → Zn(OH) 2 ;

6. C → CO 2 → H 2 CO 3 → K 2 CO 3 → H 2 CO 3 → CaCO 3 ;

7. Al → Al 2 (SO 4) 3 → Al(OH) 3 → Al 2 O 3 → AlCl 3 ;

8. Fe → FeCl 2 →FeSO 4 → Fe(OH) 2 → FeO → Fe 3 (PO 4) 2 ;

9. Si → SiO 2 → H 2 SiO 3 → Na 2 SiO 3 → H 2 SiO 3 → SiO 2 ;

10. Mg → MgCl 2 → Mg(OH) 2 → MgSO 4 → MgCO 3 → MgO;

11. K → KOH → K 2 CO 3 → KCl → K 2 SO 4 → KOH;

12. S → SO 2 → CaSO 3 → H 2 SO 3 → SO 2 → Na 2 SO 3 ;

13. S → H 2 S → Na 2 S → H 2 S → SO 2 → K 2 SO 3 ;

14. Cl 2 → HCl → AlCl 3 → KCl → HCl → H 2 CO 3 → CaCO 3 ;

15. FeO → Fe(OH) 2 → FeSO 4 → FeCl 2 → Fe(OH) 2 → FeO;

16. CO 2 → K 2 CO 3 → CaCO 3 → CO 2 → BaCO 3 → H 2 CO 3 ;

17. K 2 O → K 2 SO 4 → KOH → KCl → K 2 SO 4 → KNO 3 ;

18. P 2 O 5 → H 3 PO 4 → Na 3 PO 4 → Ca 3 (PO 4) 2 → H 3 PO 4 → H 2 SO 3 ;

19. Al 2 O 3 → AlCl 3 → Al(OH) 3 → Al(NO 3) 3 → Al 2 (SO 4) 3 → AlCl 3 ;

20. SO 3 → H 2 SO 4 → FeSO 4 → Na 2 SO 4 → NaCl → HCl;

21. KOH → KCl → K 2 SO 4 → KOH → Zn(OH) 2 → ZnO;

22. Fe(OH) 2 → FeCl 2 → Fe(OH) 2 → FeSO 4 → Fe(NO 3) 2 → Fe;

23. Mg(OH) 2 → MgO → Mg(NO 3) 2 → MgSO 4 → Mg(OH) 2 → MgCl 2 ;

24. Al(OH) 3 → Al 2 O 3 → Al(NO 3) 3 → Al 2 (SO 4) 3 → AlCl 3 → Al(OH) 3 ;

25. H 2 SO 4 → MgSO 4 → Na 2 SO 4 → NaOH → NaNO 3 → HNO 3 ;

26. HNO 3 → Ca(NO 3) 2 → CaCO 3 → CaCl 2 → HCl → AlCl 3 ;

27. CuСO 3 → Cu(NO 3) 2 → Cu(OH) 2 → CuO → CuSO 4 → Cu;

28. MgSO 4 → MgCl 2 → Mg(OH) 2 → MgO → Mg(NO 3) 2 → MgCO 3 ;

29. K 2 S → H 2 S → Na 2 S → H 2 S → SO 2 → K 2 SO 3 ;

30. ZnSO 4 → Zn(OH) 2 → ZnCl 2 → HCl → AlCl 3 → Al(OH) 3 ;



31. Na 2 CO 3 → Na 2 SO 4 → NaOH → Cu(OH) 2 → H 2 O → HNO 3 ;