Характер теплового движения молекул. Число ударов молекул о стену

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел . Еще с детства мы знаем, что холодная вода при нагревании сначала становится едва теплой и лишь спустя определенное время горячей.

Такими словами как «холодный», «горячий», «теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел. Температура теплой воды немного выше температуры прохладной воды. Если сравнивать температуру летнего и зимнего воздуха, то разница в температуре очевидна.

Температура тел измеряется с помощью термометра и выражается в градусах Цельсия (°C).

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой. Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится.

Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые. К ним можно отнести нагревание или охлаждение воздуха, плавку метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Количество подобных молекул и атомов в окружающих нас телах огромно. В объеме равном 1 см³ воды, содержится приблизительно 3,34 · 10²² молекул. Любая молекула имеет очень сложную траекторию движения. К примеру, частицы газа, передвигающиеся с большими скоростями в различных направлениях, могут сталкиваться как друг c другом, так и со стенками сосуда. Таким образом, они меняют свою скорость и опять продолжают движение.

Рисунок №1 демонстрирует беспорядочное движение частиц краски, растворенных в воде.

Таким образом, делаем еще один вывод: хаотичное движение частиц, которые составляют тела, называют тепловым движением.

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться).

В жидкостях молекулы могут колебаться, вращаться и двигаться относительно других молекул. Если брать твердые тела, то в них молекулы и атомы колеблются около некоторых средних положениях.

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства. Таким образом, если повысить температуру льда то он начинает таять, принимая при этом уже абсолютно другую форму – лед становится жидкостью. Если же наоборот, понижать температуру, к примеру, ртути, то она изменит свои свойства и из жидкости, превратится в твердое тело.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Если у вас остались вопросы, или вы хотите узнать больше о тепловом движении и температуре, зарегистрируйтесь на нашем сайте и получите помощь репетитора.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а очень малы. Поэтому газы не имеют собственной формы и постоянного объёма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объём. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа .

Движение молекул в жидкостях

В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации ) и обозначается буквой τ. Иными словами, время релаксации – это время колебаний около одного определённого положения равновесия. При комнатной температуре это время составляет в среднем 10 -11 с. Время одного колебания составляет 10 -12 …10 -13 с.

Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объёму.

Жидкости, как и твёрдые тела, сохраняют свой объём, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть . Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а её физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 – 1952).

Движение молекул в твёрдых телах

Молекулы и атомы твёрдого тела расположены в определённом порядке и образуют кристаллическую решётку . Такие твёрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твёрдые тела в обычных условиях сохраняют объём и имеют собственную форму.

Характер теплового движения в кристаллах. Кристаллическая структура равновесное состояние системы атомов, отвечающее минимуму потенциальной энергии. В состоянии покоя сумма сил, действующих на каждый атом кристалла со стороны других атомов, равна нулю. Атомы в кристаллах совершают колебания около фиксированных положений равновесия. Характер этих тепловых колебаний весьма сложен. Частица взаимодействует с соседними частицами, то есть колебания передаются от атома к атому и распространяются в кристалле в виде волны.


Благодаря тому, что каждый атом сильно связан с соседями, он сам по себе, в одиночку двигаться не может - он заставляет двигаться в такт себе и соседей. В результате, микроскопическое движение в кристалле надо представлять себе не как движение отдельных атомов, а как определенные коллективные, синхронные колебания большого числа атомов. Такие колебания называются фононами. Именно фононы являются, как говорят физики, истинными степенями свободы в кристаллическом твердом теле. В терминах фононов можно описать и звуковые волны, и теплоемкость кристалла, и сверхпроводимость некоторых материалов, и, наконец, самые разнообразные микроскопический явления в кристалле.


Некогерентные, т.е. никак не скоррелированные, независимые фононы есть в кристалле всегда. Они имеют самые разные длины волн, распространяются в самых разных направлениях, накладываются друг на друга - и в результате приводят лишь к мелкому, хаотичному дрожанию отдельных атомов. Однако если мы теперь создадим большое число когерентных фононов (т.е. фононов одного сорта - с одинаковой длиной волны, двигающихся в одинаковом направлении в одинаковой фазе), то получится монохроматическая волна деформации, распространяющаяся по кристаллу. Каждому колебанию соответствует одно состояние фонона с импульсом и энергией, k - волновой вектор


Итак, колебания атомов кристалла заменяются распространением в веществе системы звуковых волн, квантами которых и являются фононы. Спин фонона равен нулю (в единицах). Фонон принадлежит к числу бозонов и описывается статистикой Бозе-Эйнштейна. Фононы и их взаимодействие с электронами играют фундаментальную роль в современных представлениях о физике сверхпроводников, процессах теплопроводности, процессах рассеяния в твердых телах. Модель кристалла металла можно представить как совокупность гармонически взаимодействующих осцилляторов, причем наибольший вклад в их среднюю энергию дают колебания низких частот, соответствующие упругим волнам, квантами которых и являются фононы.звуковых волн Спинбозонов статистикой Бозе-Эйнштейна взаимодействие с электронами сверхпроводников теплопроводности


Колебаниям решетки, согласно квантовой механике, можно сопоставить квазичастицы – фононы. Минимальная порция энергии, которую может поглотить или испустить кристаллическая решетка при тепловых колебаниях, соответствует на этом рисунке переходу с одного энергетического уровня на другой. Она равна h ν и является энергией фонона. Таким образом между светом и тепловыми колебаниями кристаллической решетки можно провести аналогию – упругие волны рассматриваются как распространение неких квазиупругих частиц – фононов.


Фонон, в отличии от обычных частиц, может существовать лишь в некоторой среде, которая пребывает в состоянии теплового возбуждения. Нельзя вообразить фонон, который распространялся бы в вакууме, поскольку он описывает квантовый характер тепловых колебаний решетки и навечно замкнут в кристалле. Корпускулярный аспект малых колебаний атомов решетки кристалла приводит к понятию фонона, и распространение упругих тепловых волн в кристалле можно рассматривать как перенесение фононов.


Теория тепловых волн в кристалле была разработана Дебаем. Квантовый характер тепловых волн, т.е. их дискретность проявляется при температуре, которая называется характеристическая температура Дебая, где - максимальная частота тепловых колебаний частиц, k - постоянная Больцмана. Величину называют энергией Дебая. Для большинства твёрдых тел температура Дебая 100 К. Поэтому почти все твёрдые тела в обычных условиях не проявляют квантовых особенностей. Температура Дебая – одна из важнейших характеристик кристалла.


В физике твёрдого тела широко используется понятие фононного газа, т. е. большого числа независимых квазичастиц, находящихся в объёме твёрдого тела. При поглощении тепловой энергии твёрдым телом растёт интенсивность колебаний атомов. Внутренняя энергия твёрдого тела складывается из энергии основного состояния решётки и энергии фононов. По теории Дебая, возбуждённое состояние решётки можно представить как идеальный газ фононов, свободно движущихся в объёме кристалла. В определённом интервале температур фононный газ подобен идеальному газу.


Теплоёмкость кристалла. Классическая теория. Под теплоёмкостью твёрдого тела, обладающего объёмом V, подразумевают величину U – внутренняя энергия, являющаяся суммой колебательного движения частиц, находящихся в узлах кристаллической решётки, и потенциальной энергии их взаимодействия.


Cредняя энергия гармонического осциллятора согласно классической статистической механике равна, причём приходится на кинетическую энергию и столько же на потенциальную. Моль вещества в кристаллической решётке содержит N А свободных частиц, имеет 3N А степеней свободы и обладает энергией


Тогда В кристалле теплоёмкость при постоянном объёме мало отличается от теплоёмкости при постоянном давлении, так что можно положить и говорить просто о теплоёмкости твёрдого тела Это утверждение носит название закона Дюлонга и Пти. Закон выполняется в определённом интервале температур и несправедлив при низких температурах.


Теплоёмкость кристалла. Квантовая теория. Модель Эйнштейна. Эйнштейн отождествил кристаллическую решётку из N атомов с системой 3N независимых гармонических осцилляторов. Приняв, что распределение осцилляторов по состояниям с различной энергией подчиняется закону Больцмана, можно найти среднюю энергию осциллятора Теплоёмкость кристалла. Квантовая теория. Модель Дебая. При низких температурах модель Эйнштейна лишь качественно предсказывает изменение теплоёмкости. Несоответствие экспериментальных данных с теорией Эйнштейна устранил Дебай. Он учёл, что твёрдое тело обладает целым спектром частот. Представление Эйнштейна о том, что все осцилляторы имеют одну и ту же частоту колебаний является чрезмерно упрощённым.


Описано новое явление в конденсированных средах «перепрыгивание» фононов из одного твердого тела в другое через пустоту. За счет него звуковая волна может преодолевать тонкие вакуумные зазоры, а тепло может передаваться через вакуум в миллиарды раз эффективнее, чем при обычном тепловом излучении.

Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика - раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.

Тепловое движение - беспорядочное (хаотическое) движение атомов или молекул вещества.

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Молекулярно-кинетическая теория - теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.

Основные положения молекулярно-кинетической теории:

  1. вещество состоит из частиц - молекул и атомов, разделенных промежутками,
  2. эти частицы хаотически движутся,
  3. частицы взаимодействуют друг с другом.

МАССА И РАЗМЕРЫ МОЛЕКУЛ

Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода - 5,32*10 -26 кг. Масса одного атома углерода m 0C =1,995*10 -26 кг

Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).

Количество вещества - это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода N A:

Моль - количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.

Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:

Молярная масса - масса 1 моля вещества:

Молярная и относительная молекулярная массы вещества связаны соотношением: М = М r *10 -3 кг/моль.

СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ

Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит характер определенной закономерности, которая называется распределением Максвелла.

График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.

ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Идеальный газ - это упрощенная модель газа, в которой:

  1. молекулы газа считаются материальными точками,
  2. молекулы не взаимодействуют между собой,
  3. молекулы, соударяясь с преградами, испытывают упругие взаимодействия.

Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.

Основное уравнение молекулярно-кинетической теории можно записать в виде

Скорость называют средней квадратичной скоростью.

ТЕМПЕРАТУРА

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273

где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Средняя квадратичная скорость молекул

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Пусть газ массой m занимает объем V при температуре Т и давлении р , а М - молярная масса газа. По определению, концентрация молекул газа: n = N/V , где N -число молекул.

Подставим это выражение в основное уравнение молекулярно-кинетической теории:

Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде

называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия - давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).

1. Изотермический процесс

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Если Т =const, то

Закон Бойля-Мариотта

Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p 1 V 1 =p 2 V 2 при Т = const

График процесса, происходящего при постоянной температуре, называется изотермой.

2. Изобарный процесс

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Закон Гей-Люссака

Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:

Если газ, имея объем V 0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать

Обозначив

получим V=V 0 T

Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой .

3. Изохорный процесс

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то

Закон Шарля

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:

Если газ, имея объем V 0 ,находится при нормальных условиях:

а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р , то можно записать

График процесса, происходящего при постоянном объеме, называется изохорой .

Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?

Из уравнения состояния идеального газа

определим величину давления.

Тема: Силы межмолекулярного взаимодействия. Агрегатные

состояния вещества. Характер теплового движения молекул в твердых,

жидких и газообразных телах и его изменение с ростом температуры.

Тепловое расширение тел. Фазовые переходы. Теплота фазовых

переходов. Равновесие фаз.

Межмолекулярное взаимодействие имеет электрическую природу. Между ними

действуют силы притяжения и отталкивания, которые быстро убывают при увеличении

расстояния между молекулами.

Силы отталкивания действуют только на очень малых расстояниях.

Практически поведение вещества и его агрегатное состояние определяется тем, что является доминирующим: силы притяжения или хаотическое тепловое движение.

В твердых телах доминируют силы взаимодействия, поэтому они сохраняет свою форму. Силы взаимодействия зависят от формы и структуры молекул, поэтому нет единого закона для их расчета.

Однако, если представить, что молекулы имеют шаровую форму – общий характер зависимости сил взаимодействия от расстояния между молекулами –r представлен на рисунке 1-а. На рисунке 1-б представлена зависимость потенциальной энергии взаимодействия молекул от расстояния между ними. При некотором расстоянии r0 (оно различно для разных веществ) Fпритяж.= Fотталк. Потенциальная энергия минимальна, при rr0 преобладают силы отталкивания, а при rr0 – наоборот.

На рисунке 1-в продемонстрирован переход кинетической энергии молекул в потенциальную при их тепловом движении (например колебаниях). Во всех рисунках начало координат совмещено с центром одной из молекул. Приближаясь к другой молекуле ее кинетическая энергия переходит в потенциальную и достигает максимального значения при расстояниях r=d. d называется эффективным диаметром молекул (минимальное расстояние, на которое сближаются центры двух молекул.



Понятно, что эффективный диаметр зависит, в том числе, от температуры, так как при большей температуре молекулы могут сблизится сильнее.

При низких температурах, когда кинетическая энергия молекул мала, они притягиваются вплотную и установятся в определенном порядке – твердое агрегатное состояние.

Тепловое движение в твердых телах является в основном колебательным. При высоких температурах интенсивное тепловое движение мешает сближению молекул – газообразное состояние, движение молекул поступательное и вращательное.. В газах менее 1% объема приходится на объем самих молекул. При промежуточных значениях температур молекулы будут непрерывно перемещаться в пространстве, обмениваясь местами, однако расстояние между ними не намного превышает d – жидкость. Характер движения молекул в жидкости носит колебательный и поступательный характер (в тот момент, когда они перескакивают в новое положение равновесия).

Тепловое движение молекул объясняет явление теплового расширения тел. При нагревании амплитуда колебательного движения молекул увеличивается, что приводит к увеличению размеров тел.

Линейное расширение твердого тела описывается формулой:

l l 0 (1 t), где - коэффициент линейного расширения 10-5 К-1. Объемное расширение тел описывается аналогичной формулой: V V0 (1 t), - коэффициент объемного расширения, причем =3.

Вещество может находится в твердом, жидком, газообразном состояниях. Эти состояния называют агрегатными состояниями вещества. Вещество может переходить из одного состояния в другое. Характерной особенностью превращения вещества является возможность существования стабильных неоднородных систем, когда вещество может находится сразу в нескольких агрегатных состояниях.

При описании таких систем пользуются более широким понятием фазы вещества. Например, углерод в твердом агрегатном состоянии может находится в двух различных фазах – алмаз и графит. Фазой называется совокупность всех частей системы, которая в отсутствии внешнего воздействия является физически однородной. Если несколько фаз вещества при данной температуре и давлении существуют, соприкасаясь друг с другом, и при этом масса одной фазы не увеличивается за счет уменьшения другой, то говорят о фазовом равновесии.

Переход вещества из одной фазы в другую называют фазовым переходом. При фазовом переходе происходит скачкообразное (происходящее в узком интервале температур) качественное изменение свойств вещества. Эти переходы сопровождаются скачкообразным изменением энергии, плотности и других параметров. Бывают фазовые переходы первого и второго рода. К фазовым переходам первого рода относят плавление, отвердевание (кристаллизацию), испарение, конденсацию и сублимацию (испарения с поверхности твердого тела). Фазовые переходы этого рода всегда связаны с выделением или поглощением теплоты, называемой скрытой теплотой фазового перехода.

При фазовых переходах второго рода отсутствует скачкообразное изменение энергии и плотности. Теплота фазового перехода тоже равна 0. Превращения при таких переходах происходят сразу во всем объеме в результате изменения кристаллической решетки при определенной температуре, которая называется точкой Кюри.

Рассмотрим переход первого рода. При нагревании тела, как отмечалось, происходит тепловое расширение тела и как следствие уменьшения потенциальной энергии взаимодействия частиц. Возникает ситуация, когда при некоторой температуре соотношения между потенциальной и кинетической энергиями не могут обеспечить равновесии старого фазового состояния и вещество переходит в новую фазу.

Плавление – переход из кристаллического состояния в жидкое. Q=m, удельная теплота плавления, показывает какое количество теплоты необходимо, чтобы перевести 1 кг твердого вещества в жидкое при температуре плавления, измеряется в Дж/кг. При кристаллизации выделяющееся количество теплоты рассчитывают по этой же формуле. Плавлении и кристаллизация происходят при определенной для данного вещества температуре, называемой температурой плавления.

Испарение. Молекулы в жидкости связаны силами притяжения, однако некоторые, самые быстрые молекулы могут покидать объем жидкости. При этом средняя кинетическая энергия оставшихся молекул уменьшается и жидкость охлаждается. Для поддержания испарения необходимо подводить тепло: Q=rm, r – удельная теплота парообразования, которая показывает какое количество теплоты необходимо затратить, чтобы перевести в газообразное состояния 1 кг жидкости при постоянной температуре.

Единица: Дж/кг. При конденсации теплота выделяется.

Теплота сгорания топлива рассчитывается по формуле: Q=qm.

В условиях механического и теплового равновесия состояния неоднородных систем определяются заданием давления и температуры, так как эти параметры одинаковы для каждой из частей системы. Опыт показывает, что при равновесии двух фаз давление и температура связаны между собой зависимостью, представляющей собой кривую фазового равновесия.

Точки, лежащие на кривой, описывают неоднородную систему, в которой существуют две фазы. Точки, лежащие внутри областей, описывают однородные состояния вещества.

Если кривые всех фазовых равновесий одного вещества построить на плоскости, то они разобьют ее на отдельные области, а сами сойдутся в одной точке, которая называется тройная точка. Эта точка описывает состояние вещества, в котором могут сосуществовать все три фазы. На рисунке 2 построены диаграммы состояния воды.