Хендрик антон лоренц что он открыл. Презентация по физике на тему "антон хендрик лоренц"

Голландский физик Хендрик Антон Лоренц родился в Арнхеме в семье Геррита Фредерика Лоренца и Гертруды (ван Гинкель) Лоренц. Отец Лоренца содержал детские ясли. Мать мальчика умерла, когда ему исполнилось четыре года. Через пять лет отец женился вторично на Люберте Хупкес. Лоренц учился в средней школе Арнхема и имел отличные оценки по всем предметам.

В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Лоренц стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Лоренц успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Лоренц исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой.

Лоренц продолжал жить в родном доме и преподавать в местной средней школе до 1878 г., когда он был назначен на кафедру теоретической физики Лейденского университета. В то время теоретическая физика как самостоятельная наука делала еще только первые шаги. Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Лоренца, который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем.

Продолжая заниматься исследованием оптических явлений, Лоренц в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле – величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Случилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца – Лоренца. Однако работа Хендрика Лоренца представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Она подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул.

В 1880 г. научные интересы Лоренца были связаны главным образом с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Лоренц приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Лоренц, возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Лоренц заключил, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Лоренц продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле.

Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр – серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Лоренц предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Лоренца по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Лоренца, установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Лоренца о поляризации испускаемого света.

Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Лоренцем объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Лоренцем теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж. Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Лоренцем электронов, колеблющихся в атомах.

Зееман и Лоренц были удостоены Нобелевской премии по физике 1902 г. «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения». «Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Лоренцу, – заявил на церемонии вручения премии Ялмар Теель из Шведской королевской академии наук. – Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Лоренц начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».

В конце XIX – начале XX в. Лоренца по праву считался ведущим физиком-теоретиком мира. Работы Лоренца охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Лоренца оказали влияние на развитие современной теории относительности и квантовой теории.

В 1904 г. Лоренц опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира – загадочного гипотетического вещества, якобы заполняющего все пространство.

Считалось, что эфир необходим как среда, в которой распространяются электромагнитные волны, например свет, подобно тому как молекулы воздуха необходимы для распространения звуковых волн. Несмотря на многочисленные трудности, встретившиеся на пути тех, кто пытался определить свойства вездесущего эфира, который упорно не поддавался наблюдению, физики все же были убеждены в том, что он существует. Одно из следствий существования эфира должно было бы наблюдаться обязательно: если скорость света измерять движущимся прибором, то она должна быть больше при движении к источнику света и меньше при движении в другую сторону. Эфир можно было бы рассматривать как ветер, переносящий свет и заставляющий его распространяться быстрее, когда наблюдатель движется против ветра, и медленнее, когда он движется по ветру.

В знаменитом эксперименте, выполненном в 1887 г. Альбертом А. Майкельсоном и Эдвардом У. Морли с помощью высокоточного прибора, называемого интерферометром, лучи света должны были пройти определенное расстояние в направлении движения Земли и затем такое же расстояние в противоположном направлении. Результаты измерений сравнивались с измерениями, произведенными над лучами, распространяющимися туда и обратно перпендикулярно направлению движения Земли. Если бы эфир как-то влиял на движение, то времена распространения световых лучей вдоль направления движения Земли и перпендикулярно ему из-за различия в скоростях отличались бы достаточно для того, чтобы их можно было измерить интерферометром. К удивлению сторонников теории эфира, никакого различия обнаружено не было.

Множество объяснений (например, ссылка на то, что Земля увлекает за собой эфир и поэтому он покоится относительно нее) были весьма неудовлетворительны. Для решения этой задачи Лоренц (и независимо от него ирландский физик Дж. Ф. Фитцджералд) предположил, что движение сквозь эфир приводит к сокращению размеров интерферометра (и, следовательно, любого движущегося тела) на величину, которая объясняет кажущееся отсутствие измеримого различия скорости световых лучей в эксперименте Майкельсона – Морли.

Преобразования Лоренца оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности. Эйнштейн питал к Лоренцу глубокое уважение. Но если Лоренц считал, что деформация движущихся тел должна вызываться какими-то молекулярными силами, изменение времени – не более чем математический трюк, а постоянство скорости света для всех наблюдателей должно следовать из его теории, то Эйнштейн подходил к относительности и постоянству скорости света как к основополагающим принципам, а не проблемам. Приняв радикально новую точку зрения на пространство, время и несколько фундаментальных постулатов, Эйнштейн вывел преобразования Лоренца и исключил необходимость введения эфира.

Лоренц сочувственно относился к новаторским идеям и одним из первых выступил в поддержку специальной теории относительности Эйнштейна и квантовой теории Макса Планка . На протяжении почти трех десятилетий нового века Лоренц проявлял большой интерес к развитию современной физики, сознавая, что новые представления о времени, пространстве, материи и энергии позволили разрешить многие проблемы, с которыми ему приходилось сталкиваться в собственных исследованиях. О высоком авторитете Лоренца среди коллег свидетельствует хотя бы такой факт: по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике – международного форума самых известных ученых – и ежегодно, до самой смерти, выполнял эти обязанности.

В 1912 г. Лоренц ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Лоренц принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Лоренц принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Лоренц активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Лоренц стал ее председателем. Лоренц сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Гарлеме.

В 1881 г. Лоренц женился на Аллетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей, один из которых умер в младенческом возрасте. Лоренц был необычайно обаятельным и скромным человеком. Эти качества, а также его удивительные способности к языкам позволили ему успешно руководить международными организациями и конференциями.

Помимо Нобелевской премии Лоренц был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Германского физического обществ. В 1912 г. Лоренц стал секретарем Нидерландского научного общества.


Голландский физик Хендрик Антон Лоренц родился в Арнхеме в семье Геррита Фредерика Лоренца и Гертруды (ван Гинкель) Лоренц. Отец Л. содержал детские ясли. Мать мальчика умерла, когда ему исполнилось четыре года. Через пять лет отец женился вторично на Люберте Хупкес. Л. учился в средней школе Арнхема и имел отличные оценки по всем предметам.

В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Л. стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Л. успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Л. исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой.

Л. продолжал жить в родном доме и преподавать в местной средней школе до 1878 г., когда он был назначен на кафедру теоретической физики Лейденского университета. В то время теоретическая физика как самостоятельная наука делала еще только первые шаги. Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Л., который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем.

Продолжая заниматься исследованием оптических явлений, Л. в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле – величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Случилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца – Лоренца. Однако работа Хендрика Л. представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Она подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул.

В 1880 г. научные интересы Л. были связаны главным образом с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Л. приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Л., возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Л. заключил, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Л. продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле.

Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр – серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Л. предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Л. по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Л., установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Л. о поляризации испускаемого света.

Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Л. объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Л. теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж.Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Л. электронов, колеблющихся в атомах.

Зееман и Л. были удостоены Нобелевской премии по физике 1902 г. «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения». «Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Л., – заявил на церемонии вручения премии Ялмар Теель из Шведской королевской академии наук. – Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Л. начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».

В конце XIX – начале XX в. Л. по праву считался ведущим физиком-теоретиком мира. Работы Л. охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Л. оказали влияние на развитие современной теории относительности и квантовой теории.

В 1904 г. Л. опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира – загадочного гипотетического вещества, якобы заполняющего все пространство.

Считалось, что эфир необходим как среда, в которой распространяются электромагнитные волны, например свет, подобно тому как молекулы воздуха необходимы для распространения звуковых волн. Несмотря на многочисленные трудности, встретившиеся на пути тех, кто пытался определить свойства вездесущего эфира, который упорно не поддавался наблюдению, физики все же были убеждены в том, что он существует. Одно из следствий существования эфира должно было бы наблюдаться обязательно: если скорость света измерять движущимся прибором, то она должна быть больше при движении к источнику света и меньше при движении в другую сторону. Эфир можно было бы рассматривать как ветер, переносящий свет и заставляющий его распространяться быстрее, когда наблюдатель движется против ветра, и медленнее, когда он движется по ветру.

В знаменитом эксперименте, выполненном в 1887 г. Альбертом А. Майкельсоном и Эдвардом У. Морли с помощью высокоточного прибора, называемого интерферометром, лучи света должны были пройти определенное расстояние в направлении движения Земли и затем такое же расстояние в противоположном направлении. Результаты измерений сравнивались с измерениями, произведенными над лучами, распространяющимися туда и обратно перпендикулярно направлению движения Земли. Если бы эфир как-то влиял на движение, то времена распространения световых лучей вдоль направления движения Земли и перпендикулярно ему из-за различия в скоростях отличались бы достаточно для того, чтобы их можно было измерить интерферометром. К удивлению сторонников теории эфира, никакого различия обнаружено не было.

Множество объяснений (например, ссылка на то, что Земля увлекает за собой эфир и поэтому он покоится относительно нее) были весьма неудовлетворительны. Для решения этой задачи Л. (и независимо от него ирландский физик Дж. Ф. Фитцджералд) предположил, что движение сквозь эфир приводит к сокращению размеров интерферометра (и, следовательно, любого движущегося тела) на величину, которая объясняет кажущееся отсутствие измеримого различия скорости световых лучей в эксперименте Майкельсона – Морли.

Преобразования Л. оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности. Эйнштейн питал к Л. глубокое уважение. Но если Л. считал, что деформация движущихся тел должна вызываться какими-то молекулярными силами, изменение времени – не более чем математический трюк, а постоянство скорости света для всех наблюдателей должно следовать из его теории, то Эйнштейн подходил к относительности и постоянству скорости света как к основополагающим принципам, а не проблемам. Приняв радикально новую точку зрения на пространство, время и несколько фундаментальных постулатов, Эйнштейн вывел преобразования Л. и исключил необходимость введения эфира.

Л. сочувственно относился к новаторским идеям и одним из первых выступил в поддержку специальной теории относительности Эйнштейна и квантовой теории Макса Планка. На протяжении почти трех десятилетий нового века Л. проявлял большой интерес к развитию современной физики, сознавая, что новые представления о времени, пространстве, материи и энергии позволили разрешить многие проблемы, с которыми ему приходилось сталкиваться в собственных исследованиях. О высоком авторитете Л. среди коллег свидетельствует хотя бы такой факт: по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике – международного форума самых известных ученых – и ежегодно, до самой смерти, выполнял эти обязанности.

В 1912 г. Л. ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Л. принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Л. принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Л. активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Л. стал ее председателем. Л. сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Гарлеме.

В 1881 г. Л. женился на Аллетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей, один из которых умер в младенческом возрасте. Л. был необычайно обаятельным и скромным человеком. Эти качества, а также его удивительные способности к языкам позволили ему успешно руководить международными организациями и конференциями.

Помимо Нобелевской премии Л. был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Германского физического обществ. В 1912 г. Л. стал секретарем Нидерландского научного общества.

(1853 - 1928)

Хендрик Лоренц , нидерландский физик, родился 18 июля 1853 г. в г.Арнеме, в семье мелкого предпринимателя, который удерживал детские ясли. Начальное и среднее образование Хендрик получил в местной школе.

С 1870 г. продолжает обучение в Лейденском университете, посещает лекции известного к тому времени профессора астрономии Фредерика Кайзера. За 2 года Лоренц получает звание бакалавра наук по физике и математике и возвращаеться в Арнем учителем местной средней школы. 1873 г. успешно составляет экзамены на присвоение докторской степени и исследует теорию отбивания и преломление света, а 1875 г. защищает в Лейденском университете докторскую диссертацию по этой проблеме.

1878 г. Лоренц переезжает с Арнема в Лейден и работает на кафедре теоретической физики университета, одной из первых в Европе, продолжая изучать оптические явления. Здесь он публикует работу, в которой теоретически обосновывается соотношение между плотностью вещества и показателями его преломления, опираясь на общепринятую точку зрения, а именно на то, что вещество составляется из молекул и атомов.

В 1881 г. он вступает в брак с племянницей профессора астрономии Кайзера Аллеттой Кайзер. У них родилось четверо детей, однако один ребенок умерший грудным ребенком.

Продолжая работать в университете, Лоренц 1892 г. формулирует теорию электронов, публикует работы по расщеплению спектральных линий в магнитном поле.

1896 г. коллега Хендрика Лоренца Питер Зееман подтвердил его теоретическое положение о поляризации света. В это время Лоренц применяет теорию электронов для объяснения спектрального явления, которое было самым важным шагом на пути понимания строения вещества.

За развитие электромагнитной теории света 1902 г. Лоренц вместе с Зееманом получают Нобелевскую премию по физике, а вместе с тем и мировое признание руководящих ученых-физиков.

1911 г. он возглавляет первую Сольвеевскую конференцию по физике — международный форум известнейших ученых. Каждый год, до конца своей жизни, он председательствовал на этих конференциях.

1912 г. Лоренц подает в отставку из Лейденского университета, однако раз в неделю читает лекции и исполняет обязанности секретаря Нидерландского научного общества. Через год переезжает в Гаарлем, где работает директором физического кабинета Тейлеровського музея.

С 1923 г. входит в состав международной комиссии по интеллектуальному сотрудничеству Лиги Наций, а 1925 г. возглавляет ее.

Кроме Нобелевской премии, Хендрик Лоренц был награжден медалями Копли и Румфорда Лондонского королевского общества, был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Немецкого физического обществ.

Хендрик Лоренц сохранял интеллектуальную активность до самой смерти.


Гендрик Лоренц
(1853-1928).

В историю физики Лоренц вошел как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики.

Гендрик Антон Лоренц родился 18 июля 1853 года в голландском городе Арнеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

В 1870 году он поступил в Лейденский университет. С большим интересом Гендрик слушал лекции университетских профессоров, хотя его судьбу как ученого, видимо, в большей мере определило чтение трудов Максвелла, очень трудных для понимания и названных им в связи с этим "интеллектуальными джунглями". Но ключ к ним, по словам Лоренца, ему помогли подобрать статьи Гельмгольца, Френеля и Фарадея.

В 1871 году Гендрик с отличием сдал экзамены на степень магистра, но в 1872 году покинул Лейденский университет, чтобы самостоятельно подготовиться к докторским экзаменам. Он возвращается в Арнем и начинает работать учителем вечерней школы. Работа ему очень нравится, и вскоре Лоренц становится хорошим педагогом. Дома он создает небольшую лабораторию, продолжая усиленно изучать труды Максвелла и Френеля. "Мое восхищение и уважение переплелось с любовью и привязанностью; как велика была радость, которую я испытал, когда смог прочесть самого Френеля", - вспоминал Лоренц. Он становится ярым сторонником электромагнитной теории Максвелла: "Его "Трактат об электричестве и магнетизме" произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал".

В 1875 году Лоренц блестяще защищает докторскую диссертацию и в 1878 году становится профессором специально для него учрежденной кафедры теоретической физики (одной из первых в Европе) Лейденского университета. В 1881 году он становится членом Королевской академии наук в Амстердаме.

Уже в докторской диссертации "Об отражении и преломлении лучей света" Лоренц пытается обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.

В следующей статье "О соотношении между скоростью распространения света и плотностью и составом среды", опубликованной в 1878 году, Лоренц выводит знаменитое соотношение между показателем преломления и плотностью среды, известное под названием "формулы Лоренц-Лоренца", поскольку датчанин Людвиг Лоренц независимо от Гендрика Лоренца пришел к тому же результату. В этой работе Лоренц развивает электромагнитную теорию дисперсии света с учетом того, что на молекулярный заряд, кроме поля волны, действует поле поляризованных частиц среды.

В 1892 году Лоренц выступил с большой работой "Электромагнитная теория Максвелла и ее приложение к движущимся телам". В этой работе очерчены основные контуры электронной теории. Мир состоит из вещества и эфира, причем Лоренц называет веществом "все то, что может принимать участие в электрических токах, электрических смещениях и электромагнитных движениях". "Все весомые тела состоят из множества положительно и отрицательно заряженных частиц, и электрические явления порождаются смещением этих частиц".

Лоренц выписывает далее выражение силы, с которой электрическое поле действует на движущийся заряд. Лоренц делает фундаментальное предположение - эфир в движении вещества участия не принимает (гипотеза неподвижного эфира). Это предположение прямо противоположно гипотезе Герца о полностью увлекаемом движущимися телами эфире.

В заметке 1892 года "Относительное движение Земли и эфира" ученый описывает единственный, по его мнению, способ согласовать результат опыта с теорией Френеля, то есть с теорией неподвижного эфира. Этот способ состоит в предположении о сокращении размеров тел в направлении их движения (сокращение Лоренца-Фитцджеральда).

В 1895 году вышла фундаментальная работа Лоренца "Опыт теории электрических и оптических явлений в движущихся телах". В этой работе Лоренц дает систематическое изложение своей электронной теории. Правда, слово "электрон" в ней еще не встречается, хотя элементарное количество электричества было уже названо этим именем. Ученый просто говорит о заряженных положительно или отрицательно частичках материи - ионах и свою теорию соответственно называет "ионной теорией". "Я принимаю, - пишет Лоренц, что во всех телах находятся маленькие заряженные электричеством материальные частицы и что все электрические процессы основаны на конфигурации и движении этих "ионов"". Лоренц указывает, что такое представление общепринято для явлений в электролитах и что последние исследования электрических разрядов показывают, что "в электропроводности газов мы имеем дело с конвекцией ионов".

Другое предположение Лоренца заключается в том, что эфир не принимает участия в движении этих частиц и, следовательно, материальных тел, он неподвижен. Эту гипотезу Лоренц возводит к Френелю. Лоренц подчеркивает, однако, что речь идет не об абсолютном покое эфира, такое выражение он считает бессмысленным, а о том, что части эфира покоятся друг относительно друга и что все действительные движения небесных тел являются движениями относительно эфира.

Лоренц стал развивать идеи, изложенные им в "Опыте теории электрических и оптических явлений в движущихся телах", совершенствуя и углубляя свою теорию. В 1899 году он выступил со статьей "Упрощенная теория электрических и оптических явлений в движущихся телах", в которой упростил теорию, данную им в "Опыте".

В 1900 году на Международном конгрессе физиков в Париже Лоренц выступил с докладом о магнитооптических явлениях. Его друзьями стали Больцман, Вин, Пуанкаре, Рентген, Планк и другие знаменитые физики.

В 1902 году Лоренц и его ученик Питер Зееман становятся нобелевскими лауреатами. В своей речи при вручении Нобелевской премии Лоренц сказал: "…мы надеемся, что электронная гипотеза, поскольку она принята в различных разделах физики, ведет к общей теории, которая охватит многие области физики и химии. Возможно, что на этом длинном пути сама она полностью перестроится".

В 1904 году он выступил с основополагающей статьей "Электромагнитные явления в системе, движущейся со скоростью, меньшей скорости света". Лоренц вывел формулы, связывающие между собой пространственные координаты и моменты времени в двух различных инерциальных системах отчета (преобразования Лоренца). Ученому удалось получить формулу зависимости массы электрона от скорости.

В 1912 году, переиздавая эту работу, в примечаниях он признал, что ему не удалось полностью совместить свою теорию с принципом относительности. "С этим обстоятельством, - писал Лоренц, - связана беспомощность некоторых дальнейших рассуждений в этой работе".

В 1911 году в Брюсселе состоялся I Международный Сольвеевский конгресс физиков, посвященный проблеме "Излучение и кванты". В его работе участвовали двадцать три физика, председательствовал Лоренц. "Нас не покидает чувство, что мы находимся в тупике, старые теории оказываются все менее способными проникнуть в тьму, окружающую нас со всех сторон", - сказал он во вступительном слове. Он ставит перед физиками задачу создать новую механику. "Мы будем очень счастливы, если нам удастся хоть немного приблизиться к той будущей механике, о которой идет речь".

В 1912 году Лоренц ушел на должность экстраординарного профессора кафедры и предложил своим преемником жившего тогда в России физика Пауля Эренфеста. В 1913 году Лоренц занял должность директора физического кабинета Тейлоровского музея в Гарлеме.

Лоренц был членом многих академий наук и научных обществ. В 1925 году он избран иностранным членом Академии наук СССР. В том же году в Голландии было торжественно отмечено пятидесятилетие научной деятельности Лоренца. Это были большие торжества, превратившиеся, по словам академика П. Лазарева, в международный съезд. Голландская академия наук учреждает "Золотую медаль Лоренца". Участники торжеств выступают с приветственными речами. Ответная речь Лоренца была очень интересной и, как всегда, чрезвычайно скромной: "Я бесконечно счастлив, что мне удалось внести свой скромный вклад в развитие физики. Наше время прошло, но мы передали эстафету в надежные руки".

Лоренц был признан старейшиной физической науки, великим классиком теоретической физики и ее духовным отцом.

В 1927 году состоялся V Сольвеевский конгресс по проблеме "Электроны, фотоны и квантовая механика". Как и на всех предыдущих, председателем конгресса был Лоренц.

А 4 февраля 1928 года Лоренца не стало. В Голландии был объявлен национальный траур. На похороны великого физика прибыли ученые из разных стран. От Голландской академии наук выступал Эренфест, от Англии - Резерфорд, от Франции - Ланжевен, от Германии - Эйнштейн.

"Его блестящий ум указал нам путь от теории Максвелла к достижениям физики наших дней. Именно он заложил краеугольные камни этой физики, создал ее методы. Образ и труды его будут служить на благо и просвещение еще многих поколений", - сказал Эйнштейн над прахом Лоренца. Стиль работы Лоренца "брать глубоко и стремиться к полной завершенности" послужит, по словам Макса Планка, образцом и для будущих поколений. "Его труды не перестали быть захватывающе интересными он оставил после себя огромное наследие - истинное завершение классической физики", - оценивал вклад Лоренца Луи де Бройль. Таким был и таким остается в памяти потомков Гендрик Лоренц - этот "великий классик теоретической физики".


Лоренц Хендрик Антон
Родился: 18 июля 1853 года.
Умер: 4 февраля 1928 (74 года) года.

Биография

Хендрик (часто пишется Ге́ндрик) Антон Лоренц (нидерл. Hendrik Antoon Lorentz; 18 июля 1853, Арнем, Нидерланды - 4 февраля 1928, Харлем, Нидерланды) - нидерландский физик-теоретик, лауреат Нобелевской премии по физике (1902, совместно с Питером Зееманом) и других наград, член Нидерландской королевской академии наук (1881), ряда иностранных академий наук и научных обществ.

Лоренц известен прежде всего своими работами в области электродинамики и оптики. Объединив концепцию непрерывного электромагнитного поля с представлением о дискретных электрических зарядах, входящих в состав вещества, он создал классическую электронную теорию и применил её для решения множества частных задач: получил выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля (сила Лоренца), вывел формулу, связывающую показатель преломления вещества с его плотностью (формула Лоренца - Лоренца), разработал теорию дисперсии света, объяснил ряд магнитооптических явлений (в частности, эффект Зеемана) и некоторые свойства металлов. На основе электронной теории учёный развил электродинамику движущихся сред, в том числе выдвинул гипотезу о сокращении тел в направлении их движения (сокращение Фицджеральда - Лоренца), ввёл понятие о «местном времени», получил релятивистское выражение для зависимости массы от скорости, вывел соотношения между координатами и временем в движущихся относительно друг друга инерциальных системах отсчёта (преобразования Лоренца). Работы Лоренца способствовали становлению и развитию идей специальной теории относительности и квантовой физики. Кроме того, им был получен ряд существенных результатов в термодинамике и кинетической теории газов, общей теории относительности, теории теплового излучения.

Происхождение и детские годы (1853-1870)

Хендрик Антон Лоренц родился 15 июля 1853 года в Арнеме. Его предки происходили из прирейнской области Германии и занимались в основном земледелием. Отец будущего ученого, Геррит Фредерик Лоренц (Gerrit Frederik Lorentz, 1822-1893), владел питомником плодовых деревьев близ Велпа (нидерл. Velp). Мать Хендрика Антона, Гертруда ван Гинкел (Geertruida van Ginkel, 1826-1861), выросла в Ренсвауде (нидерл. Renswoude) в провинции Утрехт, была замужем, рано овдовела и на третьем году вдовства вышла замуж во второй раз - за Геррита Фредерика. У них было двое сыновей, однако второй из них умер ещё в младенческом возрасте; Хендрик Антон воспитывался вместе Хендриком Яном Якобом, сыном Гертруды от первого брака. В 1862 году, после ранней смерти супруги, отец семейства женился на Люберте Хюпкес (Luberta Hupkes, 1819/1820-1897), которая стала детям заботливой мачехой.

В шестилетнем возрасте Хендрик Антон поступил в начальную школу Тиммера. Здесь, на уроках Герта Корнелиса Тиммера, автора учебников и научно-популярных книг по физике, юный Лоренц познакомился с основами математики и физики. В 1866 году будущий учёный успешно сдал вступительные экзамены в только что открывшуюся в Арнеме высшую гражданскую школу (нидерл. Hogereburgerschool), которая примерно соответствовала гимназии. Учёба легко давалась Хендрику Антону, чему способствовал педагогический талант учителей, в первую очередь Х. Ван-дер-Стадта, автора нескольких известных учебников по физике, и Якоба Мартина ван Беммелена, преподававшего химию. Как признавал сам Лоренц, именно Ван-дер-Стадт привил ему любовь к физике. Другой важной встречей в жизни будущего учёного стало знакомство с Германом Хагой (нидерл. Herman Haga), который учился в том же классе и впоследствии также стал физиком; они оставались близкими друзьями на протяжении всей жизни. Кроме естественных наук, Хендрик Антон интересовался историей, прочёл ряд трудов по истории Нидерландов и Англии, увлекался историческими романами; в литературе его привлекало творчество английских писателей - Вальтера Скотта, Уильяма Теккерея и особенно Чарльза Диккенса. Отличаясь хорошей памятью, Лоренц изучил несколько иностранных языков (английский, французский и немецкий), а перед поступлением в университет самостоятельно овладел греческим и латынью. Несмотря на общительный характер, Хендрик Антон был человеком стеснительным и не любил говорить о своих переживаниях даже с близкими. Он был чужд всякого мистицизма и, по свидетельству дочери, «лишён был веры в божью благодать… Вера в высшую ценность разума… заменяла ему религиозные убеждения».

Учёба в университете. Первые шаги в науке (1870-1877)

В 1870 году Лоренц поступил в Лейденский университет, старейший университет Голландии. Здесь он посещал лекции физика Питера Рейке (нидерл. Pieter Rijke) и математика Питера ван Гера (Pieter van Geer), читавшего курс аналитической геометрии, однако ближе всего сошёлся с профессором астрономии Фредериком Кайзером, который узнал о новом талантливом студенте от своего бывшего ученика Ван-дер-Стадта. Именно во время учёбы в университете будущий учёный познакомился с основополагающими работами Джеймса Клерка Максвелла и не без труда смог разобраться в них, чему способствовало изучение трудов Германа Гельмгольца, Огюстена Френеля и Майкла Фарадея. В ноябре 1871 года Лоренц с отличием сдал экзамены на степень магистра и, решив готовиться к докторским экзаменам самостоятельно, в феврале 1872 года покинул Лейден. Вернувшись в Арнем, он стал учителем математики в вечерней школе и в школе Тиммера, где когда-то учился сам; эта работа оставляла ему достаточно свободного времени, чтобы заниматься наукой. Основным направлением исследований Лоренца стала электромагнитная теория Максвелла. Кроме того, в школьной лаборатории он ставил оптические и электрические опыты и даже безуспешно пытался доказать существование электромагнитных волн, изучая разряды лейденской банки. Впоследствии, касаясь знаменитого сочинения британского физика, Лоренц говорил: «Его „Трактат об электричестве и магнетизме“ произвёл на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло всё, что я до сих пор знал. Но книга Максвелла была не из лёгких! Написанная в годы, когда идеи учёного ещё не получили окончательной формулировки, она не представляла законченного целого и не давала ответа на многие вопросы».

В 1873 году Лоренц сдал докторские экзамены, а 11 декабря 1875 года в Лейдене с отличием (magna cum laude) защитил докторскую диссертацию «К теории отражения и преломления света» (нидерл. Over de theorie der terugkaatsing en breking van het licht), в которой дал объяснение этих процессов на основе максвелловской теории. После защиты молодой доктор наук вернулся к своей прежней жизни арнемского учителя. Летом 1876 года вместе с друзьями он совершил пеший переход по Швейцарии. К этому времени перед ним встал вопрос о полном переключении на математику: именно эту дисциплину он успешно преподавал в школе и потому Утрехтский университет предложил ему должность профессора математики. Однако Лоренц, надеясь вернуться в свою альма-матер, отклонил это предложение и в качестве временной должности решил получить место учителя лейденской классической гимназии. Вскоре в Лейденском университете произошло важное изменение: кафедра физики была разделена на две части - экспериментальную и теоретическую. Новую должность профессора теоретической физики сначала предложили Яну Дидерику Ван-дер-Ваальсу, а когда тот отказался, на это место был назначен Лоренц. Это была первая в Нидерландах и одна из первых в Европе кафедра теоретической физики; успешная деятельность Лоренца на этом поприще способствовала формированию теоретической физики как самостоятельной научной дисциплины.

Профессор в Лейдене (1878-1911)

25 января 1878 года Лоренц официально вступил в звание профессора, произнеся вступительную речь-доклад «Молекулярные теории в физике». По признанию одного из его бывших студентов, молодой профессор «обладал своеобразным даром, несмотря на всю свою доброту и простоту, сохранять определённую дистанцию между собой и своими студентами, нисколько не стремясь к тому и сам того не замечая». Лекции Лоренца пользовались среди студентов популярностью; ему нравилось преподавать, несмотря на то, что эта деятельность отнимала значительную часть времени. Более того, в 1883 году он взял на себя дополнительную нагрузку, заменив своего коллегу Хейке Камерлинг-Оннеса, который из-за болезни не мог читать курс общей физики на медицинском факультете; Лоренц продолжал читать эти лекции даже после выздоровления Оннеса, вплоть до 1906 года. По мотивам курсов его лекций была издана серия известных учебников, которые неоднократно переиздавались и были переведены на многие языки. В 1882 году профессор Лоренц начал популяризаторскую деятельность, его выступления перед широкой аудиторией пользовались успехом благодаря его таланту доступно и ясно излагать сложные научные вопросы.

Летом 1880 года Лоренц познакомился с Алеттой Кайзер (Aletta Catharina Kaiser, 1858-1931), племянницей профессора Кайзера и дочерью известного гравёра Йоханна Вилхелма Кайзера (нидерл. Johann Wilhelm Kaiser), директора Государственного музея в Амстердаме. Тем же летом состоялась помолвка, а в начале следующего года молодые люди поженились. В 1885 году у них родилась дочь Гертруда Люберта (нидерл. Geertruida de Haas-Lorentz), получившая имена в честь матери и мачехи учёного. В том же году Лоренц купил дом на Хойграхт, 48, где семья вела тихую, размеренную жизнь. В 1889 году родилась вторая дочь - Йоханна Вилхелмина (Johanna Wilhelmina), в 1893 году - первый сын, проживший менее года, а в 1895 - второй сын, Рудольф. Старшая дочь впоследствии стала ученицей отца, занималась физикой и математикой и была замужем за известным учёным Вандером Йоханнесом де Хаазом, учеником Камерлинг-Оннеса.

Первые годы в Лейдене Лоренц провёл в добровольной самоизоляции: он мало печатался за границей и практически избегал контактов с внешним миром (вероятно, это было связано с его стеснительностью). Его работы были мало известны за пределами Голландии вплоть до середины 1890-х годов. Лишь в 1897 году он впервые посетил съезд немецких естествоиспытателей и врачей, проходивший в Дюссельдорфе, и с тех пор стал постоянным участником крупных научных конференций. Он познакомился с такими известными европейскими физиками, как Людвиг Больцман, Вильгельм Вин, Анри Пуанкаре, Макс Планк, Вильгельм Рентген и другими. Росло и признание Лоренца как учёного, чему способствовал успех созданной им электронной теории, дополнявшей электродинамику Максвелла представлением об «атомах электричества», то есть о существовании заряженных частиц, из которых состоит вещество. Первая версия этой теории была опубликована в 1892 году; впоследствии она активно развивалась автором и использовалась для описания различных оптических явлений (дисперсия, свойства металлов, основы электродинамики движущихся сред и так далее). Одним из наиболее ярких достижений электронной теории стало предсказание и объяснение расщепления спектральных линий в магнитном поле, открытого Питером Зееманом в 1896 году. В 1902 году Зееман и Лоренц разделили Нобелевскую премию по физике; лейденский профессор стал, таким образом, первым теоретиком, удостоенным этой награды. Успех электронной теории был во многом обусловлен восприимчивостью её автора к различным идеям и подходам, его способностью соединять элементы разных теоретических систем. Как писал историк Оливье Дарриголь,

Как и подобало открытости его страны, он читал без разбора немецкие, английские и французские источники. Его основные вдохновители, Гельмгольц, Максвелл и Френель, принадлежали к очень разным, иногда несовместимым традициям. В то время как в обычном уме эклектизм мог бы создать неразбериху, Лоренц извлёк из него пользу.

Теперь из различных уголков мира Лоренцу поступали приглашения выступить со специальными докладами: он посетил Берлин (1904) и Париж (1905), а весной 1906 года прочёл цикл лекций в Колумбийском университете Нью-Йорка. Вскоре его стали переманивать другие университеты; в частности, Мюнхенский университет в 1905 году предложил ему гораздо более выгодные условия, чем в Лейдене. Однако учёный не спешил срываться с места и отказываться от спокойной жизни в маленьком городке, а после того, как нидерландское министерство просвещения существенно улучшило условия его работы (была сокращена лекционная нагрузка, выделен ассистент, отдельный кабинет и личная лаборатория), он окончательно отбросил мысли о переезде. В 1909 году Лоренц был назначен председателем отделения физики Нидерландской королевской академии наук и занимал эту должность на протяжении двенадцати лет.

Появление теории относительности и первых квантовых идей поставило под сомнение справедливость электронной теории Лоренца и классической физики в целом. Голландский учёный до последнего пытался найти выход из тупика, в котором оказалась старая физика, однако не преуспел в этом. Как писал в предисловии к советскому изданию лоренцевской «Теории электронов» Торичан Кравец, «его борьба за своё учение поистине грандиозна. Поразительно и научное беспристрастие автора, который с уважением идёт навстречу всем возражениям, всем трудностям. Прочтя его книгу, видишь воочию, что для спасения старых привычных воззрений сделано всё - и это всё не принесло им спасения». Несмотря на приверженность идеалам классики и осторожный подход к новым концепциям, Лоренц ясно осознавал несовершенство старых и плодотворность новых научных представлений. Осенью 1911 года в Брюсселе состоялся первый Сольвеевский конгресс, собравший крупнейших европейских физиков для обсуждения квантовой теории излучения. Председателем этого съезда стал Лоренц, чья кандидатура оказалась весьма удачной благодаря большому авторитету, знанию нескольких языков и умению направлять дискуссии в нужное русло. Коллеги признавали его заслуги в проведении конгресса на высоком научном уровне; так, в одном из писем Альберт Эйнштейн назвал Лоренца «чудом интеллигентности и такта». А вот какое впечатление произвело общение с голландским учёным на Макса Борна: «Что при взгляде на него больше всего поражало, так это выражение его глаз - удивительное сочетание глубокой доброты и иронического превосходства. Этому соответствовала и его речь - ясная, мягкая и убедительная, но вместе с тем и с ироническими оттенками. Поведение Лоренца было покоряюще любезным…»

Харлем (1912-1928)

В 1911 году Лоренц получил предложение занять пост куратора музея Тейлора, в котором имелся физический кабинет с лабораторией, и Голландского научного общества (нидерл. Koninklijke Hollandsche Maatschappij der Wetenschappen) в Харлеме. Учёный согласился и принялся искать преемника на должность лейденского профессора. После отказа Эйнштейна, который к тому моменту уже принял приглашение из Цюриха, Лоренц обратился к работавшему в Санкт-Петербурге Паулю Эренфесту. Осенью 1912 года, когда кандидатура последнего была официально утверждена, Лоренц окончательно переехал в Харлем. В музее Тейлора он получил небольшую лабораторию в личное пользование; в его обязанности входила организация популярных лекций для учителей физики, которые он стал читать сам. Кроме того, он ещё на протяжении десяти лет оставался экстраординарным профессором Лейденского университета и каждый понедельник в 11 часов утра читал там специальные лекции, посвящённые новейшим физическим идеям. Этот ставший традиционным семинар получил широкую известность в научном мире, его посещали многие известные исследователи из различных стран мира.

С возрастом Лоренц всё больше внимания уделял общественной деятельности, в особенности проблемам образования и международного научного сотрудничества. Так, он стал одним из основателей первого голландского лицея в Гааге и организатором первых бесплатных библиотек и читального зала в Лейдене. Он был одним из распорядителей Сольвеевского фонда, на средства которого был основан Международный физический институт, и возглавлял комитет, ведавший распределением пособий на проведение научных исследований учёными из различных стран. В одной из статей 1913 года Лоренц писал: «Все признают, что сотрудничество и преследование общей цели в конечном итоге порождает драгоценное чувство взаимного уважения, сплочённость и хорошие дружественные отношения, что в свою очередь укрепляет мир». Однако наступившая вскоре Первая мировая война надолго прервала связи между учёными враждовавших стран; Лоренц, как гражданин нейтральной страны, старался по мере своих сил сгладить эти противоречия и восстановить сотрудничество между отдельными исследователями и научными обществами. Так, войдя в руководство основанного после войны Международного исследовательского совета (предшественника Международного совета по науке), голландский физик и его единомышленники добились исключения из устава этой организации пунктов, дискриминирующих представителей побеждённых стран. В 1923 году Лоренц вошёл в состав Комитета по интеллектуальному сотрудничеству (англ. International Committee on Intellectual Cooperation), учреждённого Лигой наций для укрепления научных связей между европейскими государствами, а спустя некоторое время сменил философа Анри Бергсона на посту председателя этого учреждения.

В 1918 году Лоренц был назначен председателем государственного комитета по осушению залива Зёйдерзе и до конца жизни уделял много времени этому проекту, осуществляя непосредственное руководство инженерными расчётами. Сложность задачи требовала учёта многочисленных факторов и разработки оригинальных математических методов; здесь пригодились познания учёного в различных областях теоретической физики. Сооружение первой дамбы началось в 1920 году; проект завершился много лет спустя, уже после смерти его первого руководителя. Глубокий интерес к проблемам педагогики привёл Лоренца в 1919 году в правление народного образования, а в 1921 году он возглавил департамент высшего образования Нидерландов. В следующем году по приглашению Калифорнийского технологического института учёный во второй раз посетил США и выступил с лекциями в ряде городов этой страны. Впоследствии он побывал за океаном ещё дважды: в 1924 году и осенью-зимой 1926/27 года, когда прочитал в Пасадене курс лекций. В 1923 году, по достижении предельного возраста, Лоренц официально ушёл в отставку, однако продолжал читать свои понедельничные лекции в качестве почётного профессора. В декабре 1925 года в Лейдене прошли торжества по случаю 50-летия со дня защиты Лоренцем докторской диссертации. На это празднество было приглашено около двух тысяч человек со всех концов мира, в том числе многие крупные физики, представители нидерландского государства, ученики и друзья юбиляра. Принц Хендрик вручил учёному высшую награду Голландии - Большой крест ордена Оранских-Нассау, а Королевская академия наук объявила об учреждении медали Лоренца за достижения в области теоретической физики.

Хотя его научная продуктивность заметно снизилась, Лоренц до последних дней жизни продолжал интересоваться развитием физики и проводить собственные исследования. Признанием его особого положения в научном мире - положения «старейшины физической науки», по выражению Эренфеста, - служило председательствование на послевоенных Сольвеевских конгрессах, сыгравших большую роль в прояснении сложных проблем новой физики. По словам Джозефа Лармора, «он был идеальным руководителем любого международного конгресса, ибо был самым знающим и наиболее быстро схватывающим суть дела из всех современных физиков». По признанию Арнольда Зоммерфельда, Лоренц «был старейшим по возрасту и самым гибким и разносторонним по уму». В октябре 1927 года голландский учёный председательствовал на своём последнем, пятом по счёту Сольвеевском конгрессе, на котором обсуждались проблемы новой квантовой механики. В том же году были завершены расчёты по Зёйдерзе, и Лоренц, покинувший департамент высшего образования, надеялся больше времени уделять науке. Однако в середине января 1928 года он заболел рожистым воспалением, его состояние с каждым днём ухудшалось. 4 февраля учёный скончался. Похороны состоялись в Харлеме 9 февраля при большом стечении народа; в знак национального траура по всей стране в полдень на три минуты было прекращено телеграфное сообщение. В качестве представителей своих стран с надгробными речами выступили Пауль Эренфест, Эрнест Резерфорд, Поль Ланжевен и Альберт Эйнштейн. В своём выступлении последний отметил:

Свою жизнь он [Лоренц] до мельчайших подробностей создавал так, как создают драгоценное произведение искусства. Никогда не оставлявшие его доброта, великодушие и чувство справедливости вместе с глубоким, интуитивным пониманием людей и обстановки делали его руководителем всюду, где бы он ни работал. Все с радостью следовали за ним, чувствуя, что он стремится не властвовать над людьми, а служить им.

Научное творчество

Ранние работы по электромагнитной теории света

К началу научной карьеры Лоренца электродинамика Максвелла смогла полностью описать лишь распространение световых волн в пустом пространстве, тогда как вопрос о взаимодействии света с веществом ещё ждал своего решения. Уже в первых работах голландского учёного были сделаны некоторые шаги к объяснению оптических свойств вещества в рамках электромагнитной теории света. Основываясь на этой теории (точнее, на её интерпретации в духе дальнодействия, предложенной Германом Гельмгольцем), в своей докторской диссертации (1875) Лоренц решил проблему отражения и преломления света на границе раздела двух прозрачных сред. Предшествующие попытки решить эту задачу в рамках упругой теории света, в которой свет трактуется как механическая волна, распространяющаяся в особом светоносном эфире, столкнулись с принципиальными трудностями. Метод устранения этих трудностей предложил Гельмгольц в 1870 году; математически строгое доказательство было дано Лоренцем, который показал, что процессы отражения и преломления света определяются четырьмя граничными условиями, налагаемыми на векторы электрического и магнитного поля на поверхности раздела сред, и вывел отсюда известные формулы Френеля. Далее в диссертации были рассмотрены полное внутреннее отражение и оптические свойства кристаллов и металлов. Таким образом, в работе Лоренца содержались основы современной электромагнитной оптики. Что не менее важно, здесь появились первые признаки той особенности творческого метода Лоренца, которую Пауль Эренфест выразил следующими словами: «чёткое разделение той роли, которую в каждом данном случае оптических или электромагнитных явлений, возникающих в куске стекла или металла, играют „эфир“, с одной стороны, и „весомая материя“ - с другой». Разграничение между эфиром и веществом способствовало формированию представлений об электромагнитном поле как о самостоятельной форме материи, в противоположность бытовавшей ранее трактовке поля как механического состояния вещества.

Предшествующие результаты касались общих законов распространения света. Для того чтобы сделать более конкретные выводы об оптических свойствах тел, Лоренц обратился к представлениям о молекулярном строении вещества. Первые итоги своего анализа он опубликовал в 1879 году в работе «О соотношении между скоростью распространения света и плотностью и составом среды» (нидерл. Over het verband tusschen de voortplantingssnelheid van het licht en de dichtheid en samenstelling der middenstoffen, сокращённый вариант был напечатан в следующем году в немецком журнале Annalen der Physik). Предполагая, что эфир внутри вещества имеет такие же свойства, как и в свободном пространстве, и что в каждой молекуле под воздействием внешней электрической силы возбуждается пропорциональный ей электрический момент, Лоренц получил соотношение между показателем преломления n и плотностью вещества \rho в виде \frac{n^2-1}{(n^2+2) \rho}=\mathrm{const}. Эта формула была получена ещё в 1869 году датским физиком Людвигом Валентином Лоренцем на основе упругой теории света и ныне известна под названием формулы Лоренца - Лоренца. Существенным в выводе голландским учёным этого соотношения был также учёт (помимо электрического поля внешней световой волны) локального поля, обусловленного поляризацией вещества. Для этого предполагалось, что каждая молекула находится в полости, заполненной эфиром, и испытывающей воздействие со стороны других полостей. Константа в правой части формулы определяется поляризуемостью молекул и зависит от длины волны, то есть характеризует дисперсионные свойства среды. Эта зависимость фактически совпадает с дисперсионным соотношением Зельмайера (1872), полученным в рамках теории упругого эфира. Она была рассчитана Лоренцем на основе представления о наличии в молекуле электрического заряда, колеблющегося около положения равновесия под воздействием электрического поля. Таким образом, в этой работе уже содержалась фундаментальная модель электронной теории - заряженный гармонический осциллятор.

Электронная теория

Общая схема теории

К началу 1890-х годов Лоренц окончательно отказался от концепции дальнодействующих сил в электродинамике в пользу близкодействия, то есть представления о конечной скорости распространения электромагнитного взаимодействия. Этому, вероятно, способствовало открытие Генрихом Герцем электромагнитных волн, предсказанных Максвеллом, а также чтение лекций Анри Пуанкаре (1890), содержавших глубокий анализ следствий теории электромагнитного поля Фарадея - Максвелла. А уже в 1892 году Лоренц дал первую формулировку своей электронной теории.

Электронная теория Лоренца представляет собой максвелловскую теорию электромагнитного поля, дополненную представлением о дискретных электрических зарядах как основе строения вещества. Взаимодействие поля с движущимися зарядами является источником электрических, магнитных и оптических свойств тел. В металлах движение частиц порождает электрический ток, тогда как в диэлектриках смещение частиц из положения равновесия вызывает электрическую поляризацию, обуславливающую величину диэлектрической постоянной вещества. Первое последовательное изложение электронной теории появилось в большой работе «Электромагнитная теория Максвелла и её применение к движущимся телам» (фр. La théorie électromagnétique de Maxwell et son application aux corps mouvants, 1892), в которой Лоренц, помимо прочего, в простой форме получил формулу для силы, с которой поле действует на заряды (сила Лоренца). Впоследствии учёный дорабатывал и совершенствовал свою теорию: в 1895 году вышла книга «Опыт теории электрических и оптических явлений в движущихся телах» (нем. Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern), а в 1909 году - известная монография «Теория электронов и её применение к явлениям света и теплового излучения» (англ. The theory of electrons and its applications to the phenomena of light and radiant heat), содержащая самое полное изложение вопроса. В отличие от первоначальных попыток (в работе 1892 года) получить основные соотношения теории из принципов механики, здесь Лоренц уже начинал с уравнений Максвелла для пустого пространства (эфира) и аналогичных феноменологических уравнений, справедливых для макроскопических тел, и далее ставил вопрос о микроскопическом механизме электромагнитных процессов в веществе. Такой механизм, на его взгляд, связан с движением малых заряженных частиц (электронов), входящих в состав всех тел. Предполагая конечные размеры электронов и неподвижность эфира, присутствующего как вне, так и внутри частиц, Лоренц внёс в вакуумные уравнения члены, отвечающие за распределение и перемещение (ток) электронов. Полученные микроскопические уравнения (уравнения Лоренца - Максвелла) дополняются выражением для силы Лоренца, действующей на частицы со стороны электромагнитного поля. Эти соотношения лежат в основе электронной теории и позволяют единым образом описывать широкий круг явлений.

Хотя попытки построить теорию, объясняющую электродинамические явления взаимодействием электромагнитного поля с движущимися дискретными зарядами, предпринимались и ранее (в работах Вильгельма Вебера, Бернгарда Римана и Рудольфа Клаузиуса), теория Лоренца принципиально от них отличалась. Если ранее полагалось, что заряды действуют непосредственно друг на друга, то теперь считалось, что электроны взаимодействуют со средой, в которой они находятся - неподвижным электромагнитным эфиром, подчиняющимся уравнениям Максвелла. Такое представление об эфире близко современному понятию электромагнитного поля. Лоренц провёл чёткое различие между материей и эфиром: они не могут сообщать друг другу механическое движение («увлекаться»), их взаимодействие ограничено сферой электромагнетизма. Сила этого взаимодействия для случая точечного заряда носит имя Лоренца, хотя аналогичные выражения были ранее получены Клаузиусом и Хевисайдом из иных соображений. Одним из важных и много обсуждавшихся в своё время следствий немеханического характера воздействия, описываемого силой Лоренца, было нарушение ею ньютоновского принципа действия и противодействия. В теории Лоренца гипотеза увлечения эфира движущимся диэлектриком была заменена на предположение о поляризации молекул тела под действием электромагнитного поля (это осуществлялось введением соответствующей диэлектрической постоянной). Именно это поляризованное состояние переносится при движении объекта, что позволило объяснить появление в данном случае так называемого коэффициента увлечения Френеля, который обнаруживает себя, например, в знаменитом опыте Физо. Кроме того, в работах Лоренца (1904, 1909) содержалась первая чёткая и однозначная формулировка (в применении к классической электродинамике) того общего положения, которое известно ныне под названием калибровочной инвариантности и которое играет важную роль в современных физических теориях.

Подробности, касающиеся возникновения электронной теории Лоренца, её эволюции и отличия от теорий, выдвигавшихся другими исследователями (например, Лармором), можно найти в ряде специальных работ.

Применения: оптическая дисперсия и проводимость металлов

Применяя свою теорию к различным физическим ситуациям, Лоренц получил ряд значительных частных результатов. Так, ещё в первой работе по электронной теории (1892) учёный вывел закон Кулона, выражение для силы, действующей на проводник с током, и закон электромагнитной индукции. Здесь же он получил формулу Лоренца - Лоренца с помощью приёма, известного под названием сферы Лоренца. Для этого было рассчитано по отдельности поле внутри и вне воображаемой сферы, описанной вокруг молекулы, и впервые явным образом введено так называемое локальное поле, связанное с величиной поляризации на границе сферы. В статье «Оптические явления, обусловленные зарядом и массой иона» (нидерл. Optische verschijnselen die met de lading en de massa der ionen in verband staan, 1898) была в полном виде, близком к современному, изложена классическая электронная теория дисперсии. Основная идея состояла в том, что дисперсия есть результат взаимодействия света с колеблющимися дискретными зарядами - электронами (по первоначальной терминологии Лоренца - «ионами»). Записав уравнение движения электрона, на который действуют вынуждающая сила со стороны электромагнитного поля, возвращающая упругая сила и сила трения, обуславливающая поглощение, учёный пришёл к известной формуле дисперсии, задающей так называемую лоренцеву форму зависимости диэлектрической постоянной от частоты.

В серии работ, опубликованных в 1905 году, Лоренц развил электронную теорию проводимости металлов, основы которой были заложены в трудах Пауля Друде, Эдуарда Рикке и Дж. Дж. Томсона. Исходным пунктом было предположение о наличии большого количества свободных заряженных частиц (электронов), движущихся в промежутках между неподвижными атомами (ионами) металла. Голландский физик учёл распределение электронов в металле по скоростям (распределение Максвелла) и, применив статистические методы кинетической теории газов (кинетическое уравнение для функции распределения), вывел формулу для удельной электропроводности, а также дал анализ термоэлектрических явлений и получил отношение теплопроводности к электропроводности, согласующееся в целом с законом Видемана - Франца. Теория Лоренца имела большое историческое значение для развития теории металлов, а также для кинетической теории, представляя собой первое точное решение кинетической задачи такого рода. Вместе с тем она не могла обеспечить точное количественное согласие с экспериментальными данными, в частности не объясняла магнитные свойства металлов и малый вклад свободных электронов в удельную теплоёмкость металла. Причины этого состояли не только в пренебрежении колебаниями ионов кристаллической решётки, но и в принципиальных недостатках теории, которые были преодолены лишь после создания квантовой механики.

Применения: магнитооптика, эффект Зеемана и открытие электрона

Ещё одной областью, в которой электронная теория нашла успешное применение, стала магнитооптика. Лоренц дал трактовку таким явлениям, как эффект Фарадея (вращение плоскости поляризации в магнитном поле) и магнитооптический эффект Керра (изменение поляризации света, отражённого от намагниченной среды). Однако наиболее убедительным свидетельством в пользу электронной теории стало объяснение магнитного расщепления спектральных линий, известного как эффект Зеемана. Первые результаты экспериментов Питера Зеемана, наблюдавшего уширение D-линии спектра натрия в магнитном поле, были доложены Нидерландской академии наук 31 октября 1896 года. Уже несколько дней спустя Лоренц, присутствовавший на этом заседании, дал объяснение новому явлению и предсказал ряд его свойств. Он указал на характер поляризации краёв уширенной линии при наблюдении вдоль и поперёк магнитного поля, что было подтверждено Зееманом в течение ближайшего месяца. Другое предсказание касалось структуры уширенной линии, которая на самом деле должна представлять собой дублет (две линии) при продольном наблюдении и триплет (три линии) при поперечном. Применив более совершенное оборудование, в следующем году Зееман подтвердил и этот вывод теории. Рассуждения Лоренца основывались на разложении колебаний заряженной частицы («иона» по тогдашней терминологии учёного) вблизи положения равновесия на движение вдоль направления поля и движение в перпендикулярной плоскости. Продольные колебания, на которые магнитное поле не действует, приводят к появлению несмещённой линии излучения при поперечном наблюдении, тогда как колебания в перпендикулярной плоскости дают две линии, смещённые на величину eH/2mc, где H - напряжённость магнитного поля, e и m - заряд и масса «иона», c - скорость света в вакууме.

Из своих данных Зееман смог получить знак заряда «иона» (отрицательный) и отношение e/m, которое оказалось неожиданно большим и не позволяло ассоциировать «ион» с обычными ионами, свойства которых были известны из опытов по электролизу. Как выяснилось после экспериментов Дж. Дж. Томсона (1897), это отношение совпало с таковым для частиц в катодных лучах. Поскольку эти последние частицы вскоре получили название электронов, Лоренц с 1899 года в своих исследованиях стал использовать этот термин вместо слова «ион». Кроме того, он впервые оценил заряд и массу электрона по отдельности. Таким образом, результаты измерений расщепления спектральных линий и их теоретическая интерпретация дали первую оценку основных параметров электрона и способствовали принятию научным сообществом представлений об этих новых частицах. Иногда не без оснований утверждается, что Лоренц предсказал существование электрона. Хотя открытие эффекта Зеемана стало одним из высших достижений электронной теории, вскоре оно показало и её ограниченность. Уже в 1898 году были обнаружены отклонения от простой картины явления, построенной Лоренцем; новая ситуация получила название аномального (сложного) эффекта Зеемана. Учёный в течение многих лет пытался усовершенствовать свою теорию, чтобы объяснить новые данные, но потерпел неудачу. Загадка аномального эффекта Зеемана была разгадана только после открытия спина электрона и создания квантовой механики.

Награды и членства

Нобелевская премия по физике (1902)
Медаль Румфорда (1908)
Медаль Франклина (1917)
Медаль Копли (1918)
Орден Почётного легиона (1923)
Орден Оранских-Нассау (1925)
Иностранный член Лондонского королевского общества (1905), Парижской академии наук (1910), Королевского общества Эдинбурга (1920), Академии наук СССР (1925) и др.
Почётные докторские степени Высшей технической школы в Делфте (1918), Кембриджского (1923) и Парижского университетов, степень доктора медицины Лейденского университета (1925) и др.

Память

В 1925 году Нидерландская королевская академия наук учредила золотую медаль Лоренца, которая присуждается раз в четыре года за достижения в области теоретической физики.
Имя Лоренца носит система шлюзов (Lorentzsluizen), которая входит в комплекс сооружений дамбы Афслёйтдейк, отделяющей залив Зёйдерзе от Северного моря.
Именем Лоренца названы многочисленные объекты (улицы, площади, школы и так далее) в Нидерландах. В 1931 году в Арнеме, в парке Сонсбек (Sonsbeek), был открыт памятник Лоренцу работы скульптора Освальда Венкебаха (нидерл. Oswald Wenckebach). В Харлеме на площади Лоренца и в Лейдене у входа в Институт теоретической физики находятся бюсты учёного. На зданиях, связанных с его жизнью и деятельностью, расположены мемориальные доски.
В 1953 году, к столетнему юбилею знаменитого физика, была учреждена стипендия Лоренца для студентов из Арнема, обучающихся в голландских университетах. В Лейденском университете имя Лоренца носят институт теоретической физики (Instituut-Lorentz), почётная кафедра (Lorentz Chair), которую каждый год занимает кто-либо из видных физиков-теоретиков, и международный центр по проведению научных конференций.
Один из лунных кратеров назван именем Лоренца.