Как из оксида получить простое вещество. Оксиды: классификация, получение и химические свойства

1. Окисление простых веществ кислородом (сжигание простых веществ):

2 Mg + O 2 = 2М g О

4Р + 5 O 2 = 2Р 2 О 5 .

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды (Na 2 O 2 , K 2 O 2 ) .

Не окисляются кислородом воздуха благородные металлы, напрмер, А u , А g , Р t .

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O 2 = 2ZnO + 2SO 2

2 Н 2 S + 3O 2 = 2SO 2 + 2 Н 2 О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

С u (ОН) 2 С u О + Н 2 О

H 2 SO 3 SO 2 + H 2 O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО 3 СаО + СО 2

b (NO 3 ) 2 b О + 4 NO 2 + O 2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

1.1.7. Области применения оксидов.

Ряд природных минералов представляют собой оксиды (см. табл.7) и используются как рудное сырье для получения соответствующих металлов.

Например:

Боксит А1 2 O 3 · nH 2 O .

Гематит Fe 2 O 3 .

Магнетит F еО · Fe 2 O 3 .

Касситерит SnO 2 .

Пиролюзит М nO 2 .

Рутил Т i О 2 .

Минерал корунд (А1 2 O 3 ) обладающий большой твердостью, используют как абразивный материал. Его прозрачные, окрашенные в красный и синий цвет кристаллы представляют собой драгоценные камни - рубин и сапфир.

Негашеная известь (CaO ) , получаемая обжигом известняка (СаСО 3 ) , находит широкое применение в строительстве, сельском хозяйстве и как реагент для буровых растворов.

Оксиды железа (F е 2 О 3 , F е 3 О 4 ) используются при бурении нефтяных и газовых скважин в качестве утяжелителей и реагентов-нейтрализаторов сероводорода.

Оксид кремния (IV) (SiO 2 ) в виде кварцевого песка широко используется для производства стекла, цемента и эмалей, для пескоструйной обработки поверхности металлов, для гидропескоструйной перфорации и при гидроразрыве в нефтяных и газовых скважинах. В виде мельчайших сферических частиц (аэрозоля) находит применение в качестве эффективного пеногасителя буровых растворов и наполнителя при производстве резинотехнических изделий (белая резина).

Ряд оксидов (А1 2 O 3 , Cr 2 O 3 , V 2 O 5 , С u О, N О) используются в качестве катализаторов в современных химических производствах.

Являющийся одним из главных продуктов сгорания угля, нефти и нефтепродуктов углекислый газ (СО 2) при закачке в продуктивные пласты способствует повышению их нефтеотдачи. Используется СО 2 также для заполнения огнетушителей и газирования напитков.

Образующиеся при нарушении режимов сгорания топлива (NO, СО) или при сгорании сернистого топлива (SO 2) оксиды являются продуктами загрязняющими атмосферу. Современное производство, а также транспорт предусматривают строгий контроль за содержанием таких оксидов и их нейтрализацию,

Оксиды азота (NO, NO 2) и серы (SO 2 , SO 3) являются промежуточными продуктами в крупнотоннажных производствах азотной (НNO 3) и серной (Н 2 SО 4) кислот.

Оксиды хрома (Сг 2 O 3) и свинца (2РbО · РbО 2 - сурик) используются для производства антикоррозионных красочных составов.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1. Окисление простых веществ кислородом (сжигание простых веществ):

2Mg + O 2 = 2МgО

4Р + 5O 2 = 2Р 2 О 5 .

Метод не применим для получения оксидов щелочных металлов, т.к. при окислении щелочные металлы обычно дают не оксиды, а пероксиды (Na 2 O 2 , K 2 O 2) .

Не окисляются кислородом воздуха благородные металлы, напрмер, Аu, Аg, Рt.

2. Окисление сложных веществ (солей некоторых кислот и водородных соединений неметаллов):

2ZnS + 3O 2 = 2ZnO + 2SO 2

2Н 2 S + 3O 2 = 2SO 2 + 2Н 2 О

3. Разложение при нагревании гидроксидов (оснований и кислородсодержащих кислот):

Сu(ОН) 2 СuО + Н 2 О

H 2 SO 3 SO 2 + H 2 O

Нельзя пользоваться этим методом для получения оксидов щелочных металлов, так как разложение щелочей происходит при слишком высоких температурах.

4. Разложение некоторых солей кислородсодержащих кислот:

СаСО 3 СаО + СО 2

2Рb(NO 3) 2 2РbО + 4NO 2 + O 2

Следует иметь в виду, что соли щелочных металлов не разлагаются при нагревании с образованием оксидов.

1.1.7. Области применения оксидов.

Ряд природных минералов представляют собой оксиды (см. табл.7) и используются как рудное сырье для получения соответствующих металлов.

Например:

Боксит А1 2 O 3 · nH 2 O.

Гематит Fe 2 O 3 .

Магнетит FеО · Fe 2 O 3 .

Касситерит SnO 2 .

Пиролюзит МnO 2 .

Рутил ТiО 2 .

Минерал корунд (А1 2 O 3) обладающий большой твердостью, используют как абразивный материал. Его прозрачные, окрашенные в красный и синий цвет кристаллы представляют собой драгоценные камни – рубин и сапфир.

Негашеная известь (CaO) , получаемая обжигом известняка (СаСО 3) , находит широкое применение в строительстве, сельском хозяйстве и как реагент для буровых растворов.

Оксиды железа (Fе 2 О 3 , Fе 3 О 4) используются при бурении нефтяных и газовых скважин в качестве утяжелителей и реагентов-нейтрализаторов сероводорода.

Оксид кремния (IV) (SiO 2) в виде кварцевого песка широко используется для производства стекла, цемента и эмалей, для пескоструйной обработки поверхности металлов, для гидропескоструйной перфорации и при гидроразрыве в нефтяных и газовых скважинах. В виде мельчайших сферических частиц (аэрозоля) находит применение в качестве эффективного пеногасителя буровых растворов и наполнителя при производстве резинотехнических изделий (белая резина).

Ряд оксидов (А1 2 O 3 ,Cr 2 O 3 , V 2 O 5 , СuО, NО) используются в качестве катализаторов в современных химических производствах.

Являющийся одним из главных продуктов сгорания угля, нефти и нефтепродуктов углекислый газ (СО 2) при закачке в продуктивные пласты способствует повышению их нефтеотдачи. Используется СО 2 также для заполнения огнетушителей и газирования напитков.

Образующиеся при нарушении режимов сгорания топлива (NO, СО) или при сгорании сернистого топлива (SO 2) оксиды являются продуктами загрязняющими атмосферу. Современное производство, а также транспорт предусматривают строгий контроль за содержанием таких оксидов и их нейтрализацию,

Оксиды азота (NO, NO 2) и серы (SO 2 , SO 3) являются промежуточными продуктами в крупнотоннажных производствах азотной (НNO 3) и серной (Н 2 SО 4) кислот.

Оксиды хрома (Сг 2 O 3) и свинца (2РbО · РbО 2 – сурик) используются для производства антикоррозионных красочных составов.

Вопросы для самоконтроля по теме оксиды

1. На какие основные классы подразделяются все неорганические соединения?

2. Что такое оксиды?

3. Какие типы оксидов Вам известны?

4. Какие оксиды относятся к несолеобразующим (безразличным)?

5. Дайте определения: а) основной оксид, б) кислотный оксид,

в) амфотерный оксид.

6. Какие элементы образуют основные оксиды?

7. Какие элементы образуют кислотные оксиды?

8. Напишите формулы некоторых амфотерных оксидов.

9. Как составляются названия оксидов оксиды?

10. Назовите следующие оксиды: Cu 2 O, FeO, Al 2 O 3 , Mn 2 O 7 , SO 2 .

11. Изобразите формулы следующих оксидов графически: а) оксид натрия, б) оксид кальция, в) оксид алюминия, г) оксид серы (1V), д) оксид марганца (VII) . Укажите их характер.

12. Напишите формулы высших оксидов элементов II и III периодов. Назовите их. Как изменяется химический характер оксидов II и III периодов?

13. Каковы химические свойства а) основных оксидов, б) кислотных оксидов, г) амфотерных оксидов?

14. Какие оксиды реагируют с водой? Приведите примеры.

15. Докажите амфотерность следующих оксидов: а) оксид бериллия, б) оксид цинка, в) оксид олова (IV).

16. Какие способы получения оксидов Вам известны?

17. Напишите уравнения реакций получения всеми известными Вам способами следующих оксидов: а) оксид цинка, б) оксид меди (II), в) оксид кремния (1V).

18. Назовите некоторые из областей применения оксидов.

1.2. Основания

Оcнованиями называются химические вещества, распадающиеся (диссоциирующие) в водном растворе (или в расплаве) на положительно заряженные ионы металла и отрицательно заряженные ионы гидроксила (определение Аррениуса):

гидроксид натрия катион натрия гидроксид-ион

Основаниями являются сложные вещества, образующиеся при гидратации основных оксидов.

Например:

Na 2 O + H 2 O = NaOH – гидроксид натрия

BaO + H 2 O = Ва(ОН) 2 – гидроксид бария

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых — кислород со степенью окисления -2. При этом кислород связан только с менее электроотрицательным элементом.

В зависимости от второго элемента оксиды проявляют разные химические свойства. В школьном курсе оксиды традиционно делят на солеобразующие и несолеобразующие. Некоторые оксиды относят к солеобразным (двойным).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления.

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, обладающие характерными основными свойствами. К ним относят оксиды, образованные атомами металлов со степень окисления +1 и +2.

Кислотные оксиды — это оксиды, характеризующиеся кислотными свойствами. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7, а также атомами неметаллов.

Амфотерные оксиды — это оксиды, характеризующиеся и основными, и кислотными свойствами. Это оксиды металлов со степенью окисления +3 и +4, а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO.

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N 2 O и SiO.

Классификация оксидов

Получение оксидов

Общие способы получения оксидов:

1. Взаимодействие простых веществ с кислородом :

1.1. Окисление металлов : большинство металлов окисляются кислородом до оксидов с устойчивыми степенями окисления.

Например , алюминий взаимодействует с кислородом с образованием оксида:

4Al + 3O 2 → 2Al 2 O 3

Не взаимодействуют с кислородом золото, платина, палладий .

Натрий при окислении кислородом воздуха образует преимущественно пероксид Na 2 O 2 ,

2Na + O 2 → 2Na 2 O 2

Калий, цезий, рубидий образуют преимущественно пероксиды состава MeO 2:

K + O 2 → KO 2

Примечания : металлы с переменной степенью окисления окисляются кислородом воздуха, как правило, до промежуточной степени окисления (+3):

4Fe + 3O 2 → 2Fe 2 O 3

4Cr + 3O 2 → 2Cr 2 O 3

Железо также горит с образованием железной окалины — оксида железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

1.2. Окисление простых веществ-неметаллов .

Как правило, при окислении неметаллов образуется оксид неметалла с высшей степенью окисления, если кислород в избытке, или оксид неметалла с промежуточной степенью окисления, если кислород в недостатке.

Например , фосфор окисляется избытком кислорода до оксида фосфора (V), а под действием недостатка кислорода до оксида фосфора (III):

4P + 5O 2(изб.) → 2P 2 O 5

4P + 3O 2(нед.) → 2P 2 O 3

Но есть некоторые исключения .

Например , сера сгорает только до оксида серы (IV):

S + O 2 → SO 2

Оксид серы (VI) можно получить только окислением оксида серы (IV) в жестких условиях в присутствии катализатора:

2SO 2 + O 2 = 2SO 3

Азот окисляется кислородом только при очень высокой температуре (около 2000 о С), либо под действием электрического разряда, и только до оксида азота (II):

N 2 + O 2 = 2NO

Не окисляется кислородом фтор F 2 (сам фтор окисляет кислород). Не взаимодействуют с кислородом прочие галогены (хлор Cl 2 , бром и др.), инертные газы (гелий He, неон, аргон, криптон).

2. Окисление сложных веществ (бинарных соединений): сульфидов, гидридов, фосфидов и т.д.

При окислении кислородом сложных веществ, состоящих, как правило, из двух элементов, образуется смесь оксидов этих элементов в устойчивых степенях окисления.

Например , при сжигании пирита FeS 2 образуются оксид железа (III) и оксид серы (IV):

4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

Сероводород горит с образованием оксида серы (IV) при избытке кислорода и с образованием серы при недостатке кислорода:

2H 2 S + 3O 2(изб.) → 2H 2 O + 2SO 2

2H 2 S + O 2(нед.) → 2H 2 O + 2S

А вот аммиак горит с образованием простого вещества N 2 , т.к. азот реагирует с кислородом только в жестких условиях:

4NH 3 + 3O 2 →2N 2 + 6H 2 O

А вот в присутствии катализатора аммиак окисляется кислородом до оксида азота (II):

4NH 3 + 5O 2 → 4NO + 6H 2 O

3. Разложение гидроксидов. Оксиды можно получить также из гидроксидов — кислот или оснований. Некоторые гидроксиды неустойчивы, и самопроизвольную распадаются на оксид и воду; для разложения некоторых других (как правило, нерастворимых в воде) гидроксидов необходимо их нагревать (прокаливать).

гидроксид → оксид + вода

Самопроизвольно разлагаются в водном растворе угольная кислота, сернистая кислота, гидроксид аммония, гидроксиды серебра (I), меди (I):

H 2 CO 3 → H 2 O + CO 2

H 2 SO 3 → H 2 O + SO 2

NH 4 OH → NH 3 + H2O

2AgOH → Ag 2 O + H 2 O

2CuOH → Cu 2 O + H 2 O

При нагревании разлагаются на оксиды большинство нерастворимых гидроксидов — кремниевая кислота, гидроксиды тяжелых металлов — гидроксид железа (III) и др.:

H 2 SiO 3 → H 2 O + SiO 2

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

4. Еще один способ получения оксидов — разложение сложных соединений — солей .

Например , нерастворимые карбонаты и карбонат лития при нагревании разлагаются на оксиды:

Li 2 CO 3 → H 2 O + Li 2 O

CaCO 3 → CaO + CO 2

Соли, образованные сильными кислотами-окислителями (нитраты, сульфаты, перхлораты и др.), при нагревании, как правило, разлагаются с с изменением степени окисления:

2Zn(NO 3) 2 → 2ZnO + 4NO 2 + O 2

Более подробно про разложение нитратов можно прочитать в статье .

Химические свойства оксидов

Значительная часть химических свойств оксидов описывается схемой взаимосвязи основных классов неорганических веществ.

Химические свойства основных оксидов

Подробно про химические свойства оксидов можно прочитать в соответствующих статьях:

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.