Новые технологии по фэмп в доу. Обобщение педагогического опыта «Игровые технологии в формировании элементарных математических представлений у дошкольников

Тарасюк С.К.

КГУ «Средняя школа № 26»

акимата города Усть-Каменогорска

воспитатель мини-центра

Формирование элементарных математических компетенций с помощью игровых технологий.

Введение

Понятие «развитие математических способностей» является довольно сложным, комплексным и многоаспектным. Оно состоит из взаимосвязанных и взаимообусловленных представлений о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования у ребенка «житейских» и «научных» понятий.

Под математическим развитием дошкольников понимаются качественные изменения в познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Математическое развитие - значимый компонент в формировании «картины мира» ребенка.

Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.

В игре ребенок приобретает новые знания, умения, навыки. Дидактические игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей.

Работа в детском саду требует от воспитателя, педагога-психолога постановку таких педагогических задач, как: развитие у детей памяти, внимания, мышления, воображения, так как без этих качеств немыслимо развитие ребенка.

Цель исследования: изучения и анализ эффективности использования дидактических игр в процессе формирования математических знаний дошкольника.

Объект исследования : игровая деятельность дошкольников.

Предмет исследования : процесс формирования математическихспособностей с помощью дидактических игр.

Гипотеза исследования : использование различных видов дидактических игр, может способствовать формированию и развитию математических способностей дошкольников.

Цель, предмет и гипотеза исследования определяют постановку следующих задач:

Изучение и анализ психолого-педагогической и методической литературы по теме исследования.

Анализ особенностей развития и сформированности математическихспособностей дошкольников.

Отбор и обоснование дидактических игр по формированию математических способностей.

Проведение опытно-экспериментальной работы и исследование специфики дидактических игр в процессе формирования математических знаний.

Методы исследования:

Теоретический анализ психолого-педагогической и методической литературы,

Педагогическое наблюдение за деятельностью дошкольников,

Изучение продуктов деятельности дошкольников,

Проведение констатирующего и обучающего экспериментов.

1. Дидактическая игра как средство формирования элементарных математических представлений

1.1 Специфика развития математических способностей

В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.

Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.

Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.

Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А.Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):

1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.

1.2 Дидактическая игра как метод обучения

Н.А. Виноградова отметила, что вследствие возрастных особенностей детей дошкольного возраста в целях их обучения следует широко использовать дидактические игры, настольно-печатные игры, игры с предметами (сюжетно-дидактические и игры-инсценирования), словесные и игровые приемы, дидактический материал.

У истоков разработки современных дидактических игр и материалов стоят М. Монтессори и Ф. Фребель. М. Монтессори создала дидактический материл, построенный по принципу автодидактизма, который служил основой самовоспитания и самообучения детей на занятиях в детском саду с использованием специального дидактического материала («даров Фребеля»), систему дидактических игр по сенсорному воспитанию и развитию в продуктивной деятельности (лепка, рисование, складывание и вырезание из бумаги, плетение, вышивание).

По замечанию А.К. Бондаренко, требование дидактики помогают отделить от общего хода воспитательного процесса то, что в образовательной работе связано с обучением. По классификации А.К. Бондаренко дидактические средства образовательной работы делятся на две группы: первая группа характеризуется тем, что обучение ведет взрослый, во второй группе обучающее воздействие передается дидактическому материалу, дидактической игре, построенной с учетом образовательных задач.

Л.Н. Толстой, К.Д. Ушинский, в связи с критикой занятий по фребелевской системе, говорили, что там, где в ребенке видят лишь объект воздействия, а не существо, способное в меру своих детских возможностей мыслить самостоятельно, иметь свои суждения, способное что-то выполнить своими силами, воздействие взрослого теряет свою ценность; там же, где эти способности ребенка принимаются во внимание и на них опирается взрослый, эффект получается иной.

В дидактической игре наиболее популярное средство дошкольного обучения, ребенок учится счету, речи и т.п., выполняя правила игры, игровые действия. В дидактических играх есть возможность формировать новые знания, знакомить детей со способами действий, каждая из игр решает конкретную дидактическую задачу по совершенствованию представлений детей.

Дидактические игры включаются непосредственно в содержание занятий как одно из средств реализации программных задач. Место дидактической игры в структуре занятия определяется возрастом детей, целью, назначением, содержанием занятия. Она может быть использована в качестве учебного задания, упражнения, направленного на выполнение конкретной задачи формирования представлений.

Дидактические игры оправдывают себя в решении задач индивидуальной работы с детьми или с подгруппой в свободное от занятий время.

По словам Сорокиной А.И. ценность игры как воспитательного средства заключается в том, что, оказывая воздействие на каждого из детей в игре, воспитатель формирует не только привычки и нормы поведения детей в разных условиях и вне игры.

Игра является и средством первоначального обучения, усвоения детьми и науки до науки. Руководя игрой, педагог воспитывает активное стремление детей что-то узнавать, искать, проявлять усилие и находить, обогащает духовный мир детей.

По словам Сорокиной А.И., дидактическая игра - это игра познавательная, направленная на расширение, усугубление, систематизацию представлений детей об окружающем, воспитание познавательных интересов, развитие познавательных способностей. По словам Усовой А.П., дидактические игры, игровые задания и приемы позволяют повысить восприимчивость детей, разнообразить учебную деятельность ребенка, вносят занимательность.

Теорию и практику дидактической игры разрабатывали А.П. Усова, Е.И. Радина, Ф.Н. Блехер, Б.И. Хачапуридзе, З.М. Богуславская, Е.Ф. Иваницкая, А.И. Сорокина, Е.И. Удальцева, В.Н. Аванесова, А.Н. Бондаренко, Л.А. Венгер, установившие взаимосвязь обучения и игры, структуру игрового процесса, основные формы и методы руководства.

Дидактическая игра ценна только в том случае, если она содействует лучшему пониманию сущности вопроса, уточнению и формированию знаний детей. Таким образом, дидактическая игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают и явления окружающей действительности и познают мир. Благодаря играм удается сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. Вначале увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес к самому предмету обучения.

1.3 Современные требования к математическому развитию детей дошкольного возраста

Дети активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.

Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно. Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.

Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.

Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: "Логические кубики", "Уголки", "Составь куб" и другие; Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.

Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:

Оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;

Сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;

Проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;

Рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.

СВОЙСТВА. Представления.

Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий) ; по массе (тяжёлый, лёгкий); по глубине(глубокий, мелкий); по объёму (большой, маленький).

Геометрические фигуры и тела: круг, квадрат, треугольник, овал, прямоугольник, шар, куб, цилиндр.

Структурные элементы геометрических фигур: сторона, угол, их количество.

Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин, форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.

Связи между изменениями(сменой) основания классификации (группировки) и количеством полученных групп, объектов в них.

Познавательные и речевые умения. Целенаправленно зрительно и осязательно двигательным способом обследовать геометрические фигуры, предметы с целью определения формы. Попарно сравнивать геометрические фигуры с целью выделения структурных элементов: углов, сторон, их количества. Самостоятельно находить и применять способ определения формы, размера предметов, геометрических фигур. Самостоятельно называть свойства предметов, геометрических фигур; выражать в речи способ определения таких свойств, как форма, размер; группировать их по признакам.

ОТНОШЕНИЯ. Представления.

Отношения групп предметов: по количеству, по размеру и т.д. Последовательное увеличение (уменьшение) 3-5 предметов.

Пространственные отношения в парных направлениях от себя, от других объектов, в движении в указанном направлении; временные - в последовательности частей суток, настоящем, прошедшем и будущем времени: сегодня, вчера и завтра.

Обобщение 3-5 предметов, звуков, движение по свойствам - размеру, количеству, форме и др.

Познавательные и речевые умения. Сравнивать предметы на глаз, путём наложения, приложения. Выражать в речи количественные, пространственные, временные отношения между предметами, пояснить последовательное увеличение и уменьшение их по количеству, размеру.

ЧИСЛА И ЦИФРЫ. Представления.

Обозначение количества числом и цифрой в пределах 10. Количественное и порядковое назначение числа. Обобщение групп предметов, звуков и движений по числу. Связи между числом, цифрой и количеством: чем больше предметов, тем большим числом они обозначаются; сосчитывание как однородных, так и разнородных предметов, в разном расположении и т.д.

Познавательные и речевые умения.

Сосчитывать, сравнивать по признакам, количеству и числу; воспроизводить количество по образцу и числу; отсчитывать.

Называть числа, согласовывать слова-числительные с существительными в роде, числе, падеже.

Отражать в речи способ практического действия. Отвечать на вопросы: "Как ты узнал, сколько всего?"; "Что ты узнаешь, если сосчитаешь?"

СОХРАНЕНИЕ (НЕИЗМЕННОСТЬ) КОЛИЧЕСТВА И ВЕЛИЧИН. Представления.

Независимость количества числа предметов от их расположения в пространстве, сгруппированности.

Неизменность размеров, объёма жидких и сыпучих тел, отсутствие или наличие зависимости от формы и размера сосуда.

Обобщение по размеру, числу, по уровню наполненности одинаковых по форме сосудов и т.д.

Познавательные и речевые умения зрительно воспринимать величины, количества, свойства предметов, сосчитывать, сравнивать с целью доказательства равенства или неравенства.

Выражать в речи расположение предметов в пространстве. Пользоваться предлогами и наречиями: справа, сверху, от..., рядом с..., около, в, на, за и др.; пояснить способ сопоставления, обнаружения соответствия.

АЛГОРИТМЫ. Представления.

Обозначение последовательности и этапности учебно-игрового действия, зависимости порядка следования объектов символом (стрелкой). Использование простейших алгоритмов разных типов (линейных и разветвленных).

Познавательные и речевые умения. Зрительно воспринимать и понимать последовательность развития, выполнения действия, ориентируясь на направление, указанное стрелкой.

Отражать в речи порядок выполнения действий:

Сначала;

Если..., то.

Пятилетки проявляют высокую познавательную активность, они буквально забрасывают старших разнообразными вопросами об окружающем мире. Исследуя предметы, их свойства и качества, дети пользуются разнообразными обследовательскими действиями: умеют группировать объекты по цвету, форме, величине, назначению, количеству; умеют составить целое из 4-6 частей; осваивают счёт.

Дети радуются своим достижениям и новым возможностям. Они нацелены на творческие проявления и доброжелательное отношение к окружающим. Индивидуальный подход воспитателя поможет каждому ребёнку проявить свои умения и склонности в разнообразной увлекательной деятельности.

2. Экспериментальная работа по формированию элементарных математических представлений у детей 4-5 лет в дидактических играх

2.1 Роль дидактических игр

Дидактическая игра как самостоятельная игровая деятельность основана на осознанности этого процесса. Самостоятельная игровая деятельность осуществляется лишь в том случае, если дети проявляют интерес к игре, ее правилам и действиям, если эти правила ими усвоены. Как долго может интересовать ребенка игра, если ее правила и содержание хорошо ему известны? Вот проблема, которую необходимо решать почти непосредственно в процессе работы. Дети любят игры, хорошо знакомые, с удовольствием играют в них.

Дидактическая игра одновременно является формой обучения, наиболее характерной для дошкольников. В дидактической игре содержатся все структурные элементы (части), характерные для игровой деятельности детей: замысел (задача), содержание, игровые действия, правила, результат. Но проявляются они в несколько иной форме и обусловлены особой ролью дидактической игры в воспитании и обучениидетей дошкольного возраста.

Наличие дидактической задачи подчёркивает обучающий характер игры, направленность её содержания на развитие познавательной деятельности детей. В отличие от прямой постановки задачи на занятиях в дидактической игре онавозникает и как игровая задача самого ребёнка. Важное значение дидактической игры состоит в том, что она развивает самостоятельность и активность мышления и речи у детей.

В каждой игре воспитатель ставит конкретную задачу учить детей рассказывать о предмете, развиватьсвязанную речь, освоить счет. Игровая задача иногда заложена в самом названии игры: «Узнаем, что в чудесном мешочке», «Кто в каком домике живёт» и т.п. Интерес к ней, стремление выполнить её активизируется игровыми действиями.Чем они разнообразнее и содержательнее, тем интереснее для детей сама игра и тем успешнее решаются познавательные и игровые задачи.

Игровым действиям детей нужно учить. Лишь при этом условии игра приобретает обучающий характер и становится содержательной. Обучение игровым действиям осуществляется через пробный ход в игре, показ самого действия. В играхдошкольников игровые действия не всегда одинаковы для всех участников. При распределении детей на группы или при наличие ролей игровые действия различны. Различен и объём игровых действий. В младших группах - это чаще всего одно-два повторяющихся действия, в старших уже пять-шесть. В играх спортивного характера игровые действия старших дошкольников с самого начала расчленены во времени и осуществляются последовательно. Позднее, овладев ими, дети действуют целенаправленно, чётко, быстро, согласованно и в уже отобранномтемпе решают игровую задачу.

Какое же значение имеет игра? В процессе игры у детей вырабатывается привычка сосредотачиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлёкшись, дети не замечают, что учатся: познают, запоминают новое, ориентируются в необычных ситуациях, пополняют запаспредставлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием, прилагают все усилия, чтобы не подвести товарищей по игре.

В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.

В отличие от других видов деятельностиигра содержит цель в самой себе; посторонних и отделенных задач в игре ребенок не ставит и не решает. Игра часто и определяется как деятельность, которая выполняется ради самой себя, посторонних целей и задач не преследует.

Для ребят дошкольного возраста игра имеет исключительное значение: игра для них - учеба, игра для них - труд, игра для них - серьезная форма воспитания. Иградля дошкольников - способ познания окружающего мира. Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребенка: на чувства, на сознание, на волю и на поведение в целом.

Однако если для воспитанника цель - в самой игре, то для взрослого, организующего игру, есть и другая цель - развитие детей, усвоение ими определенных знаний, формирование умений, выработка тех или иных качеств личности. В этом, между прочим, одно из основныхпротиворечий игры как средства воспитания: с одной стороны - отсутствие цели в игре, а с другой - игра есть средство целенаправленного формирования личности.

В наибольшей степени это проявляется в так называемых дидактических играх. Характер разрешения этого противоречия и определяет воспитательную ценность игры: если достижение дидактической цели будет осуществлено в игре как деятельности, заключающей цель в самой себе, то воспитательная ее ценность будет наиболее значимой. Если же дидактическая задача решается в игровых действиях, целью которых и для их участников является этой дидактической задачи, то воспитательная ценность игры будет минимальной.

Игра ценна только в том случае, когда она содействует лучшему пониманию математической сущности вопроса, уточнению и формированию математических знаний учащихся. Дидактические игры и игровые упражнения стимулируют общение, поскольку в процессе проведения этих игр взаимоотношения между детьми, ребенком и родителем, ребенком и педагогом начинают носить более непринуждённый и эмоциональный характер.

Свободное и добровольное включение детей в игру: не навязывание игры, а вовлечение в нее детей. Дети должны хорошо понимать смысл и содержание игры, ее правила, идеюкаждой игровой роли. Смысл игровых действий должен совпадать со смыслом и содержанием поведения в реальных ситуациях с тем, чтобы основной смысл игровых действий переносился в реальную жизнедеятельность. В игре должны руководствоваться принятыми в обществе нормами нравственности, основанными на гуманизме, общечеловеческих ценностях. В игре не должно унижаться достоинство ее участников, в том числе и проигравших.

Таким образом, дидактическая игра - это целенаправленная творческаядеятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.

2.2 Методика обучения основам математики посредством дидактических игр и задач для дошкольников

В старшем дошкольном возрасте дети проявляют повышенный интерес к знаковым системам, моделированию, выполнению арифметических действий с числами, к самостоятельности в решении творческих задач и оценке результата. Освоение детьми заданного в программе содержания осуществляется не изолированно, а во взаимосвязи и в контексте других содержательных видов деятельности, таких как природоведческая, изобразительная, конструктивная и т.д.

Программа предусматривает углубление представлений детей о свойствах и отношениях объектов, в основном через игры на классификацию и сериацию, практическую деятельность, направленную на воссоздание, преобразование форм предметов и геометрических фигур. Дети не только пользуются известными им знаками и символами, но и находят способы условного обозначения новых, неизвестных им ранее параметров величин,геометрических фигур, временных и пространственных отношений и т.д.

Отношения равенства и неравенства дети обозначают знаками =, *, зависимости между величинами, числами также выражают в знаках «больше», «меньше» (,

В ходе освоения чисел педагог способствует осмыслению детьми последовательности чисел и места каждого из них в натуральном ряду. Это выражено в умении детей образовать число больше или меньше заданного, доказать равенство или неравенство группы предметов по числу, находить пропущенное число. Измерение (а не только сосчитывание) рассматривается при этом ведущейпрактической деятельностью.

Предел освоения детьми чисел (до 10, 20) следует определять в зависимости от возможности освоения детьми предлагаемого им содержания, используемых методик обучения. При этом следует ориентироваться на развитие у детей числовых представлений, а не на формальное усвоение чисел и арифметических действий с ними.

Освоение необходимой для выражения отношений, зависимостей терминологии происходит в интересных ребенку играх, творческих заданиях, практических упражнениях. В условиях игры, на занятиях педагог организует живое, непринужденное общение с детьми, исключающее навязчивые повторения.

В старшем дошкольном возрасте освоение математического содержания направлено прежде всего на развитие познавательных и творческих способностей детей: умение обобщать, сравнивать, выявлять и устанавливать закономерности, связи и отношения, решать проблемы, выдвигать их, предвидеть результат и ход решения творческой задачи. Для этого следует вовлечь детей в содержательную, активную и развивающую деятельность на занятиях, в самостоятельную игровую и практическую деятельность вне занятий, основанную на самоконтроле и самооценке.

Задачи математического и личностного развития детей старшего дошкольного возраста состоят в воспитании у них умений: устанавливать связь между целью (задачей), осуществлением (процессом) какого-либо действия и результатом; строить простые высказывания о сущности явления, свойства, отношения и т.д.; находить нужный способ выполнения задания, ведущий к результату наиболее экономным путем; активно включаться в коллективную игру, помогать сверстнику в случае необходимости; свободно разговаривать со взрослыми по поводу игр, практических заданий, упражнений, в том числе и придуманных детьми.

Задачи на смекалку, головоломки, занимательные игры, вызывают у дошкольников большой интерес. Дети могут, не отвлекаясь, подолгу упражняться в преобразовании фигур, перекладывая палочки или другие предметы по заданному образцу, по собственному замыслу. В таких занятиях формируются важные качества личности ребенка: самостоятельность, наблюдательность, находчивость, сообразительность, вырабатывается усидчивость, развиваются конструктивные умения.

Занимательный математический материал рассматривается и как одно из средств, обеспечивающих рациональную взаимосвязь работы воспитателя на занятиях и вне их. Такой материал можно включать в основную часть занятия по формированию элементарных математических представлений или использовать в конце его, когда наблюдается снижение умственной активности детей. Так, головоломки целесообразны при закреплении представлений о геометрических фигурах, их преобразовании. Загадки, задачи-шутки уместны в ходе обучения решению арифметических задач, действий над числами, при формировании представлений о времени. В самом начале занятия в старшей и подготовительной к школе группах оправдывает себя использование несложных занимательных задач в качестве «умственной гимнастики».

Занимательные математические игры воспитатель может использовать и для организации самостоятельной деятельности детей. В ходе решения задач на смекалку, головоломок дети учатся планировать свои действия, обдумывать их, искать ответ, догадываться о результате, проявляя при этом творчество. Такая работа активизирует мыслительную деятельность ребенка, развивает у него качества, необходимые для профессионального мастерства, в какой бы сфере потом он ни трудился.

Любая математическая задача на смекалку, для какого бы возраста она ни предназначалась, несет в себе определенную умственную нагрузку, которая чаще всего замаскирована занимательным сюжетом, внешними данными, условием задачи и т. д. Умственная задача: составить фигуру или видоизменить ее, найти путь решения, отгадать число - реализуется средствами игры в игровых действиях. Смекалка, находчивость, инициатива проявляются в активной умственной деятельности, основанной на непосредственном интересе.

Занимательность математическому материалу придают игровые элементы, содержащиеся в каждой задаче, логическом упражнении, развлечении, будь то шахматы или самая элементарная головоломка. Например,необычность постановки вопроса: «Как с помощью двух палочек сложить на столе квадрат?» - заставляет ребенка задуматься и в поисках ответа втянуться в игру воображения. Многообразие занимательного материала - игр, задач, головоломок - дает основание для их классификации, хотя довольно трудно разбить на группы столь разнообразный материал, созданный математиками, педагогами, методистами. Классифицировать его можно по разным признакам: по содержанию и значению, характеру мыслительных операций, а также по направленности на развитие тех или иных умений.

Исходя из логики действий, осуществляемых тем, кто решает задачу, разнообразный элементарный занимательный материал можно классифицировать, выделив в нем условно 3 основные группы:

Развлечения,

Математические игры и задачи,

Развивающие (дидактические) игры и упражнения. Основанием для выделения таких групп является характер и назначение материала того или иного вида.

На занятиях по математике в детском саду воспитатели могут использовать математические развлечения: головоломки, ребусы, лабиринты, игры на пространственное преобразование и др. (Приложение). Они интересны по содержанию, занимательны по форме, отличаются необычностью решения, парадоксальностью результата. Например, головоломки могут быть арифметическими (угадывание чисел), геометрическими (разрезание бумаги, сгибание проволоки), буквенными (анаграммы, кроссворды, шарады). Есть головоломки, рассчитанные только на игру фантазии и воображения.

В детском саду используются математические игры. Это игры, в которых смоделированы математические построения, отношения, закономерности. Для нахождения ответа (решения), как правило, необходим предварительный анализ условий, правил, содержания игры или задачи. По ходу решения требуется применение математических методов и умозаключений.

Разновидностью математических игр и задач являются логические игры, задачи, упражнения. Они направленына тренировку мышления при выполнении логических операций и действий: «Найди недостающую фигуру», «Чем отличаются?», «Мельница», «Лиса и гуси», «По четыре» и др. Игры «Выращивание дерева», «Чудо-мешочек», «Вычислительная машина» предполагают строгую логику действий.

Математические развлечения могут быть представлены разного рода задачами, упражнениями, играми на пространственные преобразования, моделирование, воссоздание фигур-силуэтов, образных изображений из определенных частей. Они увлекательны для детей. Решение осуществляется путем практических действий в составлении, подборе, раскладывании по правилам и условиям. Это игры, в которых из специально подобранного набора фигур надо составить фигуру-силуэт, используя весь предложенный набор фигур. В одних играх составляются плоские фигуры: «Танграм», головоломка «Пифагор», «Колумбово яйцо», «Волшебный круг», «Пентамино». В других требуется составить объемную фигуру: «Кубики для всех», «Куб-хамелеон», «Собери призму» и др.

Математический материал, используемый на занятиях с дошкольниками, очень разнообразен по характеру, тематике, способу решения. Самые простые задачи, упражнения, требующие проявления находчивости, смекалки, оригинальности мышления, умения критически оценить условия, являются эффективным средством обучения детей дошкольного возраста на занятиях математикой, развития их самостоятельных игр, развлечений, во вне учебное время.

Обучение математике детей дошкольного возраста немыслимо без использования занимательных игр, задач, развлечений. При этом роль несложного занимательного математического материала определяется с учетом возрастных возможностей детей и задач всестороннего развития и воспитания: активизировать умственную деятельность, заинтересовывать математическим материалом, увлекать и развлекать детей, развивать ум, расширять, углублять математические представления, закреплять полученные знания и умения, упражнять в применении их в других видах деятельности, новой обстановке.

Используется занимательный материал (дидактические игры) и с целью формирования представлений, ознакомления с новыми сведениями. При этом непременным условием является применение системы игр и упражнений.

Дети очень активны в восприятии задач-шуток,головоломок, логических упражнений. Они настойчиво ищут ход решения, который ведет к результату. В том случае, когда занимательная задача доступна ребенку, у него складывается положительное эмоциональное отношение к ней, что и стимулирует мыслительную активность. Ребенку интересна конечная цель: сложить, найти нужную фигуру, преобразовать, - которая увлекает его.

При этом дети пользуются двумя видами поисковых проб: практическими (действия в перекладывании, подборе) и мыслительными (обдумывание хода, предугадывание результата, предположение решения). В ходе поиска, выдвижения гипотез, решения дети проявляют и догадку, т.е. как бы внезапно приходят к правильному решению. Но эта внезапность, безусловно, кажущаяся. На самом деле они находят путь, способ решения лишь на основании практических действий и обдумывания. При этом дошкольникам свойственно догадываться только о какой-то части решения, каком-то этапе. Момент появления догадки дети, как правило, не объясняют: «Я подумал и решил. Так надо сделать».

В процессе решения задач на смекалку обдумывание детьми хода поиска результата предшествует практическим действиям. Показателем рациональности поиска является и уровень самостоятельности его, характер производимых проб. Анализ соотношения проб показывает, что практические пробы свойственны, как правило, детям средней и старшей групп. Дети подготовительной группы осуществляют поиск или путем сочетания мысленных и практических проб, или только мысленно. Все это дает основание для утверждения о возможности приобщения дошкольников в ходе решения занимательных задач к элементам творческой деятельности. У детей формируется умение вести поиск решения путем предположений, осуществлять разные по характеру пробы, догадываться.

Из всего многообразия занимательного математическогоматериала в дошкольном возрасте наибольшее применение находят дидактические игры. Основное назначение их - обеспечить упражняемость детей в различении, выделении, назывании множеств предметов, чисел, геометрических фигур, направлений и т. д. В дидактических играх есть возможность формировать новые знания, знакомить детей со способами действий. Каждая из игр решает конкретную задачу совершенствования математических (количественных, пространственных, временных) представлений детей.

Дидактические игры включаются непосредственно в содержание занятий как одно из средств реализации программных задач. Место дидактической игры в структуре занятия по формированию элементарных математических представлений определяется возрастом детей, целью, назначением, содержанием занятия. Она может быть использована в качестве учебного задания, упражнения, направленного на выполнение конкретной задачи формирования представлений. В младшей группе, особенно в начале года, все занятие должно быть проведено в форме игры. Дидактические игры уместны и в конце занятия с целью воспроизведения, закрепления ранее изученного. Так, в средней группе на занятия по формированию элементарных математических представлений после ряда упражнений на закрепление названий, основных свойств (наличие сторон, углов) геометрических фигур может быть использована игра. (Приложение)

В формировании у детей математических представлений широко используются занимательные по форме и содержанию разнообразные дидактические игровые упражнения. Они отличаются от типичных учебных заданий и упражнений необычностью постановки задачи (найти, догадаться), неожиданностью преподнесения ее от имени какого-либо литературного сказочного героя (Буратино, Чебурашки). Игровые упражнения следует отличать от дидактической игры по структуре, назначению, уровню детской самостоятельности, роли педагога. Они, как правило, не включают в себя все структурные элементы дидактической игры (дидактическая задача, правила, игровые действия). Назначение их - упражнять детей с целью выработкиумений, навыков.

Часто в практике обучения дошкольников дидактическая игра приобретает форму игрового упражнения. В этом случае игровые действия детей, результаты их направляются и контролируются педагогом. Так, в старшей группе с целью упражнения детей в группировке геометрических фигур проводится упражнение «Помоги Чебурашке найти и исправить ошибку». Детям предлагается рассмотреть, как геометрические фигуры расположены, в какие группы, и по какому признакуобъединены, заметить ошибку, исправить и объяснить. Ответ адресовать Чебурашке. Ошибка может состоять в том, что в группе квадратов находится треугольник, в группе фигур синего цвета - красная и т.д.

Таким образом, дидактические игры и игровые упражнения математического содержания - наиболее известные и часто применяемые в современной практике дошкольного воспитания виды занимательного математического материала. В процессе обучения дошкольников математике игра непосредственновключается в занятие, являясь средством формирования новых знаний, расширения, уточнения, закрепления учебного материала. Дидактические игры оправдывают себя в решении задач индивидуальной работы с детьми, а также проводятся со всеми детьми или с подгруппой в свободное от занятий время.

В комплексном подходе к воспитанию и обучению дошкольников в современной дидактике немаловажная роль принадлежит занимательным развивающим играм, задачам, развлечениям. Они интересны для детей, эмоционально захватывают их. А процесс решения, поиска ответа, основанный на интересе к задаче, невозможен без активной работы мысли. Этим положением и объясняется значение занимательных задач в умственном и всестороннем развитии детей. В ходе игр и упражнений с занимательным математическим материалом дети овладевают умением вести поиск решения самостоятельно. Воспитатель вооружает детей лишь схемой и направлением анализа занимательной задачи, приводящего в конечном результате к решению (правильному или ошибочному). Систематическое упражнение в решении задач таким способом развивает умственную активность, самостоятельность мысли, творческое отношение к учебной задаче, инициативу.

Решение разного рода нестандартных задач в дошкольном возрасте способствует формированию и совершенствованию общих умственных способностей: логика мысли, рассуждений и действий, гибкости мыслительного процесса, смекалки и сообразительности, пространственных представлений. Особо важным следует считать развитие у детей умения догадываться о решении на определенном этапе анализа занимательной задачи, поисковых действий практического и мыслительного характера. Догадка в этом случае свидетельствует о глубине понимания задачи, высоком уровне поисковых действий, мобилизации прошлого опыта, переносе усвоенных способов решения в совершенно новые условия.

В обучении дошкольников нестандартная задача, целенаправленно и к месту использованная, выступает в роли проблемной. Здесь явно представлен поиск хода решения выдвижением гипотезы, проверкой ее, опровержением неправильного направления поиска, нахождением способов доказательства верного решения.

Занимательный математический материал является хорошим средством воспитания у детей уже в дошкольном возрасте интереса к математике, к логике и доказательности рассуждений, желания проявлять умственное напряжение, сосредоточивать внимание на проблеме.

Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. Такие игры учат ребенка понимать некоторые сложные математические понятия, формируют представление о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы.

При использовании дидактических игр широко применяются различные предметы и наглядный материал, который способствует тому, что занятия проходят в веселой, занимательной и доступной форме.

Если у ребенка возникают трудности при счете, покажите ему, считая вслух, два синих кружочка, четыре красных, три зеленых. Попросите его самого считать предметы вслух. Постоянно считайте разные предметы (книжки, мячи, игрушки и т.д.), время от времени спрашивайте у ребенка: "Сколько чашек стоит на столе?", "Сколько лежит журналов?", "Сколько детей гуляет на площадке?" и т.п.

Приобретению навыков устного счета способствует обучение малышей понимать назначение некоторых предметов бытового обихода, на которых написаны цифры. Такими предметами являются часы и термометр.

Такой наглядный материал открывает простор для фантазии при проведении различных игр. Научив малыша измерять температуру, просите его ежедневно определять температуру на наружном термометре. Вы можете вести учет температуры воздуха в специальном "журнале", отмечая в нем ежедневные колебания температуры. Анализируйте изменения, просите ребенка определить понижение и повышение температуры за окном, спросите, на сколько градусов изменилась температура. Составьте вместе с малышом график изменения температуры воздуха за неделю или месяц.

Читая ребенку книжку или рассказывая сказки, когдавстречаются числительные, просите его отложить столько счетных палочек, сколько, например, было зверей в истории. После того как вы сосчитали, сколько в сказке было зверюшек, спросите, кого было больше, кого - меньше, кого - одинаковое количество. Сравнивайте игрушки по величине: кто больше - зайка или мишка, кто меньше, кто такого же роста.

Пусть дошкольник сам придумывает сказки с числительными. Пусть он скажет, сколько в них героев, какие они (кто больше - меньше, выше - ниже), попросите его во время повествования откладывать счетныепалочки. А затем он может нарисовать героев своей истории и рассказать о них, составить их словесные портреты и сравнить их.

Очень полезно сравнивать картинки, в которых есть и общее, и отличное. Особенно хорошо, если на картинках будет разное количество предметов. Спросите малыша, чем отличаются рисунки. Просите его самого рисовать разное количество предметов, вещей, животных и т.д.

Подготовительная работа по обучению детей элементарным математическим действиям сложения и вычитания включает в себя развитие таких навыков, как разбор числа на составные части и определение предыдущего и последующего числа в пределах первого десятка.

В игровой форме дети с удовольствием угадывают предыдущие и последующие числа. Спросите, например, какое число больше пяти, но меньше семи, меньше трех, но больше единицы и т.д. Дети очень любят загадывать числа и отгадывать задуманное. Задумайте, например, число в пределах десяти и попросите ребенка называть разные числа. Вы говорите, больше названное число задуманного вами или меньше. Затем поменяйтесь с ребенком ролями.

Для разбора числа можно использовать счетные палочки. Попросите ребенка выложить на стол две палочки. Спросите, сколько палочек на столе. Затем разложите палочки по двум сторонам. Спросите, сколько палочек слева, сколько справа. Потом возьмите три палочки и также разложите на две стороны. Возьмите четыре палочки, и пусть ребенок разделит их. Спросите его, как еще можно разложить четыре палочки. Пусть он поменяет расположение счетных палочек таким образом, чтобы с одной стороны лежала одна палочка, а с другой - три. Точно так же последовательно разберите все числа в пределах десятка. Чем больше число, тем, соответственно, больше вариантов разбора.

Необходимо познакомить малыша с основными геометрическими фигурами. Покажите ему прямоугольник, круг, треугольник. Объясните, каким может быть прямоугольник (квадрат, ромб). Объясните, что такое сторона, что такое угол. Почему треугольник называется треугольником (три угла). Объясните, что есть и другие геометрические фигуры, отличающиеся количеством углов.

Пусть ребенок составляет геометрические фигуры из палочек. Вы можете задавать ему необходимые размеры, исходя из количества палочек. Предложите ему, например, сложить прямоугольник со сторонами в три палочки и четыре палочки; треугольник со сторонами две и три палочки.

Составляйте также фигуры разного размера и фигуры с разным количеством палочек. Попросите малыша сравнить фигуры. Другим вариантом будут комбинированные фигуры, у которых некоторые стороны будут общими.

Например, из пяти палочек нужно одновременно составить квадрат и два одинаковых треугольника; или из десяти палочек сделать два квадрата: большой и маленький (маленький квадрат составляется из двух палочек внутри большого). С помощью палочек полезно также составлять буквы и цифры. При этом происходит сопоставление понятия и символа. Пусть малыш к составленной из палочек цифре подберет то число палочек, которое составляет эта цифра.

Очень важно привить ребенку навыки, необходимые для написания цифр. Для этого рекомендуется провести с ним большую подготовительную работу, направленную на уяснение разлиновки тетради. Возьмите тетрадь в клетку. Покажите клетку, ее стороны и углы. Попросите ребенка поставить точку, например, в нижнем левом углу клетки, в правом верхнем углу и т.п. Покажите середину клетки и середины сторон клетки.

Покажите ребенку, как рисовать простейшие узоры с помощью клеток. Для этого напишите отдельные элементы, соединяя, например, верхний правый и нижний левый углы клетки; правый и левый верхние углы; две точки, расположенные посередине соседних клеток. Нарисуйте простые "бордюрчики" в тетради в клетку.

Здесь важно, чтобы ребенок сам хотел заниматься. Поэтому нельзя заставлять его, пусть он рисует не более двух узоров за один урок. Подобные упражнения не только знакомят ребенка с основами письма цифр, но также и прививают навыки тонкой моторики, что в дальнейшем будет очень помогать ребенку при обучении написанию букв.

Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость.

Дидактическая игра содействует лучшему пониманию сущности вопроса, уточнению и формированию знаний. Игры можно использовать на разных этапах усвоения знаний: на этапах объяснения нового материала, его закрепления, повторения, контроля. Игра позволяет включить в активную познавательную деятельность большее число детей. Она должна в полной мере решать как образовательные задачи НОД, так и задачи активизации познавательной деятельности, и быть основной ступенью в развитии познавательных интересов детей дошкольного возраста. Игра помогает педагогу донести трудный материал в доступной форме. На занятиях по математике использую игру, для развития логического мышления «Какая, фигура лишняя?» Дети находят по определенным признакам: цвету, форме, размеру лишнюю геометрическую фигуру.

При закреплении темы «Геометрические фигуры» мы играем в игру «Найди заплатку» Игру можно построить в виде рассказа.

Жил-был Буратино, у него была красивая красная рубашка и штаны. Однажды Буратино ушел в театр, а крыса Шушара в это время прогрызла в его одежде дыры. Сосчитайте, сколько дыр стало на одежде. Возьмите свои геометрические фигуры и помогите Буратино починить его вещи.

В ходе этой игры «На что похоже?» Материал: набор из десяти карточек с различными фигурками. На каждой карточке нарисована фигурка, которая может восприниматься, как деталь или контурное изображение какого-либо предмета. Воспитатель стремится к тому, чтобы каждый участник игры придумал что-то новое свое, что еще не говорил никто из детей.

Результаты исследования

Сравнивая объем знаний детей на начало, середину и конец учебного года, имеются существенные изменения в развитии детей, что отражено в мониторинге «Формирование математических, пространственных, конструктивных данных», где четко прослеживается, что «Незнание уменьшается, а знание увеличивается». Мониторинг проводится в системе 5-6 лет-1класс. При этом хотелось бы отметить, что у детей формируется устойчивый интерес к учебе, стремлении, как можно больше узнать. Если в начале года у шестилеток характерно в основном наглядно-действенное мышление. То в конце года преобладает наглядно-образное и развиваются зачатки теоретического, понятийного мышления.

Заключение

Итак, дидактическая игра- это сложное многогранное явление. В дидактических играх происходит не только усвоение учебных знаний и навыков, но и развиваются все психические процессы детей, их эмоционально-волевая сфера, способности и умения. Дидактическая игра помогает сделать учебный материал увлекательным, создать радостное рабочее настроение. Умелое использование дидактической игры в учебном процессе облегчает его. Дидактическая игра входит в целостный педагогический процесс сочетается и взаимосвязана с другими формами обучения и воспитания.

Литература

1. Амонашвили Ш.А. «В школу с шести лет» М., 1986

2. АникиеваН.П. «Воспитание игрой» М.,1987

3. Геллер Е.М. «Наш друг игра» Минск, 1979

4. Игры и упражнения в обучении шестилеток Минск, 1985

5. Никитин Б.Л. «Развивающие игры» М., 1981

6. Педагогика и психология игры. Под редакцией Аникиевой И.П. Новосибирск, 1985.

7. Столяр А.А. «давайте поиграем» М., 1991

8. Усова А.П.Роль игры в воспитании детей» М., 1976

9. Швайко Г.В. «Дидактические игры в детском саду» М.,1982

10.Эльконин Д.Б. «Избранные психологические труды» М., 1989

11.Яновская М.Г. « Творческая игра в воспитании младшего школьника» М.,1974

С учетом ФГОС ФЭМП относится к области познавательное развитие.

Познавательное развитие предполагает развитие интереса детей, любознательности, познавательной мотивации, формирование познавательных действий. Становление сознания, формирования первичных представлений о себе, других, объектах окружающего мира (форме, цвете, размере, материале, количестве, числе, части и целом, пространстве и времени).

Принципами математического развития являются:

2)Математическое содержание в разных видах деятельности

Формы работы: в игре, проектировании

В совместной деятельности педагога и детей.

В обучении детей математике педагог использует разные технологии.

Педагогическая технология - специальный набор форм, методов, способов, приёмов обучения и воспитательных средств, системно используемых в образовательном процессе.

Технология обучения детей счету в пределах 100.

Образование чисел 2-го 10 , счет в пределах 20.

Ерофеева, Павлова, Новикова.

10 палочек. Вопрос сколько?

Педагог: раньше слово 10 обозначали словом дцать. Соберем 10 палочек и перевяжем тесьмой. Получится 1 десяток или дцать.

Положу 1 палочку. Получится 11 и т.д. до 20.

Соберем эти палочки получилось 2 десятка.

Таблица сотня Никитина.

Е диницы сверху-вниз

Десятки слева-направо

Детям дают задания: назвать числа сверху-вниз, обозначить число карточкой, назови соседей числа. Можно учить сложению и вычитанию. При сложении вправо и вниз. При вычитании влево и вверх.

Таблица служит для знакомства с первой сотней, слоение и вычитание в пределах сотни.

Технология сто-счет Н.А. Зайцев.

Т
аблица состоит из: числовых лент, карточки с числами, числовой столб, схемы арифметических действий. Таблица от 0 до 99.

Ребенок видит ско-ко десятков и единиц составляет каждое число.

Задания: найди соседей, какое число больше какое меньше. Найдите число обозначенные двумя одинаковыми числами.

Данный материал можно поместить на стене.

Счетные палочки Кюинезера

Способствуют накоплению чувственного опыта, который способствует переходу от конкретного к абстрактному для развития овладения с числами, счетом, измерением.

Палочка – это множество на котором легко обнаруживается отношение эквивалентности и порядка. Цвет и величина.

Использование чисел в цвете позволяет развивать представления о числе на основе счета и измерения.

Подводим к пониманию больше меньше на.

Набор состоит из 241 палочки прямоугольного параллелепипеда. Палочки имеют разную длину от 1 до 10 см. каждая палочка это число выделенное цветом и величиной (1 это белая, 2 розовая, две белых это одна розовая). Упражнения проводятся в 2 этапа. 1 – дети играют с палочками. 2 – палочки как средство обучения математике.

Блоки Дьенеша

Логический материал представляет собой 48 логических блоков, которые различаются 4 свой-ми: формой круглая, квадратная, прямоугольная, треугольная.

Цветом – красная желтая синяя

Толщиной.

Позволяет развивать мыслительные операции, ведет к логическому мышлению.

Играют в игры собрать в один обруч все блоки красного цвета, вне обруча все остальные.

Вопрос 33. Организация экологического образования детей дошкольного возраста в ДОО.

Из ФГОС. Одной из задач социально-коммуникативного развития является формирование основ безопасного поведения в быту, социуме, природе. Система экологического образования в ДОУ: 1. Проф.подготовка педагогов. 2. Эколого-развивающая среда в ДОУ: ее создание и работа внутри нее. 3. Непосредственно экологическое образование дошкольников. 4. Экологическое просвещение дошкольников. 5. Работа в социуме (посещение музеев). Одним из важных условий экологического образования и воспитания в дошкольном учреждении является правильная организация и экологизация развивающей предметной среды. По мнению С.Н.Николаевой, главной особенностью такой среды является привнесение в нее объектов живой природы. Разнообразие растительного и животного мира на участке детского сада, правильная с экологической точки зрения, организация зоны природы в помещении дошкольного учреждения составляют развивающую экологическую среду, необходимую для воспитания детей. Именно такая среда создает условия для формирования у ребенка основ экологического сознания, элементов экологической культуры, реализации новых представлений об универсальности и самооценки природы. Н.А.Рыжова отмечает, что с точки зрения экологического образования и воспитания среда в дошкольном учреждении должна создавать условия для:1. Познавательного развития ребенка (создание условий для его познавательной деятельности, возможностей для экспериментирования с природным материалом, систематических наблюдений за объектами живой и неживой природы, к поиску ответов на интересующие ребенка вопросы и постановке новых вопросов),2. Эколого-эстетического развития ребенка (привлечение внимания к окружающим природным объектам, развитие умения видеть красоту окр.природного мира,разнообразие его красок и форм, отдавать предпочтение объектам природы перед искусственными объектами),3. Оздоровления ребенка (использование экологически безопасных материалов для оформления интерьеров, игрушек, оценка экологических ситуации территории дошкольного учреждения),4. Формирование нравственных качеств ребенка (создание условий для каждодвевного ухода за живыми объектами и общения с ними, формирование желания и умения сохранять окр.мир природы),5. Формирования экологически грамотного поведения (развитие навыков рационального природопользования, ухода за животными, растениями, экологически грамотного поведения в природе и быту). Любая экологическая среда состоит из разнообразных элементов. Каждая из них выполняет свою функциональную роль. Экологическая комната.Этот элемент экологической среды предназначен для проведения комплексных занятий по экологии, релаксационных целей, самостоятельной работы и самостоятельных детских игр. В оптимальном варианте (в зависимости от размеров) комната подразделяется на ряд функциональных зон, например, зону обучения, зону коллекций, зону релаксации, зону библиотеки. Оформление экологического класса должно служить примером безопасного и эстетически грамотного оформления помещений, способствовать выработке экологически правильного поведения детей и взрослых в быту. Здесь используются только природные материалы. Жвой уголок – достаточно традиционный элемент дошкольных учреждений, однако его оформление и содержание на современном этапе приобретает новую специфику, связанную с задачами экологического образования и воспитания. Животные и растения в уголке подбираются с учетом обучающих и воспитывающий целей. Зимний сад – также довольно часто встречающийся элемент среды. Вариативность его устройства проявляется в подборе растений по видовому составу, внешнему облику, экологическим, географическим особенностям, расположению отдельных групп растений. Альпийская горка – нетрадиционный элемент экологической среды. Вариативность ее устройства проявляетя в местоположении горки (на территории ДОУ, в экологической комнате, зимнем саду, живо уголке), в видовом составе растений, внешней виде, размерах камней. Музеи. Выделяют 2 направления использования музейной педагогики в целях экологического воспитания: посещение музеев(краеведческих, исторических, естественнонаучных,выставок) и создание небольших музеев непосредственно в дошкольных учреждениях. Эти направления являются относительно новыми для детских садов. Огород, сад – эти элементы распространены в ДОУ, углубленно занимающихся ознакомлением с природой, и многих детских садов, размещенных в небольших городах и поселках. Можно выделить 3 основных типа огородов: во дворе дошкольного учреждения, мини-огороды на окнах, огороды в теплицах и парниках. Все эти элементы экологической среды служат целям экологического обучения и воспитания. В первую очередь они способствуют возникновению познавательного интереса, развивают любознательность, учат уходу за растениями и животными,воспитывают ответственность за живых существ. По мнению С.Н.Николаевой, создание экологической среды, ее поддержание на нужном уровне,усовершенствование и последующее использование в пед.деятельности могут выступать как метод экологического воспитания детей. Правильная организация зоны природы предполагает усвоение работниками дошкольных учреждений экологического подхода к жизни растений и животных и особенностей методики экологического воспитания детей. Чертой методики экологического воспитания детей являются непосредственный контакт ребенка с объектами природы,»живое» общение с природой и животными, наблюдение и практическая деятельность по уходу за ними. Рядом с ребенком должны быть объекты природы, находящиеся в нормальных (с экологической точки зрения) условиях, т.е. условиях, полностью соответствующих потребностям живых организмов. Экологическая среда в ДОУ – это, прежде всего, конкретные, отдельно взятые животные и растения, которые постоянно живут в учреждении и находятся под опекой взрослых и детей. Воспитателям и другим сотрудникам детского сада необходимо знать экологические особенности каждого объекта природы – его потребности в тех или иных факторах внешней среды, условия, при которых он хорошо себя чувствует и развивается. В дошкольном учреждении могут быть любые животные и растения, если они отвечают следующим требованиям: безопасны для жизни и здоровья детей и взрослых;неприхотливые с точки зрения содержания и ухода. По мнению С.Н.Николаевой, экологический подход к живым объектам означает экологически правильное содержание животных, т.е. создание для них индивидуальных условий, максимально копирующих естественную среду их обитания: отведение достаточно большого пространства, оснащение помещения соответствующей атрибутикой из природного материала, подбор нужных кормов, создание необходимого температурного режима. Такие условия являются наиболее гуманным способом содержания животных, что важно с точки зрения экологически-нравственного воспитания детей. В таких условия животные активны, что позволяет организовать наблюдение разных сфер жизни: питание, передвижение, выращивания потомства и тд). В таких условиях дети могут проследить приспособительные особенности животных: маскировочную окраску, запасание корма, заботу о потомстве и др.Экологический подход необходим не только для животных, но и растений. Главными факторами определяющими жизнь растений, их рост и развитие, является свет, почва, воздух. Т.о., создание т поддержание экологической среды в ДОУ, а также соблюдение принципа экологического подхода к содержанию живых объектов являются важным условием формирования экологической культуры детей дошкольного возраста.

Скачать:


Предварительный просмотр:

«Использование игровых технологий на занятиях по ФЭМП»

В настоящее время в дошкольном образовании активно используются разнообразные инновационные технологии, в том числе игровые. Игра для ребенка является естественной формой и средством познания мира. Для воспитателя правильно организованная игра – эффективное педагогическое средство, позволяющее комплексно решать разнообразные образовательные и развивающие задачи.

Используя игру в образовательном процессе, необходимо обладать, доброжелательностью, уметь осуществлять эмоциональную поддержку, создавать радостную обстановку, поощрять выдумки и фантазии ребенка. Только в этом случае игра будет полезна для развития ребенка и создания положительной атмосферы сотрудничества со взрослым.

Занятия строятся таким образом, что дети каждый раз узнают что-то новое. На занятиях по математике в младшей и средней группе часто использую сказки, так называемые занятия, с математическим сюжетным содержанием например: «Путешествие», «День рождения», «К нам гости пришли», «Сказка про колобка на новый лад»,где дети выполняли задания которые им предлагали герои сказки. Смысл таких занятий в том, что все задачи данного занятия объединяются одним общим сюжетом. Детям нравится такая математическая сказка, они с удовольствием выполняют задания и решают задачи.

В старших группах использую исследовательско-экспериментальную деятельность, решение проблемных задач. Дети подготовительной к школе группе на занятии «садятся в ракету» и попадают на математическую планету, где их встречают различные геометрические фигуры. Помимо этого, дети выполняют различные двигательные упражнения: «Зарядка по карточкам», «Изобрази фигуру», в том числе предлагаются двигательные игры: «Спрячь лягушат от цапли», «Телефоны», «Соедини вагоны», выполняют творческие задания «Выложи палочками», «Как можно поиграть», «Дорисуй картинку».

Постепенно, в каждой возрастной группе задания усложняются. Ребёнку предлагается не просто высказать предполагаемое решение, но и объяснить, почему он так думает. Взаимоотношение педагога и ребёнка выстраиваются в форме диалога сотрудничества.

Во время занятий дети не только общаются с педагогом, но и взаимодействуют друг с другом. Прежде всего, это осуществляется во время проведения дидактических игр. Например, дети младшего возраста выкладывают на полу домино. Игры их носят пока характер совместного действия. Дети среднего возраста, получают карточки с изображением телефонов, которые нужно соединить в пары, найти одинаковые по форме. Дети встают из-за столов и начинают сравнивать карточки, постепенно образовывая нужные пары. При этом дети вынуждены общаться, иногда доказывать или объяснять друг другу правильное решение.

Предлагаю многофункциональные игры например такие:«Сегодня на прогулке», « Что видели в лесу»,и др. Такие игры многофункциональны, так как каждый раз возвращаясь к игре, ребёнок получает новое индивидуальное задание (например, детям, которые уже справились с заданием, можно предложить поменяться карточками).

К пяти годам дошкольник переходит от индивидуальных игр к играм в компании сверстников. Поэтому, начиная с этого возраста, предлагаю командные игры. Так в игре «Живые числа», для усвоения количественного счёта в старшей группе, дети получают перемешанные карточки с цифрами и выстраиваются по порядку. Побеждает команда, первая построившаяся правильно. При этом, дети, стремясь победить, не только быстрее выполняют задание, но и обучают друг друга в процессе игры, помогая игрокам своей команды. Специально ставлю команды друг против друга, чтобы каждому был хорошо виден числовой ряд противоположной команды, при этом, делая проверку, дети наглядно закрепляют порядок чисел.

Другой вид дидактических игр, используемых в работе с детьми, – это игры, не требующие никаких дидактических пособий, что очень удобно для организации педагогического процесса. Например, игра «Дни недели». Из группы детей выбираются семь человек, которые выстраиваются по порядку. Первый игрок – понедельник, второй вторник и так далее. Задаю вопросы, соответствующий день недели делает шаг вперёд. Например, «второй день недели», «день недели, идущий перед пятницей», «день недели – середина будних дней» и так далее. Остальные дети внимательно следят за правильностью выполнения заданий игроками. Такая наглядная игра не только помогает запомнить порядок дней недели, но и разъясняет смысл их названий, даёт больший эффект, чем при простом заучивании.

В дошкольном детстве ребёнок лучше воспринимает информацию в движении. Например, дети показывают фигуры, руками, или рисуют пальчиком в воздухе. Так в игре «Геометрические фигуры», дети под музыку изображают движениями-символами фигуры, которые я показываю с помощью карточек.

При этом образовательная среда организована таким образом, что легко происходит смена разных видов деятельности: дети сидят на ковре, выполняют упражнения или играют в двигательные игры, сидят за столами, запоминают различную информацию в стихотворной форме с движениями. При этом они получают психологический настрой под спокойную музыку, сопровождающую процесс выполнения некоторых заданий.

Из всего многообразия занимательного материала при организации НОД с детьми по ФЭМП я часто применяю дидактические игры. Основное назначение их – обеспечить детей представлениями в различении, выделении, назывании множества предметов, чисел, геометрических фигур, направлений. Дидактические игры являются одним из средств реализации программных задач.

Настольно-печатные игры: «Найди различия», «Сравни и подбери», «Одним словом», «Подбери по форме», «Подбери по цвету», «Логика», «Четвёртый лишний» и т.п.

Игровые наборы для экспериментирования по восстановлению целого из частей, по разделению целого на части.Игровые наборы «Кубики». Логическое домино.

Я назову те, в которые мы с детьми любим играть.

« Геометрическая мозаика» (Составь картинку)

. «Назови фигуру» - найди такую же с кубиком.

«Найди дорогу к дому» - использование кодированной информации, чтение ориентиров.

«Найди следующую фигуру» - поиск закономерностей.

Тема: «Использование игровых технологий в формировании элементарных математических представлений у дошкольников» меня заинтересовала и побудила к разработке и изготовлению игрового методического пособия «Занимательные карточки» по формированию элементарных математических представлений. Набор карточек постоянно пополняется. В каждой карточке задания, например: «Найди 10 отличий», «Что сначала, что потом», «Расставь по размеру» и др.

В своей педагогической практике по формированию элементарных математических представлений использую "Танграм", технологию блоков Дьенеша, палочки Кьюзенера, что позволяет мне соединить один из основных принципов обучения – от простого к сложному. Выбирая, ту или иную игровую технологию стараюсь учитывать индивидуальные особенности развития ребенка, что обеспечивает эффективность усвоения материала.

Мной создана картотека игр, позволяющих закрепить представления по математике, которые я использую. Организовала в группе «центр познавательной деятельности», где хранятся игры по математике.

Игровая педагогическая технология - организация педагогического процесса в форме различных педагогических игр. Это последовательная деятельность педагога по: отбору, разработке, подготовке игр; включению детей в игровую деятельность; осуществлению самой игры; подведению итогов, результатов игровой деятельности. Именно игра с элементами обучения, интересная ребенку, поможет в развитии познавательных способностей дошкольника. Занимательный материал не только развлекает детей, но и заставляет их думать, развивает самостоятельность, инициативу, направляет на поиски нетрадиционных способов решения, стимулирует развитие нестандартного мышления, развивает память, внимание

воображение.


Сафронова Надежда Васильевна
Должность: воспитатель
Учебное заведение: МБДОУ детский сад № 19
Населённый пункт: город Новокузнецк, Кемеровская область
Наименование материала: Методическое пособие
Тема: "Игровые технологии математического развития детей дошкольного возраста"
Дата публикации: 30.10.2017
Раздел: дошкольное образование

МБДОУ датский сад №19.

Методическое пособие.

Тема: Игровые технологии математического развития детей дошкольного

возраста.

Воспитатель: Сафронова Н.В.

Новокузнецк, 2017г.

Введение…………………………………………………………………...3

Игра, как основной метод обучения…………………………………...4

Процесс формирования элементарных математических

представлений, игровые технологии…………………………………..5

Заключение………………………………………………………………11

Используемая литература……………………………………………...12

ВВЕДЕНИЕ

Усвоение математических знаний на различных этапах школьного

обучения вызывает существенные затруднения у многих учащихся. Одна из

причин, порождающих затруднения и перегрузку учащихся в процессе

усвоения знаний, состоит в недостаточной подготовке мышления

дошкольников к усвоению этих знаний.

Проблемами развития мышления на основе опыта лежат идеи

отечественных и зарубежных педагогов – психологов:

Л.С. Выготского.П.П. Блонского, П.П.Гольперина, С.Л. Рубинштейна, В.В.

Давыдова, А.И. Мещерякова, И.А.Менчинской,Д.Б. Эльконина,А.В.

Запорожца,

М. Монтессори.

Мышление – высшая ступень познания человеком действительности.

Вопрос о том, с чего и как начать подготовку детей дошкольного возраста к

изучению математики (или пред математическую подготовку) не может

решаться в настоящее время так, как решался 100 или даже 50 лет тому назад.

формированием представлений о числах и простейших геометрических

фигурах, обучением счету, сложению и вычитанию, измерениям в

простейших случаях. С точки зрения современной концепции обучения

самых маленьких детей не менее важным, чем арифметические операции, для

подготовки их к усвоению математических знаний является формирование

логического мышления. Детей необходимо учить не только вычислять и

измерять, но и рассуждать.

1.Игра, как основной метод обучения детей дошкольного возраста.

Когда речь идет об обучении дошкольников, то, конечно, имеется в виду не

прямое обучение логическим операциям и отношениям, а подготовка детей к

усвоению точного смысла слов и словосочетаний, обозначающих эти

операции и отношения посредством практических действий, приводящих к

Таким образом, пред математическая подготовка детей представляется

состоящей из двух тесно переплетающихся основных линий: логической, т. е.

подготовкой мышления детей к применяемым в математике способам

рассуждений, и собственно пред математической, состоящей в формировании

элементарных математических представлений. Отметим, что логическая

подготовка выходит за рамки подготовки к изучению математики, развивая

познавательные способности детей, в частности их мышление и речь.

Анализ состояния обучения дошкольников приводит многих

специалистов к выводу о необходимости развития в дидактических играх

(наряду с получившей широкое распространение функцией закрепления и

повторения знаний) функции формирования новых знаний, представлений и

способов познавательной деятельности. Иными словами, речь идет о

необходимости развития обучающих функций игры, предполагающей

обучение через игру.

Игра для них - труд, учеба, серьезная форма воспитания. Иногда

спрашивают, когда играть с детьми, до или после занятия, не подозревая

даже, что можно играть с детьми на самом занятии, обучать их в процессе

игры, играя с ними.

В обучении детей 4-6 лет игра рассматривается не просто как один из

методов обучения, а как основной метод обучения детей этого возраста, в

дальнейшем постепенно уступающий свои позиции другим методам

обучения. Для детей 4-6 лет игра является ведущим видом деятельности: в

ней психика ребенка наиболее ярко и интенсивно проявляется, формируется и

развивается.

Обучение через игру, интересное и увлекательное занятие для самых

маленьких, способствует постепенному переносу интереса и увлеченности с

игровой на учебную деятельность. Игра, увлекающая детей, их не

перегружает ни умственно, ни физически. Очевидно, что интерес детей к

игре постепенно переходит не только в интерес к учению, но и к тому, что

изучается, т. е в интерес к математике.

2. Процесс формирования элементарных математических

представлений, игровые технологии

Разработка и выбор технологий зависит от того, что подлежит освоению, и

в чем будет состоять развитие мыслительной деятельности ребенка- это

связей и взаимосвязей предметов и явлений окружающего мира. Это

освоение свойств объектов (форма, цвет, размер, масса, емкость и т.д.)

Игровые технологии:

Логические и математические игры;

Образовательные ситуации (развивающие, игровые);

Проблемные ситуации, вопросы;

Экспериментирование, исследовательская деятельность;

Творческие задачи, вопросы и ситуации.

Процесс формирования элементарных математических представлений

осуществляется под руководством педагога, в результате систематически

проводимой работы на НОД и вне ее, направленной на ознакомление детей с

количественными, пространственными и временными отношениями с

помощью разнообразных средств. своеобразными орудиями труда педагога и

инструментами познавательной деятельности детей.

В практике работы используются следующие средства формирования

элементарных математических представлений:

Комплекты наглядного дидактического материала для занятий;

Оборудование для самостоятельных игр и занятий детей;

Методические пособия для воспитателя детского сада, в которых

раскрывается сущность работы по формированию элементарных

математических представлений у детей в каждой возрастной группе и даются

примерные конспекты занятий;

Сборной дидактических игр и упражнений для формирования

количественных, пространственных и временных представлений у

дошкольников;

Учебно-познавательные книги для подготовки детей к усвоению

математики в школе в условиях семьи.

При формировании элементарных математических представлений

средства обучения выполняют разнообразные функции:

Реализуют принцип наглядности;

Адаптируют абстрактные математические понятия в доступной для

малышей форме;

Помогают детям овладевать способами действий, необходимыми для

возникновения элементарных математических представлений;.

Способствуют накоплению у детей опыта чувственного восприятия

свойств, отношений, связей и зависимостей, его постоянному расширению и

обогащению, помогают осуществить постепенный переход от материального

к материализованному, от конкретного ж абстрактному;

Дают возможность воспитателю организовывать учебно-познавательную

деятельность дошкольников и управлять этой работой, развивать у них

желание получать новые знания, овладевать счетом, измерением,

простейшими способами вычисления и т. д.;

Увеличивают объем самостоятельной познавательной деятельности детей

на занятиях по математике и вне их;

Расширяют возможности педагога в решении образовательных,

воспитательных и развивающих задач;

Рационализируют и интенсифицируют процесс обучения.

Таким образом, средства обучения выполняют важные функции:в

деятельности педагога и детей при формировании у них элементарных

математических представлений. Они постоянно изменяются, новые

конструируются в тесной связи с совершенствованием теории и практики

пред математической подготовки детей.

Основным средством обучения является наглядно дидактический

материала для занятий. В него входит следующее: объекты окружающей

среды, взятые в натуральном виде: разнообразные предметы быта, игрушки,

посуда, пуговицы, шишки, желуди, камешки, раковины и т. д.;

Изображения предметов: плоские, контурные, цветные, на подставках и без

них, нарисованные на карточках;

Графические и схематические средства: логические блоки, фигуры,

карточки, таблицы, модели.

При формировании элементарных математических представлений на

занятиях наиболее широко использую реальные предметы и их изображения.

С возрастом детей происходят закономерные изменения в использовании

отдельных групп дидактических средств: наряду с наглядными средствами

применяется опосредованная система дидактических материалов.

Современные исследования опровергают утверждение о недоступности для

детей обобщенных математических представлений. Поэтому в работе со

старшими дошкольниками используются наглядные пособия, моделирующие

математические понятия.

Дидактические средства должны меняться не только с учетом возрастных

особенностей, но в зависимости от соотношения конкретного и абстрактного

на разных этапах усвоения детьми программного материала. Например, на

определенном этапе реальные предметы могут быть заменены числовыми

фигурами, а они в свою очередь цифрами и т. п.

Для каждой возрастной группы должен использоваться свой комплект

наглядного материала. Наглядный дидактический материал соответствует

возрастным особенностям детей, отвечает разнообразным требованиям:

научным, педагогическим, эстетическим, санитарно-гигиеническим,

экономическим и т. д.

Он используется на занятиях при объяснении нового, его закреплении, для

повторения пройденного и при проверке знаний детей, т. е. на всех этапах

обучения.

Обычно используется наглядный материал двух видов: крупный,

(демонстрационный) для показа и работы детей и мелкий (раздаточный),

которым ребенок пользуется, сидя за столом и выполняя одновременно со

всеми задание педагога.

Демонстрационные и раздаточные материалы отличаются по назначению:

первые служат для объяснения и показа способов действий воспитателем,

вторые дают возможность организовать самостоятельную деятельность

детей, в процессе которой вырабатываются необходимые навыки и умения.

Эти функции являются основными, но не единственными и строго

фиксированными.

Учитываются размеры пособий: раздаточный материал должен быть

таким, чтобы сидящие рядом дети могли удобно располагать его на столе и не

мешать друг другу во время работы.

Наглядный дидактический материал служит для реализации программы

развития элементарных математических представлений

в процессе специально организованных упражнений во время НОД. С этой

целью используются:

Пособия для обучения детей счету;

Пособия для упражнений в распознавании величины предметов;

Пособия для упражнений детей в распознавании формы предметов и

геометрических фигур;

Пособия для упражнения детей в пространственной ориентировке;

Пособия для упражнения детей в ориентировке во времени. Данные

комплекты пособий должны соответствовать основным разделам

программы и включают как демонстрационный, так и раздаточный материал.

Необходимые для проведения НОД дидактические средства изготавливаются

педагогом, привлекая к этому родителей, или берутся готовыми из

окружающей среды.

В оборудование для самостоятельных игр и занятий можно включать:

Специальные дидактические средства для индивидуальной работы с

детьми, для предварительного ознакомления с новыми игрушками и

материалами;

Разнообразные дидактические игры: настольно-печатные и с предметами;

обучающие, разработанные А. А. Столяром; развивающие, разработанные Б.

П. Никитиным; шашки, шахматы;

Занимательный математический материал: головоломки, геометрические

мозаики и конструкторы, лабиринты, задачи-шутки, задачи на

трансфигурацию и т. д. с приложением там, где это необходимо, образцов

(например, для игры «Танграм» требуются образцы расчлененные и

нерасчлененные, контурные), наглядных инструкций и т. д.;

Отдельные дидактические средства: блоки 3. Дьенеша (логические блоки),

палочки X. Кюзенера, счетный материал (отличный от того, что применяется

на занятиях), кубики с цифрами и знаками, детские вычислительные машины

и многое другое.

Книги с учебно-познавательным содержанием для чтения детям и

рассматривания иллюстраций.

Все эти средства размещаются непосредственно в зоне самостоятельной

познавательной и игровой деятельности. Эти средства используются в

основном в часы игр, но могут применяться и на НОД

Действуя с разнообразными дидактическими средствами вне занятий,

ребенок не только закрепляет знания,- полученные на занятиях, но и в

отдельных случаях, усваивая дополнительное содержание, может опережать

требования программы, исподволь готовиться к ее усвоению.

Самостоятельная деятельность под руководством педагога, проходящая

индивидуально, группой, дает возможность обеспечить оптимальный темп

развития каждому ребенку, учитывая его интересы, склонности, способности,

особенности.

Одним из средств формирования у детей дошкольного возраста

элементарных математических представлений являются занимательные игры,

упражнения, задачи, вопросы. Этот занимательный математический материал

чрезвычайно разнообразен по содержанию, форме, развивающему и

воспитательному влиянию.

Из занимательного математического материала в работе с дошкольниками

могут использоваться самые простые его виды:

Геометрические конструкторы: «Танграм», «Пифагор», «Колумбово яйцо»,

«Волшебный круг» и др., в которых из набора плоских геометрических фигур

требуется создать сюжетное изображение на основе силуэтного, контурного

образца или по замыслу;

- «Змейка» Рубика, «Волшебные шарики», «Пирамидка», «Сложи узор»,

«Уникуб» и другие игрушки-головоломки, состоящие из

Он расширяет возможность создания и решения проблемных ситуаций,

открывает эффективные пути активизации умственной деятельности,

способствует организации общения детей между собой и со - взрослыми.

Занимательный математический материал является средством

комплексного воздействия на развитие детей, с его помощью осуществляется

умственное и волевое развитие, создается проблемность в обучении, ребенок

занимает активную позицию в самом процессе учения. Пространственное

воображение, логическое мышление, целенаправленность и

целеустремленность, умение самостоятельно искать и находить способы

действия для решения практических и познавательных задач - все это,

вместе взятое, требуется для успешного усвоения математики и других

учебных предметов в школе.

В программе "Детство" основными показателями интеллектуального

развития ребёнка являются показатели развития таких мыслительных

процессов, как сравнение, обобщение, группирование, классификация. Дети,

испытывающие затруднения в выборе предметов по определённым

свойствам, в их группировании обычно отстают в сенсорном развитии

(особенно в младшем и среднем возрасте). Поэтому игры для сенсорного

развития занимают большое место в работе с этими детьми и. как правило,

дают хороший результат.

Кроме традиционных игр, направленных на сенсорное развитие, очень

эффективны игры с Блоками Дьенеша. Например, такие:

Сделай узор. Цель: развивать восприятие формы

Воздушные шары. Цель: обратить внимание детей на цвет предмета,

учить подбирать предметы одинакового цвета

Запомни узор. Цель: развивать наблюдательность, внимание, память

Найди свой домик. Цель: развивать умение различать цвета, формы

геометрических фигур, формировать представление о символическом

изображении предметов; учить систематизировать и классифицировать

геометрические фигуры по цвету и форме.

Пригласительный билет. Цель: развивать умение детей различать

геометрические фигуры, абстрагируя их по цвету и размеру.

Муравьи. Цель: развивать умение детей различать цвет и размер

предметов; формировать представление о символическом изображении

предметов.

Карусель. Цель: развивать у детей воображение, логическое мышление;

упражнять в умении различать, называть, систематизировать блоки по цвету,

величине, форме.

Разноцветные шары. Цель: развивать логическое мышление; учить

Дальнейший порядок игр определяется усложнением: развитием умений

сравнивать и обобщать, анализировать, описывать блоки с помощью

символов, классифицировать по 1-2 признакам. Эти и дальнейшие

усложнения переводят игры в разряд игр для одарённых детей. В этот же

разряд могут перейти и сами «отстающие» дети. Важно вовремя осуществить

необходимый переход детей на следующую ступень. Чтобы не передержать

детей на определённой ступени, задание должно быть трудным, но

выполнимым.

Таким образом, стараясь учесть интересы каждого ребёнка в группе, педагог

должен стремиться создать ситуацию успеха для каждого с учётом его

достижений на данный момент развития. Необходимо иметь:

Наличие игр разнообразного содержания – для предоставления детям

права выбора

Наличие игр, направленных на опережение в развитии (для одарённых

Соблюдение принципа новизны – среда должна быть изменчивой,

обновляемой – дети любят новое

Соблюдение принципа неожиданности и необычности.

Заключение

Организованная в русле игровых технологий работа по математическому

развитию детей отвечает интересам самих малышей, способствует развитию

их интереса к интеллектуальной деятельности, соответствует нынешним

требованиям к организации образовательного процесса для дошкольников и

стимулирует к дальнейшему творчеству в совместной деятельности с

СПИСОК ЛИТЕРАТУРЫ.

Венгер Л.А., Дьяченко О.М. «Игры и упражнения по развитию

умственных способностей у детей дошкольного возраста».

«Просвещение» 1989г.

Ерофеева Т.И. «Знакомство с математикой: методическое пособие для

педагогов». – М.: Просвещение, 2006.

Зайцев В.В. «Математика для детей дошкольного возраста». Гуманит.

Изд. Центр «Владос»

Колесникова Е.В. «Развитие математического мышления у детей 5-7

лет» – М: «Гном-Пресс», «Новая школа» 1998г.


(из опыта работы) пригодится для работы воспитателям и родителям детей старшего дошкольного возраста.

Скачать:


Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение
Самарской области средняя общеобразовательная школа им. А.И. Кузнецова
с. Курумоч муниципального района Волжский Самарской области
структурное подразделение «Детский сад «Белочка»

Выступление на педагогическом совете на тему:

«Использование игровых технологий на занятиях по ФЭМП в старших группах»
(из опыта работы)

Воспитатель: Кузьминых С.И.

2016 г

Основной вид дошкольной деятельности - это игра. Играя, ребёнок познаёт мир, учится общаться, обучается.

Исходя из возрастных особенностей детей в своей практической деятельности я постоянно использую игровые технологии.

Игровые технологии помогают решать не только проблемы мотивации, развития детей, но и здоровосбережение.

В игре и через игровое общение у растущего человека проявляется и формируется мировоззрение, потребность воздействовать на мир, адекватно воспринимать происходящее. Игра - главное содержание детской жизни.

В своей педагогической деятельности мною используются занятия-путешествия, которые построены на игровой форме обучения.

Гостями НОД были сказочные герои, герои любимых мультфильмов, которым ребята помогали разобраться в сказочной ситуации: считали предметы, сравнивали числа, называли геометрические фигуры, раскладывали дорожки по длине, решали логические задачи и др., использовался и прием намеренных ошибок, т. е. неправильных ответов гостей занятия, что помогло развить мыслительные процессы. А также проводили НОД по таким темам, как «Веселые приключения», «Путешествие в страну чудес», «Прогулки в сказочный лес», и др., где дети были непосредственными участниками игры и выполняли интересные, познавательные задания, самостоятельно находили выход из учебных ситуаций; а также использовали элемент соревнования (кто быстрее, кто правильнее, кто больше знает) .

Для обеспечения активной деятельности детей в НОД я предлагаю им своеобразную реально-жизненную мотивацию: участие в выполнении интересных, в меру сложных действий; выражение сущности этих действий в речи; проявление соответствующих эмоций, особенно познавательных; использование экспериментирования, решение творческих задач, освоение средств и способов познания (сравнение, измерение, классификация и др.)

В качестве примера приведу фрагменты НОД «Космическое путешествие», в котором обучение построено как увлекательная проблемно-игровая деятельность. Целью данной непосредственно образовательной деятельности являлось формирование математических представлений, а математические представления – это мощный фактор интеллектуального развития дошкольников.

Чтобы заинтересовать детей, активизировать внимание дошкольников, побудить их к деятельности, овладению программных задач, повысить эффективность обучения вначале была создана игровая мотивация: «предстоит совершить фантастический полет в космос, где вы встретитесь с чудесами, неизведанными открытиями, где ожидают нас таинственные и захватывающие приключения».

После принятия цели, перед детьми встала проблема: «На чем же можно полететь в космос? ». Здесь были показаны иллюстрации с изображениями самолета, воздушного шара, ракеты. Дети высказывали свои предложения и доказывали правильность выбора, т. е. учились самостоятельно думать, рассуждать, фантазировать. У детей развивались речь, мышление, углублялись знания.

В игре «Построй ракету» дети не только закрепляли названия геометрических фигур, количественный счет (сколько квадратов, прямоугольников и т. д., но и учились выделять элементы объекта и соединять их в единое целое. Игра развивает у детей геометрическую зоркость, способность к умственным действиям: анализу, синтезу, сравнению.

Также в НОД детям предлагалось «пройти сквозь метеоритный поток». Через игру «На что похоже? » дети учились придумывать свои разнообразные оригинальные ответы, понимать и «читать» схематичное изображение предмета, развивалось воображение, способность к замещению, созданию новых образов.

Новая проблемная ситуация встала перед детьми в конце НОД: «Из космического центра Земли поступил сигнал о возвращении домой, на Землю». Но чтобы вернуться надо дать правильные ответы на задачи, типа: «Сколько солнышек на небе? », «Сколько концов у одной палки? А у двух? », «Найди отличие», «Цепочка закономерностей».

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения, развивают произвольное внимание, мыслительные операции, речь, пространственные представления, на основе сравнения учатся выявлять закономерности.

Обязательно в НОД включаем физкультминутки, тематически связанные с учебными заданиями, играющие положительную роль в усвоении программного материала. Это позволяет переключить активность (умственную, двигательную, речевую) не выходя из учебной ситуации.

Для активизации мыслительной деятельности, для придания интереса, активного участия детей в НОД, для расширения, углубления и закрепления знаний, придания занятию игрового характера, мы используем разнообразный дидактический, игровой материал и пособия, созданные своими руками.

Дидактическая игра – это особый вид игровой деятельности и средство обучения. Дидактические игры помогают обеспечить упражняемость детей в различении, выделении, назывании множеств предметов, чисел, геометрических фигур, направлений, формировали новые знания, а также в дидактических играх закрепляются полученные знания и умения; развивается восприятие, мышление, память, внимание. При использовании дидактических игр нами также широко применяются различные предметы и наглядный материал, который способствует тому, что непосредственно образовательная деятельность проходит в веселой, занимательной и доступной форме.

Так, дидактические игры «Покажи с помощью цифры», «Раздели квадрат на части», «Помоги Буратино дойти до школы», «На что похоже? » и др. - знакомят детей с новыми для них заданиями, учат проявлять смекалку, развивать сообразительность, упражняют ребенка в анализе геометрических фигур, в воссоздании фигур – символов, ориентировке в пространстве.

Игра « Найди игрушку».

« Ночью когда в группе никого не было- говорит воспитатель, к нам прилетал Карлсон и принес в подарок игрушки. Карлсон любит шутить, поэтому он спрятал игрушки, а в письме написал как их можно найти» Распечатывает конверт и читает: « Надо встать перед столом воспитателя, пойти прямо». Кто-то из детей выполняет задание, идет и подходит к шкафу, где в коробке лежит машина. Другой ребенок выполняет следующее задание: подходит к окну, поворачивается налево, приседает и за шторой находит игрушку.

Игра «Считай - не ошибись! »

Игра «Чудесный мешочек»

Направлена на упражнение детей в счете с помощью различных анализаторов, закрепление представлений о количественных отношениях между числами. В чудесном мешочке находятся: счетный материал, два-три вида мелких игрушек. Ведущий выбирает кого-то из детей водящим и просит отсчитать столько предметов, сколько то услышит ударов молоточка, бубна или столько предметов, сколько кружков на карточке. Дети сидящие за столами, считают количество ударов и показывают соответствующую цифру.

В игре «Путаница» цифры раскладывают на столе или выставляют на доске. В тот момент, когда дети закрывают глаза, цифры меняют местами. Дети находят эти изменения и возвращают цифры на свои места. Ведущий комментирует действия детей.

В игре «Какой цифры не стало?» также убираются одна - две цифры. Играющие не только замечают изменения, но и говорят, где какая цифра стоит и почему. Например, цифра 5 сейчас стоит между 7 и 8. Это не верно. Ее место между цифрами 4 и 6, потому что число 5 больше 4 на один, 5 должна стоять после 4.

“Танграм” и «Монгольская игра» - из множества игр-головоломок на плоскостное моделирование.

Успешность освоения игр в дошкольном возрасте зависит от уровня сенсорного развития детей. Играя, дети запоминают названия геометрических фигур, их свойства, отличительные признаки, обследуют формы зрительным и осязательно-двигательным путем, свободно перемещают их с целью получения новой фигуры. У детей развивается умение анализировать простые изображения, выделять в них и в окружающих предметах геометрические формы, практически видоизменять фигуры путем разрезания и составлять их из частей.

На первом этапе освоения игры “Танграм” проводится ряд упражнений, направленных на развитие у детей пространственных представлений, элементов геометрического воображения, на выработку практических умений в составлении новых фигур путем присоединения одной из них к другой.

Детям предлагаются разные задания: составлять фигуры по образцу, устному заданию, замыслу. Эти упражнения являются подготовительными ко второму этапу освоения игры – составлению фигур по расчлененным образцам.

Таким образом, можно сделать вывод, что в игровой форме происходит прививание ребенку знания в области математики, он обучается выполнять различные действия, умственные операции, развивает память, внимание, мышление, творческие и познавательные способности.

А проблемность обучения способствует развитию гибкости, вариативности мышления, формирует активную творческую позицию ребенка.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1. Виноградова Н. А., Позднякова Н. В. Сюжетно-ролевые игры для старших дошкольников. – М. : Айрис-Пресс, 2008.

2. Губанова Н. Ф. Игровая деятельность в детском саду. – М. : Мозаика-Синтез, 2006.

3. Диагностика готовности ребенка к школе/ Под ред. Н. Е. Веркасы. – М. : Мозаика-Синтез, 2008.

4. Жукова Р. А. Дидактические игры как средство подготовки детей к школе. – Волгоград: Учитель-АСТ, 2005.

5. Панова Е. Н. Дидактические игры-занятия в ДОУ. – Воронеж: ЧП Лакоценин, 2007.

6. Полякова Н. Воспитывать радость познания// Дошкольное воспитание. – 12/2004.

7. Смоленцева Н. А. Сюжетно-дидактические игры с математическим содержанием. – М. : Просвещение, 1987.