Общая теория относительности принципы и следствия. Теория относительности - что это такое? Постулаты теории относительности

Теория относительности была представлена Альбертом Эйнштейном в начале 20-го века. В чем же состоит её суть? Рассмотрим основные моменты и понятным языком охарактеризуем ТОЭ.

Теория относительности практически ликвидировала несостыковки и противоречия физики 20-го века, заставила в корне поменять представление о структуре пространства-времени и экспериментально подтвердилась в многочисленных опытах и исследованиях.

Таким образом, ТОЭ легла в основу всех современных фундаментальных физических теорий. По сути – это мама современной физики!

Для начала стоит отметить, что существует 2 теории относительности:

  • Специальная теория относительности (СТО) – рассматривает физические процессы в равномерно движущихся объектов.
  • Общая теория относительности (ОТО) – описывает ускоряющиеся объекты и объясняет происхождение такого явления как гравитация и существование .

Понятное дело, что СТО появилась раньше и по сути является частью ОТО. О ней и поговорим в первую очередь.

СТО простыми словами

В основе теории лежит принцип относительности, согласно которому любые законы природы одинаковы относительно неподвижных и движущихся с постоянной скоростью тел. И из такой казалось бы простой мысли следует, что скорость света (300 000 м/с в вакууме) одинакова для всех тел.

Например, представьте, что вам подарили космический корабль из далёкого будущего, который может летать с огромной скоростью. На носу корабля устанавливается лазерная пушка, способная стрелять вперёд фотонами.

Относительно корабля такие частицы летят со скоростью света, однако относительно неподвижного наблюдателя они, казалось бы, должны лететь быстрее, так как обе скорости суммируются.

Однако на самом деле этого не происходит! Сторонний наблюдатель видит фотоны, летящие 300 000 м/с, как будто скорость космического корабля к ним не добавлялась.

Нужно запомнить: относительно любого тела скорость света будет неизменной величиной, как бы быстро оно не двигалось.

Из этого следуют потрясающие воображение выводы вроде замедления времени, продольном сокращении и зависимости массы тела от скорости. Подробнее об интереснейших следствиях Специальной теории относительности читайте в статье по ссылке ниже.

Суть общей теории относительности (ОТО)

Чтобы лучше её понять, нам нужно вновь объединить два факта:

  • Мы живем в четырехмерном пространстве

Пространство и время – это проявления одной и той же сущности под названием «пространственно-временной континуум». Это и есть 4-мерное пространство-время с осями координат x, y, z и t.

Мы, люди, не в состоянии воспринимать 4 измерения одинаково. По сути, мы видим только проекции настоящего четырехмерного объекта на пространство и время.

Что интересно, теория относительности не утверждает, что тела изменяются при движении. 4-мерные объекты всегда остаются неизменными, но при относительном движении их проекции могут меняться. И мы это воспринимаем как замедление времени, сокращение размеров и т. д.

  • Все тела падают с постоянной скоростью, а не разгоняются

Давайте проведём страшный мысленный эксперимент. Представьте, что вы едете в закрытой кабине лифта и находитесь в состоянии невесомости.

Такая ситуация могла возникнуть только по двум причинам: либо вы находитесь в космосе, либо свободно падаете вместе с кабиной под действием земной гравитации.

Не выглядывая из кабинки, абсолютно невозможно отличить два этих случая. Просто в одном случае вы летите равномерно, а в другом с ускорением. Вам придется угадывать!

Возможно, сам Альберт Эйнштейн размышлял над воображаемым лифтом, и у него появилась одна потрясающая мысль: если эти два случая невозможно отличить, значит падение за счет гравитации тоже является равномерным движением. Просто равномерным движение является в четырехмерном пространстве-времени, но при наличии массивных тел (например, ) оно искривляется и равномерное движение проецируется в обычное нам трёхмерное пространство в виде ускоренного движения.

Давайте рассмотрим еще один более простой, хоть и не совсем корректный пример искривления двухмерного пространства.

Можно представлять, что любое массивное тело под собой создает некоторую образную воронку. Тогда другие тела, пролетающие мимо, не смогут продолжить свое движение по прямой и изменят свою траекторию согласно изгибам искривленного пространства.

Кстати, если у тела не так много энергии, то его движение вообще может оказаться замкнутым.

Стоит отметить, что с точки зрения движущихся тел они продолжают перемещаться по прямой, ведь не чувствуют ничего такого, что заставляет их повернуть. Просто они попали в искривленное пространство и сами того не осознавая имеют непрямолинейную траекторию.

Нужно обратить внимание, что искривляется 4 измерения, в том числе и время, поэтому к этой аналогии стоит относиться осторожно.

Таким образом, в общей теории относительности гравитация – это вообще не сила, а лишь следствие искривление пространства-времени. На данный момент эта теория является рабочей версией происхождения гравитации и прекрасно согласуется с экспериментами.

Удивительные следствия ОТО

Световые лучи могут искривляться, пролетая вблизи массивных тел. Действительно, в космосе найдены далёкие объекты, которые «прячутся» за другими, но световые лучи их огибают, благодаря чему свет доходит до нас.


Согласно ОТО чем сильнее гравитация, тем медленнее протекает время. Этот факт обязательно учитывается при работе GPS и ГЛОНАСС, ведь на их спутниках установлены точнейшие атомные часы, которые тикают чуть-чуть быстрее, чем на Земле. Если этот факт не учитывать, то уже через сутки погрешность координат составит 10 км.

Именно благодаря Альберту Эйнштейну вы можете понять, где по близости располагается библиотека или магазин.

И, наконец, ОТО предсказывает существование черных дыр, вокруг которых гравитация настолько сильна, что время вблизи просто напросто останавливается. Поэтому свет, угодивший в черную дыру, не может её покинуть (отразиться).

В центре черной дыры из-за колоссального гравитационного сжатия образуется объект с бесконечно большой плотностью, а такого, вроде как, быть не может.

Таким образом, ОТО может приводить к весьма противоречивым выводам в отличие от , поэтому основная масса физиков не приняла её полностью и продолжила искать альтернативу.

Но многое ей и удаётся предсказывать удачно, примеру недавнее сенсационное открытие подтвердило теорию относительности и заставило вновь вспомнить великого учёного с высунутым языком. Любите науку, читайте ВикиНауку.

Одной из жемчужин научной мысли в тиаре знаний человечества с которой мы вошли в 21й век является Общая Теория Относительности (далее ОТО). Данная теория подтверждена бесчисленными опытами, скажу больше, нет ни одного эксперимента, где наши наблюдения хоть на чуть–чуть, хоть на кропалюшечку отличались бы от предсказаний Общей Теории Относительности. В пределах ее применимости, естественно.

Сегодня я хочу рассказать вам, что же это за зверь такой Общая Теория Относительности. Почему она такая сложная и почему на самом деле она такая простая. Как вы уже поняли, объяснение пойдет на пальцах™ , посему прошу не судить слишком строго за весьма вольные трактовки и не вполне корректные аллегории. Я хочу, чтобы прочитав данное объяснение любой гуманитарий , без багажа знаний дифференциального исчисления и интегрирования по поверхности, смог уяснить себе основы ОТО. В конце концов исторически это одна из первых научных теорий, начинающих уходить вдаль от привычного повседневного человеческого опыта. С ньютоновской механикой все просто, на ее объяснение хватит и трех пальцев - вот сила, вот масса, вот ускорение. Вот яблоко на голову падает (все видели как яблоки падают?), вот ускорение его свободного падения, вот силы на него действующие.

С ОТО не все так просто - искривления пространства, гравитационные замедления времени, черные дыры - все это должно вызывать (и вызывает!) у неподготовленного человека массу смутных подозрений - а не по ушам ли ты мне ездишь, чувачок? Какие–такие искривления пространства? Кто их видел эти искривления, откуда они берутся, как подобное вообще можно себе представить?

Попробуем разобраться.

Как можно понять из названия Общей Теории Относительности, суть ее в том, что в общем–то все в мире относительно. Шутка. Хотя и не очень.

Скорость света это та величина, относительно которой относительны все остальные вещи в мире. Любые системы отсчета равноправны, куда бы они ни двигались, что бы они ни делали, даже крутились бы на месте, даже двигались бы с ускорением (что есть серьезный удар под дых Ньютону с Галилеем, которые думали, что только равномерно и прямолинейно двигающиеся системы отсчета могут быть относительными и равноправными, да и то, лишь в рамках элементарной механики) - все равно, всегда можно найти хитрый трюк (по–научному это называется преобразование координат ), при помощи которого можно будет безболезненно переходить из одной системы отсчета в другую, практически ничего не теряя по пути.

Сделать такой вывод Эйнштейну помог постулат (напомню - логическое утверждение, принимаемое на веру без доказательств в силу своей очевидности) "о равенстве гравитации и ускорения" . (внимание, здесь происходит сильное упрощение формулировок, но в общих чертах все верно - эквивалентность эффектов равноускоренного движения и гравитации находится в самом сердце ОТО).

Доказать сей постулат, или хотя бы мысленно его попробовать на вкус весьма просто. Пожалуйте в "лифт Эйнштейна".

Идея сего мысленного эксперимента в том, что если вас заперли в лифте без окон и дверей, то нет ни малейшего, совершенно ни единого способа узнать, в какой ситуации вы находитесь: или лифт продолжает стоять как и стоял на уровне первого этажа, и на вас (и все остальное содержимое лифта) действует обычная сила притяжения, т.е. сила гравитации Земли, или же всю планету Земля убрали у вас из–под ног, а лифт стал подниматься вверх, с ускорением равным ускорению свободного падения g =9.8м/с 2 .

Что бы вы ни делали, какие бы опыты ни ставили, какие бы измерения окружающих предметов и явлений ни производили - различить эти две ситуации невозможно, и в первом и во втором случае все процессы в лифте будут проходить совершенно одинаково.

Читатель со звездочкой (*) наверняка знает один хитрый выход из этого затруднения. Приливные силы. Если лифт очень (очень–очень) большой, километров 300 в поперечнике, теоретически можно отличить гравитацию от ускорения, измерив силу гравитации (или величину ускорения, мы же пока еще не знаем что есть что) в разных концах лифта. Такой огромный лифт будет чуть–чуть сжиматься приливными силами в поперечнике и чуть–чуть вытягиваться ими же в продольной плоскости. Но это уже пошли хитрости. Если лифт достаточно мал, никаких приливных сил вы обнаружить не сможете. Так что не будем о грустном.

Итого, в достаточно маленьком лифте можно считать, что гравитация и ускорение это одно и то же . Казалось бы мысль очевидная, и даже тривиальная. Чего тут такого нового или сложного, скажете вы, это же и ребенку должно быть понятно! Да, в принципе, ничего сложного. Вовсе не Эйнштейн это придумал, такие вещи были известны гораздо раньше.

Эйнштейн же решил выяснить как будет вести себя луч света в подобном лифте. А вот у этой мысли оказались очень далеко идущие последствия, о которых до 1907го года никто всерьез не задумывался. В смысле, задумывались, если честно, многие, но так глубоко заморочиться решился только один.

Представим себе, что мы посветили в нашем мысленном лифте Эйнштейна фонариком. Луч света вылетел из одной стенки лифта, из точки 0) и полетел параллельно полу в сторону противоположной стенки. Покуда лифт стоит на месте, логично предположить, что луч света ударится в противоположную стенку аккурат напротив начальной точки 0), т.е. прилетит в точку 1). Лучи света же по прямой линии распространяются, в школу все ходили, в школе все это учили и юный Альбертик тоже.

Несложно догадаться, что если лифт поехал вверх, то за время покуда луч летел по кабине, она успеет сместиться чуточку вверх.
И если лифт будет двигаться с равномерным ускорением, то луч попадет на стенку в точке 2), то есть при взгляде со стороны будет казаться, что свет двигался как бы по параболе.

Ну, понято, что на самом деле никакой параболы нет. Луч как летел прямо, так и летит. Просто покуда он летел по своей прямой, лифт успел уехать чуточку наверх, вот нам и кажется , что луч по параболе двигался.

Все утрировано и преувеличенно, конечно. Эксперимент мысленный, от чего свет у нас летает медленно, а лифты ездят быстро. Тут пока все еще ничего особо крутого, это все тоже должно быть понятно любому школьнику. Подобный эксперимент можно провести у себя дома. Только нужно найти "очень медленные лучи" и годные, быстрые лифты.

Но Эйнштейн был реально гений. Сегодня многие его ругают, типа он вообще никто и ничто, сидел в своем патентном бюро, плел свои еврейские заговоры и тырил идеи у настоящих физиков . Большинство из заявляющих такое вообще не понимают кто такой Эйнштейн и что он сделал для науки и человечества.

Эйнштейн же сказал - раз "гравитация и ускорение эквивалентны" (еще раз повторю, он не совсем так сказал, я сознательно утрирую и упрощаю), значит в присутствии поля гравитации (например около планеты Земля) свет тоже полетит не по прямой, а по кривой. Гравитация искривит луч света.

Что само по себе было абсолютной ересью для того времени. Любой крестьянин должен знать, что фотоны - безмассовые частицы. Значит свет ничего "не весит". А потому на гравитацию свету должно быть пофиг, он не должен "притягиваться" Землей, как притягиваются камни, мячики и горы. Если кто помнит формулу Ньютона, гравитация обратно пропорциональна квадрату расстояния между телами и прямо пропорциональна их массам. Если у луча света нет массы (а ее у света действительно нет), значит никакого притяжения быть не должно! Тут современники начали коситься на Эйнштейна с подозрением.

А он, зараза, еще дальше попер. Говорит - не будем ломать крестьянам голову. Поверим древним грекам (привет, древние греки!), пусть свет распространяется как и раньше строго по прямой. Давайте лучше предположим, что само пространство вокруг Земли (и любого тела обладающего массой) гнется. Причем не просто трехмерное пространство, а сразу четырехмерное пространство–время.

Т.е. свет как летел по прямой, так и летит. Только эта прямая теперь нарисована не на плоскости, а лежит на как–бы скомканном полотенце. Да еще и в 3D. А комкает это полотенце как раз близкое присутствие массы. Ну, точнее присутствие энергии–импульса, если быть абсолютно точным.

Все ему - "Альбертик, ты гонишь, завязывай–ка поскорее с опиумом! Потому что ЛСД все еще не изобрели, а на трезвую голову такое точно не выдумаешь! Какое гнутое пространство, что ты мелешь?"

А Эйнштейн такой - "Я вам еще покажу!"

Заперся в своей белой башне (в смысле в патентном бюро) и давай математику под идейки подгонять. 10 лет подгонял, пока не родил вот это:

Точнее это квинтэссенция того, что он родил. В более развернутом варианте там 10 независимых формул, а в полном - две страницы математических символов мелким шрифтом.

Если вы решили взять настоящий курс Общей Теории Относительности, здесь вводная часть заканчивается и далее должны последовать два семестра изучения сурового матана. А чтобы подготовиться к изучению этого матана, нужны еще как минимум три года высшей математики, учитывая, что вы закончили среднюю школу и уже знакомы с дифференциальным и интегральным исчислением.

Положа руку на сердце, матан там не столько сложный, сколько нудный. Тензорное исчисление в псевдоримановом пространстве не сильно замороченная тема для восприятия. Это вам не квантовая хромодинамика, или, упаси Бог, не теория струн. Тут все четко, все логично. Вот вам пространство Римана, вот вам многообразие без разрывов и складок, вот метрический тензор, вот невырожденная матрица, сиди себе формулы выписывай, да индексы балансируй, следя чтобы ковариантные и контравариантные представления векторов с обеих сторон уравнения соответствовали друг другу. Это не сложно. Это долго и нудно.

Но не будем забираться в такие дали и вернемся к нашим пальцам™ . По–нашему, по–простецки формула Эйнштейна означает примерно следующее. Слева от знака "равно" в формуле стоят тензор Эйнштейна плюс ковариантный метрический тензор и космологическая постоянная (Λ). Эта лямбда есть по сути своей темная энергия , которую мы сегодня до сих пор нифига не знаем , но любим и уважаем. А Эйнштейн об этом еще даже и не догадывается. Тут своя интересная история, достойная целого отдельного поста.

В двух словах, все, что стоит слева от знака "равно" показывает, как изменяется геометрия пространства, т.е. как оно гнется и скручивается под действием силы гравитации.

А справа, кроме обычных постоянных вроде π , скорости света c и гравитационной постоянной G находится буковка Т - тензор энергии–импульса. В ламмерских терминах можно считать, что это конфигурация того, как распределена в пространстве масса (точнее энергия, ибо что масса, что энергия, все равно эмце квадрат ) для того, чтобы создавать гравитацию и гнуть ею пространство, дабы соответствовать левой части уравнения.

Вот, в принципе, и вся Общая Теория Относительности на пальцах™ .

Исключение понятия эфира из физики было оправданно, по отнюдь не решило возникших в науке проблем. Было установлено:

1) скорость света в пустом пространстве всегда постоянна и, как это ни странно кажется на первый взгляд, независима от движения источника света или приемника света. Это положение доказано опытом Майкельсона;

2) если две системы координат движутся друг относительно друга прямолинейно и равномерно, т. е., говоря языком классической механики, системы являются инерциальными, то все законы природы будут для них одинаковыми. Это положение следует из принципа относительности Галилея. При этом сколько бы ни было таких систем (две или гораздо большее число), отсутствует возможность определить, в которой из них скорость может рассматриваться как абсолютная;

3) в соответствии с классической механикой скорости иперцианых систем могут преобразовываться одна относительно другой, т. е., зная скорость тела (материальной точки) в одной инерциальной системе, можно определить скорость этого тела в другой инерциальной системе, причем значения скоростей данного тела в различных ииерциальных системах координат получатся различными.

Очевидно, что положение третье противоречит положению первому, согласно которому, повторяем, свет имеет постоянную скорость независимо от движения источника или приемника света, т. е. независимо от того, е каких инерциальных системах координат ведется отсчет.

Это противоречие было разрешено с помощью теории относительности - физической теории, основные закономерности которой были установлены А. Эйнштейном и 1905 г. (частная, или специальная, теория относительности ) и в 1916 г. (общая теория относительности ).

Великий ученый-физик Альберт Эйнштейн (1879 - 1955) родился в Германии (г. Ульм). С 14 лет вместе с семьей жил в Швейцарии. Учился в Цюрихском политехническом институте и, закончив его в 1900 г., преподавал в школах городов Шафхаузена и Вшттертура. В 1902 г. ему удалось получить место эксперта в федеральном патентном бюро в Берне, более устраивавшее,его с материальной точки зрения. Годы работы в бюро (с 1902 но 1909) были для Эйнштейна годами очень плодотворной научной деятельности. За это время он создал специальную теорию относительности, дал математическую теорию броуновского движения, остававшегося, кстати говоря, необъяснениым в течение около 80 лет, установил квантовую концепцию света, им были выполнены исследования по статистической физике и ряд других работ.

Только в 1909 г. огромные уже к тому времени научные достижения Эйнштейна стали широко известными, были оценены (далеко еще не в полной мере) и ои был избран профессором Цюрихского университета, а в 1911 г. - Немецкого университета в Праге. В 1912 г. Эйнштейн был избран заведующим кафедрой цюрихского Политехнического института и возвратился в Цюрих. В 1913 г. Эйнштейна избрали членом Прусской академии наук, он переехал в Берлин, где жил до 1933 г., являясь л эти годы директором Физического института и профессором Берлинского университета. В этот период времени он создал общую теорию относительности (скорее, завершил, так как работать над ней начал в 1907 г.), развил квантовую теорию света и выполнил ряд других, исследований. В 1.921 г. за работы в области теоретической физики, и в частности за открытие законов фотоэффекта (явление, заключающееся в освобождении электронов твердого тела или жидкости в результате действия электромагнитного излучения), Эйнштейну была присуждена Нобелевская премия.

Теория относительности - главное достижение Эйнштейна - получила признание далеко не сразу. Можно считать, что специальная теория относительности, основы которой, как уже сказано, были созданы Эйнштейном в 1905 г., получила всеобщее признание только в лачале 20-х годов. Но и после этого было немало людей, н том числе и физиков, являвшихся ее активными противниками. Более того, даже в настоящее время совсем не редкость услышать против нее возражения. Правда, теперь в большинстве случаев это относится if людям, недостаточно знакомым с физикой. Вероятно, это объяснястся тем, что основдь;а положения теории относительности, как это будет видно из дальнейшего, очень необычны и не так уж легки для восприятия.

В 1933 г. по причине нападок па него со стороны идеологов немецкого фашизма как на общественного деятеля - борца против войны и еврея Эйнштейн покинул Германию, а в дальнейшем, в знак протеста против фашизма, отказался от членства в академии наук Германии. Всю заключительную часть своей жизни Эйнштейн провел в г. Принстоне (США), работая в Нринстонском институте фундаментальных исследований.

Эйнштейн, приступая к разработке теории относительности, принял два из трех положений, сформулированных в начале этого раздела, а именно: 1) скорость света в вакууме неизменна и одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга, п 2) для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить. Третье, противоречащее первому положение (о различных значениях преобразованных скоростей в различных инерциальных системах) было Эйнштейном отброшено, хотя это и представляется сначала странным. Уже из такого подхода можно предугадать, к каким заключениям должен был прийти Эйнштейн, но не будем торопиться.

Из сказанного ранее читателю известно, что существует частная (или специальная) теория относительности и общая теория относительности. Частная теория относительности рассматривает и формулирует физические законы применительно только к инерциальным системам, т. е. к таким системам, в которых справедлив закон инерции в том виде, как он был установлен Галилеем, в то время как общая теория относительности применима к любым системам координат, в ней формулируются законы для поля тяготения.

Таким образом, как это и следует из названий, специальная теория относительности является частным случаем более всеобъемлющей, общей теории относительности. Тем не менее в действительности сначала была разработана частная (специальная) теория относительности и уже после этого - общая теория относительности. Мы будем вести рассказ этим же путем.

В механике Ньютона существует абсолютное пространство и абсолютное время. Пространство вмещает в себя материю, неизменно и никак не связано с материей. Время абсолютно, и его течение никак не связано ни с пространством, ни с материей. Такое представление интуитивно и, по данным классической механики, нам кажется естественным, правильным. Но правильно ли оно в действительности? Не подводит ли нас еще раз интуиция (как это было в случае определения зависимости между прилагаемой силой и скоростью движения)? И как, наконец, увязать механику Ньютона с опытом Mайкельсона о неизменности скорости света в вакууме?

Теория относительности покоится на том, что понятия пространства п времени в противоположность механике Ньютона не абсолютны. Пространство и время, по Эйнштейну, органически связаны с материей и между собой. Можно сказать, что задача теории относительности сводится к определению законов четырехмерного пространства три координаты которого являются координатами трехмерного объема (х, у, z), а четвертая координата - время (t).

Что получаем, отбирая у понятий пространства и времени абсолютные значения и вводя (что в принципе одно и то же) четырехмерное пространство вместо трехмерного? Дело в том, что доказанное опытом постоянство скорости света заставляет отказаться от понятия абсолютного времени. Это не сразу очевидное утверждение может быть доказано простым мысленным опытом.

Допустим, что мы снова имеем двух наблюдателей: внутреннего, помещающегося внутри движущегося замкнутого объема, и внешнего, находящегося вне этого объема. Пусть источник света, как и раньше, помещается внутри движущегося замкнутого объема и перемещается вместе с ним. Только теперь в отличие от ранее рассмотренного аналогичного опыта ни о каком эфире речь не идет, поскольку вопрос о его существовании решен отрицательно.

Что же обнаружат внутренний и внешний наблюдатели? Внутренний наблюдатель, движущийся вместе с замкнутым объемом, обнаружит, что свет одновременно достигнет всех стенок объема, если, они, конечно, находятся на одинаковом расстоянии от источника света. Внешний наблюдатель, для которого, согласно опыту Майкельсоиа, движение источника света несущественно, также увидит световой сигнал, идущий во все стороны с равной скоростью. Но так как одна из стенок замкнутого объема будет, как ему покажется (в его системе координат), приближаться к источнику света, а другая отдаляться от него, то свет достигнет этих двух стенок неодновременно.

Следовательно, получается, что два события, одновременные в одной системе координат, могут быть неодновременными в другой системе координат.

Объяснение этого положения оказалось возможным только путем изменения основных понятий - пространства и времени, что и было сделано, как уже сказано, Эйнштейном. Как следует из созданной им па этой основе частной теории относительности, может быть получена единственно возможная однозначная зависимость между временем и длиной для инерциальных систем координат. Если обозначить для двух систем инерциальных координат (относительно покоящейся и относительно движущейся) соответственно длины в направлении относительной скорости v через х и х ", время через t и t" , скорость света с, то получаются формулы, именуемые иногда математической основой частной теории относительности:


Из этих формул следует, что, чем больше v , чем ближе v к с , тем больше различие между х и х" и между t и i" . Поэтому при относительно малых значениях i когда v/c близко к 0 (а так почти всегда и бывает в макроскопических, «земных» условиях), х" близко к x-vt, t" близко к t, а уравнения теории относительности могут быть заменены уравнениями классической механики. Наоборот, при больших значениях v, близких к скорости света с, когда отношением v/c пренебречь по малости нельзя, т. о. когда приходится иметь дело с релятивистскими (Релятивистские (от лат. Rolativus - Относительный) эффекты - физические явления, происходящие при скоростях, близких к скорости света, или в сильных гравитационных полях ) эффектами (например, при расчете ускорителей элементарных частиц или ядерных реакций), формулы классической механики использоваться по понятным причинам не могут. Из этих же формул видно также, что скорость света с, равная, как известно, огромной величине - 300 тыс. км/с является предельной. Выше скорость любого объекта быть не может. Действительно, если бы v была больше с, то под знаком корня оказалось бы отрицательное число и, следовательно, х" и t" были бы мнимыми числами, чего быть не может.

Следует назвать работы Лоренца и Пуанкаре в связи с созданием частной теории относительности.

Нидерландский физик Хендрик Антон Лоренц (1853 - 1928) был одним из крупнейших ученых своего времени. Он создал классическую электронную теорию, которая нашла свое завершение в монографин Лоренца «Теория электронов)) (1909) и позволила объяснить многие электрические и оптические явления. Лоренц занимался вопросами диэлектрической и магнитной проницаемости, электропроводности и теплопроводности, некоторыми оптическими явлениями. Когда нидерландский физик Питер Зеемаи (1865 - 1943) открыл новый эффект (в 1896 г.), носящий теперь его имя, Лоренц дал теорию этого эффекта и предсказал поляризацию компонент зе-емаповского расщепления (существо дела состоит в том, что атомная система, имеющая магнитный момент и попадающая во внешнее магнитное поле, приобретает дополнительную энергию и ее спектральные линии расщепляются) .

Особое место занимают работы Лоренца, выполненные в конце XIX в., в которых он близко подошел к созданию частной теории относительности. Когда в 1881 г. Майкельсон опытным путем установил постоянство скорости света в вакууме и независимость ее от движения источника и приемника света, возникла, как уже говорилось, проблема согласования этого опыта с электродинамикой и оптикой, представления о которых были построены па существовании эфира.

В 1892 г. Лоренц (а до него в 1889 г., английский физик Дж. Фицджеральд) получил уравнения, названные его именем (преобразования Лоренца), которые дают возможность установить, что при переходе от одной инерциальной системы к другой могут изменяться значения времени и размера. движущегося объекта в направлении скорости движения. Если тело движется со скоростью v относительно некоторой ииерциалыюй системы координат, то физические процессы, согласно преобразованиям Лоренца, будут протекать медленнее, чем в данной системе, в


где с - скорость света.

Во столько же раз в новой ииерциалыюй системе координат сократятся продольные (в отношении скорости v) размеры движущегося тела. Очевидно, что уравнения, именуемые математической основой частной теории относительности, не отличаются от преобразований Лоренца и могут быть приведены к единому виду. Из преобразований Лоренца также видно, что скорость света является максимально возможной скоростью.

Лоренц признавал существование эфира и считал в отличие от Эйнштейна, что более медленное течение времени и сокращение размеров, о которых речь шла выше, есть результат изменения действующих в телах электромагнитных сил при движении тела через эфир.

Один из крупнейших математиков и физиков, французский ученый Анри Пуанкаре (1854 - 1912), широко известен своими трудами в области дифференциальных уравнений, новых классов трансцендентных (Трансцендентные функции - аналитические функции, не являющиеся алгебраическими (например, показательная функция, тригонометрическая функция). )- так называемых автоморфных - функций, в ряде вопросов математической физики. Коллектив французских математиков в «Очерках по истории математики» пишет: «Нет такого математика, даже среди обладающих самой обширной эрудицией, который бы не чувствовал себя чужеземцем в некоторых областях огромного математического мира, что же касается тех, кто, подобно Пуанкаре пли Гильберту, оставляет печать своего гения почти во всех областях, то они составляют даже среди наиболее великих редчайшее исключение» (Цит. по: Тяпкин А.. Шибанов Л. Пуанкаре. М., 1979, с. 5 - 6. (ЖЗЛ) )

Несомненно, Пуанкаре оставил «печать своего гения» на создании частной теории относительности. В ряде своих трудов он неоднократно касался различных аспектов теории относительности. Далеко не безразлично, что именно Пуанкаре ввел название «преобразования Лоренца» и в начале 1900-х годов начал пользоваться термином «принцип относительности». Пуанкаре независимо от Эйнштейна развил математическую сторону принципа относительности, дал глубокий анализ понятия одновременности событий и размеров движущегося тела в различных инерциальных системах координат. В целом Пуанкаре почти одновременно с Эйнштейном очень близко подошел к частной теории относительности. Эйнштейн опубликовал статью, в которой показал неразрывную связь между массой и энергией, представляемую формулой, полученной на основе уравнений, выражающих математическую основу частной теории относительности (припо-денных выше), и использования законов сохранения энергии и количества движения:

Е = mс 2 , где Е - энергия, m - масса, с - скорость света.

Из этой формулы следует, что одному грамму массы соответствует огромная энергия, равная 9-1020 эрг. Можно, конечно, на основании тех же исходных данных написать уравнение (что и было сделано Эйнштейном), выражающее зависимость массы от скорости движения тела:


в котором m 0 - масса покоя (когда v = 0) и v - скорость движения тела.

Из последнего уравнения видно, что макроскопическому телу (например, килограммовой гире) практически невозможно придать скорость, близкую к скорости света, так как при этом масса гири, увеличиваясь с ростом ее скорости, стремилась бы к бесконечности. Естественно, возникает вопрос: существуют ли вообще такие частицы, скорости которых равны скорости света? Забегая немного вперед, скажем: да, существуют. Такой частицей является квант электромагнитного поля, нейтральная (не имеющая электрического заряда) элементарная частица переносчик электромагнитного взаимодействия (а значит, и света) фотон , масса покоя которого равна нулю (tn 0 = 0 ). Ну конечно, скажем мы, уж если бы переносчик света не имел скорости света , дело было бы совсем плохо. По-видимому, нулевой массой покоя обладает также нейтринон. Электрон, например, имеющий очень маленькую массу (около 9 10 -28 г), может двигаться со скоростью, весьма близкой к скорости света.

Ну, а можно ли последнее уравнение, представляющее собой зависимость массы тела от скорости его движения, получить на основе преобразований Лоренца? Да, конечно можно. Так, может быть, мы тогда напрасно считаем, что именно Эйнштейн открыл частную теорию относительности? Вот с этим никак нельзя согласиться. Мы только отдаем Эйнштейну должное. Эйнштейн изложил совершенно новую точку зрения, создав принципы частной теории относительности. Он сделал революционный шаг « физике, отказавшись от абсолютности времени, что привело к пересмотру понятия одновременности и рамок применимости основных физических законов. Объяснение сложившихся после опыта Майкельсоиа в физике противоречий Эйнштейн искал не в конкретных свойствах электромагнитного поля, как это делали другие физики, а в общих свойствах пространства и времени. Эйнштейн показал, что именно этим объясняется изменение протяженности тел и промежутков времени при переходе от одной инерциальной системы координат к другой.

Изменения, внесенные Эйнштейном в физику, особенно создание частной и общей теории относительности, часто сравнивают по масштабу и значимости с изменениями, внесенными в физику Ньютоном.

Одним из «великих преобразователей естествознания» назвал Эйнштейна В. И. Ленин.

Следует отметить работы в области частной теории относительности, проделанные известным немецким математиком и физиком Германом Минковским (1864 -1 909), родившимся в России, в местечке Алексоты Минской губернии. В 1909 г. вышла его работа «Пространство и время» - о четырехмерном пространстве-времени. Впервые четырехмерная концепция была развита Минковским в докладе «Принцип относительности», представленном им в 1907 г. Геттингенскому математическому обществу.

Здесь уместно сказать несколько слов о великом русском математике Николае Ивановиче Лобачевском, (1792 - 1856), создателе неевклидовой геометрии (геометрии Лобачевского). Геометрия Лобачевского, совершившая переворот в представлении о природе пространства, построена па тех же постулатах, что и евклидова геометрия , за исключением постулата (аксиомы) о параллельных. В отличие от евклидовой геометрии, согласно которой «в плоскости через точку, не лежащую па данной прямой, можно провести одну и только одну прямую, параллельную данной, т. е. ее не пересекающую», в неевклидовой геометрии утверждается: «в плоскости через точку, не лежащую па данной прямой, можно провести более одной прямой, не пересекающей данной». В геометрии Лобачевского имеются и другие внешне парадоксальные положения (теоремы), например «сумма углов треугольника менее двух прямых углов (меньше π)». Геометрия Лобачевского, не получившая признания его современников, оказалась крупным открытием. Общая теория относительности, о чем будет сказано ниже, приводит к неевклидовой геометрии.

Лобачевский был профессором, деканом физико-математического факультета и ректором Казанского университета. Какое необыкновенное совпадение: студентами Казанского университета были в разное время В. И. Ленин, Л. Н. Толстой и II. И. Лобачевский.

С 1907 г. интересы Эйнштейна были в большей мере сосредоточены на создании общей теории относительности. Он рассмотрел случай, когда различие между системами координат является более сложным, нежели при сопоставлении иперциальных систем координат. Другими словами, в этом случае одна система координат в отношении другой может находиться в состоянии движения произвольного характера, например в состоянии ускоренного движения.

Для того чтобы и в этом случае в системах оставались справедливыми одни и те же законы природы, необходимо, как это установил Эйнштейн, принимать в расчет поля тяготения (гравитационные поля). Проблема инвариантности в общем случае оказывается непосредственно связанной с проблемой гравитации (тяготения).

В первой половине настоящей книги, когда речь шла о работах Галилея о рождении современной науки, были введены два понятия: инертной массы и тяжелой массы. Опытами Галилея фактически было установлено равенство их значений для данного тела. На вопрос о том, случайно ли это равенство, был дан ответ, что с точки зрения классической физики случайно, а с точки зрения современной физики (теперь мы можем сказать: с точки зрения общей теории относительности) отнюдь не случайно.

Разрабатывая общую теорию относительности, Эйнштейн пришел к выводу о фундаментальном значении равенства инертной и тяжелой масс. В действительном мире движение любого тела происходит в присутствии многих других тел, силы тяготения которых оказывают на него воздействие. Равенство инертной и тяжелой масс дало возможность дальнейшего расширения физического учения о пространстве-времени, представляющего существо общей теории относительности. Эйнштейн пришел к выводу, что реальное пространство является неевклидовым, что в присутствии создающих гравитационные поля тел количественные характеристики пространства и времени становятся другими, нежели в отсутствие тел и создаваемых ими полей. Так, например, сумма углов треугольника меньше л;, время течет медленнее. Эйнштейн дал физическое толкование теории Н. И. Лобачевского.

Основы общей теории относительности нашли свое выражение в полученном Эйнштейном уравнении гравитационного поля.

Если частная теория относительности но только подтверждена экспериментально, как об этом было сказано, при создании и эксплуатации ускорителей микрочастиц и ядерных реакторов, но уже стала необходимым инструментом соответствующих расчетов, то с общей теорией относительности дело обстоит иначе. Известный советский физик В. Л. Гинзбург пишет по этому поводу: «Общая теория относительности (ОТО) была в законченном виде сформулирована Эйнштейном в 1915 г. К этому же времени им уже были указаны также три знаменитых («критических») эффекта, могущих служить для проверки теории: гравитационное смещение спектральных линий, отклонение световых лучей в поле Солнца и смещение перигелия (Перигелий - ближайшая к Солнцу точка орбиты небесного тела, вращающегося вокруг Солнца, в данввк случае Меркурия - Примеч. Автора. ) Меркурия. С тех пор прошло больше полстолетия, по проолема экспериментальной проверки ОТО остается животрепещущей и продолжает находиться в центре внимания...

Отставание в области экспериментальной проверки ОТО обусловлено как малостью эффектов, доступных наблюдению на Земле и в пределах Солнечной системы, так и сравнительной неточностью соответствующих астрономических методов. Сейчас, однако, положение изменилось в результате применения межпланетных ракет, «проб» радиометодов н т. д. Поэтому перспективы проверки ОТО с погрешностью порядка 0,1 - 0,01% представляются сейчас весьма хорошими.

Если будет показано (горячо па это надеюсь), что с экспериментальной проверкой ОТО в поле Солнца «все в порядке», то вопрос о такой проверке перейдет совсем в другую плоскость. Останется вопрос о справедливости ОТО в сильных полях или вблизи и внутри сверхмассив-пых космических тел, не говоря уже о применимости ОТО в космологии.

Две последние фразы были написаны пять лет назад и фигурировали в предыдущем издании книжки. Тогда и вопрос о сплющенности Солнца оставался еще неясным и эффект отклонения лучей и запаздывания сигналов в поле Солнца был измерен с погрешностью в несколько процентов. Сейчас, когда все три эффекта, предсказанные ОТО для слабого поля, в пределах достигнутой точности в 1 % сходятся с теорией, именно проверка ОТО в сильном поле уже вышла на первый план» (Гинзбург Л. Л. О шитике и астрофизике. 3-е изд., церераб. М., 1880, с. 90 - 92. )

В заключение сказанного о теории относительности заметим следующее. Многие ученые считают, что в ходе дальнейшего ее развития придется встретиться со сложными задачами. В настоящее время общая теория относительности в известном смысле является классической теорией, в ней не используются квантовые представления. Однако теория гравитационного поля - в этом не приходится сомневаться - должна быть квантовой. Вполне возможно, что именно здесь и придется встретиться с главными проблемами дальнейшего развития общей теории относительности.

Теперь мы переходим к другому разделу физики, вклад Эйнштейна в который очень весом, а именно к квантовой теории.

Основоположником квантовой теории является нрос-лаплешгый немецкий физик, член Берлинской академии наук, почетный млей Академии наук СССР Макс Планк (1858 - 1947). Планк учился в Мюнхенском и Берлинском университетах, слушая лекции Гельмгольца, Кирхгофа и других крупных ученых, работал преимущественно в Киле и Берлине. Основные работы Планка, вписавшие его имя в историю науки, относятся к теории теплового излучения.

Известно, что излучение телами электромагнитных воли может происходить за счет различных видов энергии, но часто это тепловое излучение, т. е. его источником является тепловая энергия тела. Теория теплового излучения, говоря несколько упрощенно, сводится в основном к тому, чтобы найти зависимость между энергией излучения и длиной электромагнитной волны (или частотой излучения), температурой и затем определить полную энергию излучения во всем диапазоне длин волн (частот).

До тех пор пока энергия излучения рассматривалась как непрерывная (а не дискретная , от лат. discretus - прерываю, т. е. изменяющаяся порциями) функция определенных параметров, например длины электромагнитной волны (или частоты излучения) и температуры, по удавалось достигнуть совпадения теории и эксперимента. Опыт отвергал теорию.

Решающий шаг был сделан в 1900 г. Планком, который предложил новый (совершенно не отвечающий классическим представлениям) подход: рассматривать энергию электромагнитного излучения величиной дискретной, могущей передаваться только отдельными, хотя и малыми порциями (квантами). В качестве такой порции (кванта) энергии Планк предложил

Е = hv,

где Е, эрг - порция (квант) энергии электромагнитного излучения, v, с -1 - частота излучения, h=6,62 10 -27 эрг с - постоянная, получившая впоследствии наименование постоянной Планка , или кванта действия Планка. Догадка Планка оказалась чрезвычайно удачной, или, лучше сказать, гениальной. Планку не только удалось получить уравнение теплового излучения, отвечающее опыту, но его представления явились основой квантовой теории - одной из наиболее всеобъемлющих физических теорий, в которую входят теперь квантовая механика, квантовая статистика, квантовая теория поля.

Необходимо сказать, что уравнение Планка справедливо только для абсолютно черного тела , т. е. тела поглощающего все падающее на пего электромагнитное излучение. Для перехода к другим телам вводится коэффициент - степень черноты.

Как уже сказано, Эйнштейн внес большой вклад п создание квантовой теории. Именно Эйнштейну принадлежит идея, высказанная им в 1905 г., о дискретной, квантовой структуре поля излучения. Это позволило ему дать объяснение таким явлениям, как фотоэффект (явление, как мы уже однажды говорили, связанное с выделением электронов твердым телом или жидкостью под действием электромагнитного излучения), люминесценция (свечение некоторых веществ - люминофоров, избыточное по сравнению с тепловым излучением и возбужденное каким-либо другим источником энергии: светом, электрическим нолем и пр.), фотохимические явления (возбуждение химических реакций под действием света).

Придание электромагнитному полю квантовой структуры было смелым и дальновидным действием Эйнштейна. Противоречие между квантовой структурой и волновой природой света, введение понятия фотонов, представляющих собой, как уже говорилось, кванты электромагнитного поля, нейтральные элементарные частицы, создание фотонной теории света было важным шагом, хотя и получило разъяснение только в 1928 г.

В области статистической физики, кроме создания теории броуновского движения, о чем уже говорилось, Эйнштейн совместно с известным индийским физиком Шатъендранатом Бозе, разработал квантовую статистику для частиц с целым спином (Под спином (от англ, spin - вращение) понимается собственный момент количества движения микрочастицы, имеют квантовую природу и не связанный с движением частицы как целого. ), получившую название статистики Бозе - Эйнштейна. Заметим , что для: частиц с полуцелым спином имеется квантовая статистика Ферми - Дирака.

В 1917 г. Эйнштейн предсказал существование ранее неизвестного эффекта - вынужденного испускания. Этот эффект, позднее обнаруженный, определил возможность создания лазеров.

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Теория относительности - физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введен в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности
в специальной теории относительности (и, позже, общей теории относительности).

В узком смысле теория относительности включает в себя специальную и общую теорию относительности. Специальная теория относительности (далее - СТО) относится к процессам, при исследовании которых полями тяготения можно пренебречь; общая теория относительности (далее - ОТО) - это теория тяготения, обобщающая ньютоновскую.

Специальная , или частная теория относительности - это теория структуры пространства-времени. Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики, а также пространственно-временные отношения, определяющие их, при любых скоростях движения,
в том числе и близких к скорости света. Классическая механика Ньютона
в рамках СТО является приближением для малых скоростей.

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру. Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.


СТО объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу. Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета. Так что, если два космонавта летят на двух космических кораблях и хотят сравнить свои наблюдения, единственное, что им нужно знать – это скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.

Исходя из невозможности обнаружить абсолютное движение, Альберт Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея (утверждает то же самое, но не для всех законов природы, а только для законов классической механики, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике) на любые физические. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково . Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света . Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е=mc 2 (где С - скорость света), которая показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения и подтвержденная данными современной физики. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы». Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Общая теория относительности - теория гравитации, опубликованная Эйнштейном в 1916 году, над которой работал в течение 10 лет. Является дальнейшим развитием специальной теории относительности. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает ОТО, которая объясняет движения материальных тел в общем случае.

В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

ОТО в настоящее время - самая успешная теория гравитации, хорошо подтверждённая наблюдениями. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

- ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь (там, где гравитация велика, скорость света замедляется);

- распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

В ОТО, или теории тяготе­ния он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Из ОТО был получен ряд важных выводов:

1. Свойства пространства-времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

Долгое время экспериментальных подтверждений ОТО было мало. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX века были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны);
с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

Итак, специальная теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс.

Наиболее значительным результатом общей теории относительности с философской точки зрения является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс. Именно благодаря воздействию тел
с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира.

В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства – времени. Кардинальное отличие общей теории относительности от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Стоит сказать, что общая теория относительности произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной.


О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии . Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей. ОТО в настоящее время — самая успешная теория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что качественно и количественно подтвердило предсказания общей теории относительности. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр. Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этих проблем был предложен ряд альтернативных теорий, некоторые из которых также являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют. Значение общей теории относительности выходит далеко за пределы теории тяготения. В математике специальная теория относительности стимулировала исследования в области теории представлений групп Лоренца в гильбертовом пространстве, а общая теория относительности стимулировала исследования по обобщению геометрии Римана и возникновение аффинной дифференциальной геометрии, а также разработку теории представлений непрерывных групп Ли. Теорию относительности можно рассматривать как пример, показывающий, как фундаментальное научное открытие, иногда даже вопреки воле его автора, даёт начало новым плодотворным направлениям, развитие которых происходит далее по их собственному пути.
Основные принципы общей теории относительности
Необходимость модификации ньютоновской теории гравитации Классическая теория тяготения Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с понятием поля в современной физике. В теории относительности никакая информация не может распространиться быстрее скорости света в вакууме. Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временну́ю компоненту 4-вектора.
Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме.
Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам. Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.
Принцип равенства гравитационной и инертной масс
В нерелятивистской механике существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная — определяет силу притяжения тела другими телами и его собственную силу притяжения. Эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть связанными, а тем более — пропорциональными друг другу. Однако их экспериментально установленная строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Идея принципа восходит к Галилею, и в современной форме он был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10−3. В конце XIX века более тонкие эксперименты провёл фон Этвёш, доведя точность проверки принципа до 10−9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10−12—10−13 (Брагинский, Дикке и т. д.).
Принцип общей ковариантности
Математические уравнения, описывающие законы природы, должны не изменять своего вида и быть справедливыми при преобразованиях к любым координатным системам, то есть быть ковариантными относительно любых преобразований координат.
Принцип близкодействия
В отличие от ньютоновской физики (которая основана на физическом принципе дальнодействия) теория относительности основана на физическом принципе близкодействия. Согласно ему, скорость передачи причинного взаимодействия конечна и не может превышать скорости света в вакууме. Причинно связанными могут быть лишь такие события, квадрат расстояния между которыми не превышает величины, где - скорость света, - промежуток времени между событиями (разделённые времениподобным интервалом). Причинно связанные события в теории относительности могут располагаться лишь на времениподобных линиях пространства Минковского. В общей теории относительности это линии в неэвклидовом пространстве. С принципом близкодействия связана инвариатность причинного-следственной связи в теории относительности. Если одно событие является причиной другого в некоторой инерциальной системе отсчёта, то это верно и в любой другой инерциальной системе отсчёта, движущейся относительно первой со скоростью, меньшей скорости света.
Принцип причинности
Принцип причинности в теории относительности утверждает, что любое событие может оказать причинно-следственное влияние только на те события, которые происходят позже его, и не может оказать влияние на любые события, совершившиеся раньше его. Причинность обладает следующими свойствами:
. Причинность есть отношение не между вещами, а между событиями.
. Условие, по которому скорость причинного действия конечна и не может превышать скорости света в вакууме однозначно определяет условие возможности существования причинной связи между двумя событиями: причинно связанными могут быть лишь такие события, квадрат расстояния между которыми в трехмерном пространстве не превышает величины (разделённые времениподобным интервалом). В теории относительности причинно связанные события находятся на времениподобных линиях в пространстве Минковского.
. Причинность релятивистски инвариантна, то есть два события, являющиеся следствием и причиной в одной инерциальной системе отсчета, являются следствием и причиной и во всех остальных инерциальных системах отсчёта, движущихся относительно её со скоростью, меньшей скорости света. Инвариантность причинности вытекает из физического принципа близкодействия.
Принцип наименьшего действия
Принцип наименьшего действия играет важную роль в общей теории относительности. Принцип наименьшего действия для свободной материальной точки в теории относительности утверждает, что она движется так, что её мировая линия является экстремальной (дающей минимальное действие) между двумя заданными мировыми точками. Его математическая формулировка: , где. Из принципа наименьшего действия можно получить уравнения движения частицы в гравитационном поле. Получаем: . Из этого следует: . Здесь при интегрировании по частям во втором слагаемом учтено, что в начале и конце отрезка интегрирования. Во втором члене под интегралом заменим индекс индексом. Далее: . Третий член можно записать в виде. Вводя символы Кристоффеля: . получаем уравнение движения материальной точки в гравитационном поле: Принцип наименьшего действия для гравитационного поля и материи Впервые принцип наименьшего действия для гравитационного поля и материи сформулировал Д. Гильберт. Его математическая формулировка: , где - вариация действия материи, - тензор энергии-импульса материи, - определитель матрицы, составленной из величин метрического тензора - вариация действия гравитационного поля, где - скалярная кривизна. Отсюда вариацией получаются уравнения Эйнштейна.
Принцип сохранения энергии
Принцип сохранения энергии играет важную эвристическую роль в теории относительности. В специальной теории относительности требование инвариантности законов сохранения энергии и импульса относительно преобразований Лоренца однозначно определяет вид зависимости энергии и импульса от скорости. В общей теории относительности закон сохранения энергии-импульса используется как эвристический принцип при выводе уравнений гравитационного поля. Одним из предположений при выводе уравнений гравитационного поля является предположение, что закон сохранения энергии-импульса должен тождественно выполняться как следствие уравнений гравитационного поля.
Принцип движения по геодезическим линиям
Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого́ пространства в этой точке. Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела движутся по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке. Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.
Кривизна пространства-времени
Девиация геодезических линий вблизи массивного тела Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических линий (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно способом связи между материей (телами и полями негравитационной природы, создающими гравитационное поле[прояснить]) и метрическими свойствами пространства-времени.
Пространство-время ОТО и сильный принцип эквивалентности
Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так: Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности. Иногда тот же принцип постулируют как
«локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности». Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в само́й окончательной форме теории он на самом деле не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривлённым — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел. Важно отметить, что основным отличием пространства-времени ОТО от пространства-времени СТО является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени СТО этот тензор тождественно равен нулю и пространство-время является плоским. По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.
Проблема системы отсчёта.
Проблема системы отсчёта возникает в ОТО, так как естественные в других областях физики инерциальные системы отсчёта в искривлённом пространстве-времени невозможны. Она включает в себя теоретическое определение системы отсчёта (например, локально инерциальная система координат, нормальные координаты, гармонические координаты) и реализацию её на практике физическими измерительными приборами. Проблема измерений физическими приборами в том, что измерены могут быть лишь проекции измеряемых величин на времениподобное направление, а непосредственное измерение пространственных проекций осуществимо только после введения системы пространственных координат, например, путём измерения метрики, связности и кривизны вблизи мировой линии наблюдателя посылкой и приёмом отраженных световых сигналов, или путём задания геометрических характеристик пространства-времени (по ходу световых лучей, задаваемому геометрией, определяется положение источника света).
Уравнения Эйнштейна
Математическая формулировка общей теории относительности Уравнения Эйнштейна связывают между собой свойства материи, присутствующей в искривлённом пространстве-времени, с его кривизной. Они являются простейшими (наиболее линейными) среди всех мыслимых уравнений такого рода. Выглядят они следующим образом: где — тензор Риччи, получающийся из тензора кривизны пространства-времени посредством свёртки его по паре индексов — скалярная кривизна, свёрнутый с дважды контравариантным метрическим тензором тензор Риччи — космологическая постоянная, представляет собой тензор энергии-импульса материи, — число пи, — скорость света в вакууме, — гравитационная постоянная Ньютона. Тензор называют тензором Эйнштейна, а величину — гравитационной постоянной Эйнштейна. Здесь греческие индексы пробегают значения от 0 до 3. Дважды контравариантный метрический тензор задаётся соотношением Тензор кривизны пространства-времени равен где используются символы Кристоффеля, определяемые через производные от компонент дважды ковариантного метрического тензора Символ Кристоффеля с одним верхним индексом по определению равен Так как уравнения Эйнштейна не налагают никаких ограничений на используемые для описания пространства-времени координаты, то есть обладают свойством общей ковариантности, то они ограничивают выбор лишь 6 из 10 независимых компонент симметричного метрического тензора — система только из уравнений Эйнштейна недоопределена. Поэтому их решение неоднозначно без введения некоторых ограничений на компоненты метрики, соответствующих однозначному заданию координат в рассматриваемой области пространства-времени и называемых поэтому обычно координатными условиями. Решая уравнения Эйнштейна совместно с правильно подобранными координатными условиями, можно найти все 10 независимых компонент симметричного метрического тензора. Этот метрический тензор (метрика) описывает свойства пространства-времени в данной точке и используется для описания результатов физических экспериментов. Он позволяет задать квадрат интервала в искривлённом пространстве который определяет «расстояние» в физическом (метрическом) пространстве. Символы Кристоффеля метрического тензора определяют геодезические линии, по которым объекты (пробные тела) двигаются по инерции. В наиболее простом случае пустого пространства (тензор энергии-импульса равен нулю) без лямбда члена одно из решений уравнений Эйнштейна описывается метрикой Минковского специальной теории относительности Долгое время дискутировался вопрос о наличии в уравнениях Эйнштейна третьего члена в левой части. Космологическая постоянная Λ была введена Эйнштейном в 1917 году в работе «Вопросы космологии и общая теория относительности» для того, чтобы описать в ОТО статическую Вселенную, однако затем открытие расширения Вселенной разрушило философские и экспериментальные основания её учёта в теории гравитации. Данные современной количественной космологии, тем не менее, говорят в пользу модели Вселенной, расширяющейся с ускорением, то есть с положительной космологической постоянной. С другой стороны, величина этой постоянной настолько мала, что позволяет не учитывать её в любых физических расчётах, кроме связанных с астрофизикой и космологией в масштабах скоплений галактик и выше. Уравнения Эйнштейна наиболее просты в том смысле, что кривизна и энергия-импульс в них входят лишь линейно, а кроме того, в левой части стоят все тензорные величины валентности 2, которые могут характеризовать пространство-время. Их можно вывести из принципа наименьшего действия для действия Эйнштейна — Гильберта: где обозначения расшифрованы выше, представляет собой лагранжеву плотность материальных полей, а даёт инвариантный элемент 4-объёма пространства-времени. Здесь — определитель, составленный из элементов матрицы дважды ковариантного метрического тензора. Знак минус введён для того, чтобы показать, что определитель всегда отрицателен (для метрики Минковского он равен −1). С математической точки зрения уравнения Эйнштейна являются системой нелинейных дифференциальных уравнений в частных производных относительно метрического тензора пространства-времени, поэтому сумма их решений не является новым решением. Приближённо линейность можно восстановить лишь при исследовании малых возмущений заданного пространства-времени, например, для слабых гравитационных полей, когда малы отклонения метрических коэффициентов от их значений для плоского пространства-времени и настолько же мала порождаемая ими кривизна. Дополнительным обстоятельством, затрудняющим решение этих уравнений, является то, что источник (тензор энергии-импульса) подчиняется собственному набору уравнений — уравнениям движения той среды, что заполняет рассматриваемую область . Интерес представляет то обстоятельство, что уравнения движения, если их меньше четырёх, вытекают из уравнений Эйнштейна в силу локального закона сохранения энергии-импульса. Это свойство известно как самосогласованность уравнений Эйнштейна и впервые было показано Д. Гильбертом в его знаменитой работе «Основания физики». Если же уравнений движения больше четырёх, то решать приходится систему из координатных условий, уравнений Эйнштейна и уравнений среды , что ещё более сложно. Именно поэтому такое значение придаётся известным точным решениям этих уравнений. Важнейшие точные решения уравнений Эйнштейна включают: решение Шварцшильда (для пространства-времени, окружающего сферически симметричный незаряженный и невращающийся массивный объект), решение Райсснера — Нордстрёма (для заряженного сферически симметричного массивного объекта), решение Керра (для вращающегося массивного объекта), решение Керра — Ньюмена (для заряженного вращающегося массивного объекта), а также космологическое решение Фридмана (для Вселенной в целом) и точные гравитационно-волновые решения. Среди приближённых решений надо выделить приближённые гравитационно-волновые решенияи решения, получаемые методами постньютоновского разложения. Численное решение уравнений Эйнштейна также представляет трудности, которые были решены только в 2000-х годах, что привело к появлению динамично развивающейся численной относительности (англ.). Уравнения Эйнштейна без космологической постоянной были практически одновременно выведены в ноябре 1915 года Давидом Гильбертом (20 ноября, вывод из принципа наименьшего действия) и Альбертом Эйнштейном (25 ноября, вывод из принципа общей ковариантности уравнений гравитационного поля в сочетании с локальным сохранением энергии-импульса). Работа Гильберта была опубликована позднее, чем эйнштейновская (1916). По вопросам приоритета существуют разные мнения, освещённые в статье об Эйнштейне, и более полно в «Вопросы приоритета в теории относительности (англ.)», однако сам Гильберт никогда на приоритет не претендовал и считал ОТО созданием Эйнштейна.

Основные следствия ОТО Орбита по Ньютону (красная) и по Эйнштейну (голубые) одной планеты, вращающейся вокруг звезды Согласно принципу соответствия, в слабых гравитационных полях предсказания ОТО совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля. Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.
Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе — Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной. До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,01 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.
Экспериментальные подтверждения ОТО
Предсказания общей теории относительности.
Эффекты, связанные с ускорением систем отсчёта Первый из этих эффектов — гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле — Китинга, а также в эксперименте Gravity Probe A и постоянно подтверждается в GPS Непосредственно связанный с этим эффект — гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом). Гравитационное красное смещение было обнаружено в спектрах звёзд и Солнца и надёжно подтверждено уже в контролируемых земных условиях в эксперименте Паунда и Ребки.
Гравитационное замедление времени и искривление пространства влекут за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет Солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров. С наибольшей на 2011 год точностью (порядка 7.10−9) этот тип эффектов был измерен в эксперименте, проведённом группой Хольгера Мюллера из Калифорнийского университета. В эксперименте атомы цезия, скорость которых была направлена вверх по отношению к поверхности Земли, действием двух лазерных пучков переводились в суперпозицию состояний с различающимися импульсами. Вследствие того, что сила гравитационного воздействия зависит от высоты над поверхностью Земли, набеги фаз волновой функции каждого из этих состояний при возвращении в исходную точку различались. Разность между этими набегами вызывала интерференцию атомов внутри облака, так что вместо однородного по высоте распределения атомов наблюдались чередующиеся сгущения и разрежения, которые измерялись действием на облако атомов лазерными пучками и измерением вероятности обнаружения атомов в некой выбранной точке пространства.
Гравитационное отклонение света
Самая известная ранняя проверка ОТО стала возможна благодаря полному солнечному затмению 1919 года. Артур Эддингтон показал, что видимые положения звезд изменяются вблизи Солнца в точном соответствии с предсказаниями ОТО. Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и, когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что на самом деле в ОТО угловой сдвиг направления распространения света в два раза больше, чем в ньютоновской теории, в отличие от предыдущего рассмотрения. Таким образом, это предсказание стало ещё одним способом проверки ОТО. С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также с высокой точностью проверено радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.
Гравитационное линзирование происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z = 1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу — далёкую галактику (z = 0,36), лежащую между Землёй и квазаром»=. С тех пор было найдено много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием.
Например, известен так называемый Крест Эйнштейна, где галактика учетверяет изображение далёкого квазара в виде креста. Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами. Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу), и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд — МАСНО=, EROS (англ.) и другие.
Чёрные дыры

Чёрная дыра Рисунок художника: аккреционный диск горячей плазмы, вращающийся вокруг чёрной дыры. Чёрная дыра — область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать. Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО. Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрелец A* в центре нашей Галактики. Подавляющее большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются фермионные шары, бозонные звёзды и другие экзотические объекты.
Орбитальные эффекты ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т. д.
Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую релятивистскую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом была решена известная в то время проблема небесной механики. Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, астероида Икар и как более сильный эффект в системах двойных пульсаров. За открытие и исследования первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Запаздывание времени прихода импульсов от пульсара PSR B1913+16 по сравнению со строго периодическим (синие точки) и предсказываемый ОТО эффект, связанный с излучением гравитационных волн (чёрная линия)
Другой эффект — изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.
Ещё один эффект — геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в искривлённом пространстве-времени. Данный эффект полностью отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью, превосходящей 1 %. В мае 2011 опубликованы окончательные итоги обработки этих данных: геодезическая прецессия составляла −6601,8±18,3 миллисекунды дуги (mas) в год, что в пределах погрешности эксперимента совпадает с предсказанным ОТО значением −6606,1 mas/год. Этот эффект ранее был проверен также наблюдениями сдвига орбит геодезических спутников LAGEOS; в пределах погрешностей отклонения от теоретических предсказаний ОТО не выявлены.
Увлечение инерциальных систем отсчёта
Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами (то есть покоящимися относительно локально-инерциальной системы отсчёта) на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше. Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные в течение 5 лет извлекали его «отпечатки» из информации, полученной на специально запущенном с целью измерения этого эффекта спутнике «Грэвити Проуб Би» (Gravity Probe B). В мае 2011 г. были объявлены окончательные итоги миссии: измеренная величина увлечения составила −37,2±7,2 миллисекунды дуги (mas) в год, что в пределах точности совпадает с предсказанием ОТО: −39,2 mas/год.
Другие предсказания
. Эквивалентность инерционной и гравитационной массы: следствие того, что свободное падение — движение по инерции. o Принцип эквивалентности: даже самогравитирующий объект отзовётся на внешнее поле тяготения в той же мере, что и тестовая частица.
. Гравитационное излучение: орбитальное движение любых гравитационно связанных систем (в частности, тесных пар компактных звёзд — белых карликов, нейтронных звёзд, чёрных дыр), а также процессы слияния нейтронных звёзд и/или чёрных дыр, как ожидается, должны сопровождаться излучением гравитационых волн. Имеются косвенные доказательства существования гравитационного излучения в виде измерений темпа роста частоты орбитального вращения тесных пар компактных звёзд. Эффект впервые наблюдался в вышеупомянутой системе двойного пульсара PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.
Слияние двойных пульсаров и других пар компактных звёзд может создавать гравитационные волны, достаточно сильные, чтобы наблюдаться на Земле. На 2011 год существовало (или планировались в ближайшее время к постройке) несколько гравитационных телескопов для наблюдения подобных волн. o Гравитоны. Согласно квантовой механике, гравитационное излучение должно быть составлено из квантов, названных гравитонами. ОТО предсказывает, что они будут безмассовыми частицами со спином, равным
Обнаружение отдельных гравитонов в экспериментах связано со значительными проблемами, так что существование квантов гравитационного поля до сих пор (2015 год) не показано.
Космология
Хотя общая теория относительности была создана как теория тяготения, скоро стало ясно, что эту теорию можно использовать для моделирования Вселенной как целого, и так появилась физическая космология. Физическая космология исследует вселенную Фридмана, которая является космологическим решением уравнений Эйнштейна, а также её возмущения, дающие наблюдаемую структуру астрономической Метагалактики. Эти решения предсказывают, что Вселенная должна быть динамической: она должна расширяться, сжиматься или совершать постоянные колебания. Эйнштейн сначала не мог примириться с идеей динамической Вселенной, хотя она явно следовала из уравнений Эйнштейна без космологического члена. Поэтому в попытке переформулировать ОТО так, чтобы решения описывали статичную Вселенную, Эйнштейн добавил космологическую постоянную к полевым уравнениям (см. выше). Однако получившаяся статическая вселенная была нестабильна. Позднее в 1929 году Эдвин Хаббл показал, что красное смещение света от отдалённых галактик указывает, что они удаляются от нашей собственной галактики со скоростью, которая пропорциональна их расстоянию от нас. Это продемонстрировало, что вселенная действительно нестатична и расширяется. Открытие Хаббла показало несостоятельность воззрений Эйнштейна и использования им космологической постоянной. Теория нестационарной Вселенной (включая учёт космологического члена) была создана, впрочем, ещё до открытия закона Хаббла усилиями Фридмана, Леметра и де Ситтера. Уравнения, описывающие расширение Вселенной, показывают, что она становится сингулярной, если вернуться назад во времени достаточно далеко. Это событие называют Большим взрывом. В 1948 году Георгий Гамов издал статью, описывающую процессы в ранней Вселенной в предположении её высокой температуры и предсказывающую существование космического микроволнового фонового излучения, происходящего от горячей плазмы Большого взрыва; в 1949 году Р. Алфер и Герман провели более подробные вычисления. В 1965 году А. Пензиас и Р. Вилсон впервые идентифицировали реликтовое излучение, подтвердив таким образом теорию Большого взрыва и горячей ранней Вселенной.
Проблемы ОТО .
Энергия
Так как энергия, с точки зрения математической физики, представляет собой величину, сохраняющуюся из-за однородности времени, а в общей теории относительности, в отличие от специальной, время неоднородно, то закон сохранения энергии может быть выражен в ОТО только локально, то есть в ОТО не существует такой величины, эквивалентной энергии в СТО, чтобы интеграл от неё по пространству сохранялся при движении по времени. Локальный же закон сохранения энергии-импульса в ОТО существует и является следствием уравнений Эйнштейна — это исчезновение ковариантной дивергенции тензора энергии-импульса материи: где точка с запятой обозначает взятие ковариантной производной. Переход от него к глобальному закону невозможен, потому что так интегрировать тензорные поля, кроме скалярных, в римановом пространстве, чтобы получать тензорные (инвариантные) результаты, математически невозможно. Действительно, уравнение выше можно переписать так В искривлённом пространстве-времени, где второй член не равен нулю, это уравнение не выражает какого-либо закона сохранения. Многие физики считают это существенным недостатком ОТО. С другой стороны, очевидно, что если соблюдать последовательность до конца, в полную энергию, кроме энергии материи, необходимо включать также и энергию самого гравитационного поля. Соответствующий закон сохранения должен записываться в виде где величина представляет собой энергию-импульс гравитационного поля . В ОТО оказывается, что величина не может быть тензором, а представляет собой псевдотензор — величину, преобразующуюся как тензор только лишь при линейных преобразованиях. Это означает, что в ОТО энергия гравитационного поля в принципе не может быть локализована (что следует из слабого принципа эквивалентности). Различными авторами вводятся свои псевдотензоры энергии-импульса гравитационного поля, которые обладают некими «правильными» свойствами, но одно их многообразие показывает, что удовлетворительного решения задача не имеет. Тем не менее, энергия в ОТО всегда сохраняется в том смысле, что построить вечный двигатель в ОТО невозможно. В общем случае проблема энергии и импульса может считаться решённой только для островных систем в ОТО без космологической константы, то есть для таких распределений массы, которые ограничены в пространстве и пространство-время которых на пространственной бесконечности переходит в пространство Минковского. Тогда, выделяя группу асимптотической симметрии пространства-времени (группу Бонди — Сакса), можно определить 4-векторную величину энергии-импульса системы, правильно ведущую себя относительно преобразований Лоренца на бесконечности. Существует необщепринятая точка зрения, восходящая к Лоренцу и Леви-Чивита, которая определяет тензор энергии-импульса гравитационного поля как тензор Эйнштейна с точностью до постоянного множителя. Тогда уравнения Эйнштейна утверждают, что энергия-импульс гравитационного поля в любом объёме точно уравновешивает энергию-импульс материи в этом объёме, так что полная их сумма всегда тождественно равна нулю.
ОТО и квантовая физика
Главной проблемой ОТО с современной точки зрения является невозможность построения для неё квантово-полевой модели каноническим образом. Каноническое квантование любой физической модели состоит в том, что в неквантовой модели строятся уравнения Эйлера — Лагранжа и определяется лагранжиан системы, из которого выделяется гамильтониан H. Затем гамильтониан переводят из обычной функции динамических переменных системы в операторную функцию соответствующих динамическим переменным операторов — квантуют. При этом физический смысл оператора Гамильтона состоит в том, что его собственные значения представляют собой уровни энергии системы. Ключевая особенность описанной процедуры состоит в том, что она предполагает выделение параметра — времени, по которому и составляется в дальнейшем уравнение типа Шрёдингера где — уже квантовый гамильтониан, которое далее решается для отыскания волновой функции. Сложности в реализации такой программы для ОТО следующие: во-первых, переход от классического гамильтониана к квантовому неоднозначен, так как операторы динамических переменных не коммутируют между собой; во-вторых, гравитационное поле относится к типу полей со связями, для которых структура уже классического фазового пространства достаточно сложна, а квантование их наиболее прямым методом невозможно; в-третьих, в ОТО нет выраженного направления времени, что составляет трудность при его необходимом выделении и порождает проблему интерпретации полученного решения. Тем не менее, программа квантования гравитационного поля была успешно решена к 50-м годам XX столетия усилиями М. П. Бронштейна, П. А. М. Дирака, Брайса Девитта и других физиков. Оказалось, что (по крайней мере слабое) гравитационное поле можно рассматривать как квантовое безмассовое поле спина 2. Дополнительные сложности возникли при попытке вторичного квантования системы гравитационного поля, проведённой Р. Фейнманом, Брайсом Девиттом и другими физиками в 1960-х годах после разработки квантовой электродинамики. Оказалось, что поле такого высокого спина в трёхмерном пространстве не перенормируемо никакими традиционными (и даже нетрадиционными) способами. Более того, не существует никакого разумного определения его энергии, такого, чтобы выполнялся закон сохранения энергии, она была бы локализуема и неотрицательна в любой точке (см. выше пункт «Проблема энергии»). Полученный тогда результат остаётся незыблемым до настоящего времени (2012). Расходимости в высоких энергиях в квантовой гравитации, появляющиеся в каждом новом порядке по количеству петель, невозможно сократить введением в гамильтониан никакого конечного количества перенормировочных контрчленов. Невозможно и свести перенормировку к конечному числу постоянных величин (как это удалось сделать в квантовой электродинамике по отношению к элементарному электрическому заряду и массе заряженной частицы). На сегодняшний день построено много теорий, альтернативных ОТО (теория струн, получившая развитие в М-теории, петлевая квантовая гравитация и другие), которые позволяют квантовать гравитацию, но все они либо не закончены, либо имеют внутри себя неразрешённые парадоксы. Также подавляющее большинство из них обладает огромным недостатком, который вообще не даёт возможности говорить о них как о «физических теориях», — они не фальсифицируемы, то есть не могут быть проверены экспериментально.
Проблема причинности
Замкнутая времениподобная кривая
Решения уравнений Эйнштейна в некоторых случаях допускают замкнутые времениподобные линии. С одной стороны, если замкнутая времениподобная линия возвращается в ту же точку, откуда было начато движение, то она описывает приход в то же самое «время», которое уже «было», несмотря на то, что прошедшее для наблюдателя на ней время не равно нулю. Таким образом, мы получаем вдоль этой линии замкнутую цепь причин и следствий — путешествие во времени. Аналогичные проблемы возникают также при рассмотрении решений — проходимых кротовых нор. Возможно, подобные решения демонстрируют потенциальные возможности создания «машин времени» и «сверхсветовых путешествий» в рамках общей теории относительности. Вопросы «физичности» таких решений — одни из активно дебатируемых в настоящее время. А. Эйнштейн высоко оценил результат о замкнутых времениподобных линиях, впервые полученный К. Геделем в 1949 году. Я считаю, что статья Курта Гёделя представляет собой важный вклад в общую теорию относительности, в особенности в анализ понятия времени. В то же время он рассматривал замкнутые времениподобные линии как интересные теоретические конструкции, лишенные реального физического смысла. Было бы интересно выяснить, не следует ли такие решения исключать из рассмотрения на основе физических соображений.
Проблема сингулярности
Во многих решениях уравнений Эйнштейна присутствуют сингулярности, то есть, согласно одному из определений, неполные геодезические кривые, которые не могут быть продолжены. Имеется ряд критериев наличия сингулярностей и ряд проблем, связанных с критерями наличия гравитационных сингулярностей..
Философские аспекты теории относительности
А. Эйнштейн подчеркивал важность философских проблем современной физики. В наше время физик вынужден заниматься философскими проблемами в гораздо большей степени, чем это приходилось делать физикам предыдущих поколений. К этому физиков вынуждают трудности их собственной науки. Философскую основу теории относительности составляют гносеологические принципы наблюдаемости (запрещается пользоваться понятиями принципиально ненаблюдаемых объектов), простоты (все следствия теории необходимо вывести из наименьшего числа допущений), единства (идея единства знания и единства описываемого им объективного мира, реализуется в процессе обобщения законов природы, перехода от частных законов к более общим в ходе развития физики), методологический гипотезо-дедуктивный принцип (формулируются гипотезы, в том числе в математической форме, и на их основании выводятся проверяемые опытным путём следствия), онтологический принцип динамического детерминизма (данное состояние замкнутой физической системы однозначно определяет все её последующие состояния) и принцип соответствия (законы новой физической теории при надлежащем значении ключевого характеристического параметра, входящего в новую теорию, переходят в законы старой теории).
Во-первых, в центре всего рассмотрения стоит вопрос: существуют ли в природе физически выделенные (привилегированные) состояния движения? (Физическая проблема относительности).
Во-вторых, фундаментальным оказывается следующий гносеологический постулат: понятия и суждения имеют смысл лишь постольку, поскольку им можно однозначно сопоставить наблюдаемые факты (требование содержательности понятий и суждений). Весь предшествующий опыт убеждает нас в том, что природа представляет собой реализацию простейших математически мыслимых элементов. Существует иная, более тонкая причина, играющая не меньшую роль, а именно, — стремление к единству и простоте предпосылок теории... Вера в существование внешнего мира, независимого от воспринимающего субъекта, лежит в основе всего естествознания. Основываясь на принципе наблюдаемости, при создании специальной теории относительности Эйнштейн отверг понятие эфира и основанную на ней интерпретацию результатов опыта Майкельсона, данную Лоренцем. Используя принцип простоты, при создании общей теории относительности Эйнштейн обобщил принцип относительности на неинерциальные системы отсчёта. Осуществляя принцип единства, специальная теория относительности объединила понятия пространства и времени в единую сущность (четырёхмерное пространство-время Минковского), придала законам различных отраслей физики, механики и электродинамики единую лоренц-инвариантную форму, а общая теория относительности раскрыла связь между материей и геометрией пространства-времени, которая выражается общековариантными гравитационными уравнениями. Наиболее ярко роль гипотезо-дедуктивного метода проявилась в создании общей теории относительности. В основе общей теории относительности лежат гипотезы о геометрической природе гравитации и о взаимосвязи геометрических свойств пространства-времени с материей. Принцип соответствия играет большую эвристическую роль в общей теории относительности. Исходя из требования перехода уравнений Эйнштейна в уравнение Пуассона для гравитационного поля ньютоновской физики при и можно определить числовой коэффициент в правой части уравнений Эйнштейна. При создании теории относительности на Эйнштейна оказали большое влияние работы Юма, Маха и Канта: Что же касается меня, то я должен признать, что мне прямо или косвенно помогли работы Юма и Маха Идея Юма о разделении логических и эмпирических истин стимулировала у Эйнштейна критический анализ представлений о пространстве-времени и причинности. Критика Махом ньютоновских понятий пространства и времени оказала влияние на отказ Эйнштейна от понятий абсолютного пространства и времени в процессе создания специальной теории относительности. Мысль Канта о самостоятельном значении логических категорий относительно опыта использовалась Эйнштейном при создании общей теории относительности. Человек стремится к достоверному знанию. Именно поэтому обречена на неудачу миссия Юма. Сырой материал, поступающий от органов чувств, — единственный источник нашего познания, может привести нас постепенно к вере и надежде, но не к знанию, а тем более к пониманию закономерностей. Тут на сцену выходит Кант. Предложенная им идея, хоть и была неприемлема в своей первоначальной формулировке, означала шаг вперед в решении юмовской дилеммы: все в познании, что имеет эмпирическое происхождение, недостоверно (Юм). Следовательно, если мы располагаем достоверным знанием, то оно должно быть основано на чистом мышлении. Например, так обстоит дело с геометрическими теоремами и с принципом причинности. Эти и другие типы знания являются, так сказать, частью средств мышления и поэтому не должны быть сначала получены из ощущений (т. е. они являются априорным знанием). В настоящее время всем, разумеется, известно, что упомянутые выше понятия не обладают ни достоверностью, ни внутренней необходимостью, которые приписывал им Кант. Однако правильным в кантовской постановке проблемы является, на мой взгляд, следующее: если рассматривать с логической точки зрения, то окажется, что в процессе мышления мы, с некоторым «основанием», используем понятия, не связанные с ощущениями.
Материал в полном