Основным промышленным способом получения кислорода является. Как добыть кислород лабораторным способом

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

Кислород О 2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).

Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.

В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.

Важнейшие физические константы кислорода следующие:

Молекулярный вес 32
Вес 1 м 3 при 0° С и 760 мм рт. ст. в кг 1,43
То же при 20° С и 760 мм рт. ст. в кг 1,33
Критическая температура в °С -118
Критическое давление в кгс/м 3 51,35
Температура кипения при 760 мм рт. ст. в °С -182,97
Вес 1 л жидкого кислорода при -182, 97 °С и 760 мм рт. ст. в кг.
1,13
Количество газообразного кислорода, получающегося из 1 л жидкого при 20 °С и 760 мм рт. ст. в л
850
Температура затвердевания при 760 мм рт. ст. в °С -218,4

Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.

Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.

Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.

Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.

Электролиз воды, т. е. разложение ее на составляющие - водород и кислород, осуществляется в аппаратах, называемых электролизерами. Через воду, в которую для повышения электропроводности добавляется едкий натр NaOH, пропускается постоянный ток; кислород собирается на аноде, а водород - на катоде. Недостатком способа является большой расход электроэнергии: на 1 м 3 0 2 (кроме того, получается 2 м 3 Н 2) расходуется 12-15 квт. ч. Этот способ рационален при наличии дешевой электроэнергии, а также при получении электролитического водорода, когда кислород является отходом производства.

Физический способ заключается в разделении воздуха на составляющие методом глубокого охлаждения. Этот способ позволяет получать кислород практически в неограниченном количестве и имеет основное промышленное значение. Расход электроэнергии на 1 м 3 О 2 составляет 0,4-1,6 квт. ч, в зависимости от типа установки.

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем объемном их содержании: азота - 78,09%, кислорода - 20,93%, аргона - 0,93%. Кроме того, в нем содержится около 0,03% углекислого газа и малые количества редких газов, водорода, закиси азота и др.

Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.

Сущность способа заключается в глубоком охлаждении воздуха с обращением его в жидкое состояние, что при нормальном атмосферном давлении может быть достигнуто в интервале температур от —191,8° С (начало сжижения) до -193,7° С (окончание сжижения).

Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Т кип. о2 = -182,97° С; Т кип.N2 = -195,8° С (при 760 мм рт. ст.).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.

Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.

Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.

Холодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.

Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см 2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.

Давление в сборнике 4 регулируется в пределах 1—2 кгс/см 2 . Жидкость периодически сливается из сборника в специальные емкости через вентиль 6. Несжиженная часть воздуха отводится через теплообменник, производя охлаждение новых порций поступающего воздуха.

Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.

Достоинством цикла является его простота, а недостатком — относительно высокий расход электроэнергии — до 4,1 квт. ч на 1 кг сжиженного воздуха при давлении в компрессоре 200 кгс/см 2 ; при меньшем давлении удельный расход электроэнергии резко возрастает. Данный цикл применяется в установках малой и средней производительности для получения газообразного кислорода.

Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.

Холодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.

Воздух сжимается в компрессоре 1 до 20-40 кгс/см 2 , проходит через холодильник 2 и затем через теплообменники 3 и 4. После теплообменника 3 большая часть воздуха (70-80%) направляется в поршневую расширительную машину-детандер 6, а меньшая часть воздуха (20-30%) идет на свободное расширение в дроссельный вентиль 5 и далее сборник 7, имеющий кран 8 для слива жидкости. В детандере 6

воздух, уже охлажденный в первом теплообменнике, производит работу - толкает поршень машины, давление его падает до 1 кгс/см 2 , за счет чего резко снижается температура. Из детандера холодный воздух, имеющий температуру около —100° С, выводится наружу через теплообменники 4 и 3, охлаждая поступающий воздух. Таким образом, детандер обеспечивает весьма эффективное охлаждение установки при сравнительно небольшом давлении в компрессоре. Работа детандера используется полезно и это частично компенсирует затрату энергии на сжатие воздуха в компрессоре.

Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.

Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.

Воздух сжимается турбокомпрессором 1 до 6-7 кгс/см 2 , охлаждается водой в холодильнике 2 и поступает в регенераторы 3 (теплообменники), где охлаждается обратным потоком холодного воздуха. До 95% воздуха после регенераторов направляется в турбодетандер 4, расширяется до абсолютного давления 1 кгс/см 2 с выполнением внешней работы и при этом резко охлаждается, после чего он подается в трубное пространство конденсатора 5 и конденсирует остальную часть сжатого воздуха (5%), поступающую в межтрубное пространство. Из конденсатора 5 основной поток воздуха направляется в регенераторы и охлаждает поступающий воздух, а жидкий воздух пропускается через дроссельный вентиль 6 в сборник 7, из которого сливается через вентиль 8. На схеме показан один регенератор, а в действительности их ставят несколько и включают поочередно.

Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.

Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.

Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.

Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.

Допустим, что в сосуде II находится жидкость, содержащая 30% 0 2 , в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.

Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.

Начнем испарять жидкость в сосуде V при абсолютном давлении 1 кгс/см 2 . Как видно из рис. 6, над жидкостью в этом сосуде, состоящей из 60% 0 2 и 40% N 2 , может находиться равновесный по составу пар, содержащий 26,5% 0 2 и 73,5% N 2 , имеющий такую же температуру, что и жидкость. Подаем этот пар в сосуд IV, где жидкость содержит только 50% 0 2 и 50% N 2 и поэтому будет более холодной. Из рис. 6 видно, что над этой жидкостью пар может содержать лишь 19% 0 2 и 81% N 2 , и только в этом случае его температура будет равна температуре жидкости в данном сосуде.

Следовательно, подводимый в сосуд IV из сосуда V пар, содержащий 26,5% О 2 , имеет более высокую температуру, чем жидкость в сосуде IV; поэтому кислород пара конденсируется в жидкости сосуда IV, а часть азота из нее будет испаряться. В результате жидкость в сосуде IV обогатится кислородом, а пар над нею - азотом.

Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.

Продолжая процесс вверх, можно получить пар, состоящий почти из чистого азота, а в нижней части - чистый жидкий кислород. В действительности процесс ректификации, протекающий в ректификационных колоннах кислородных установок, значительно сложнее описанного, но принципиальное его содержание такое же.

Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:

1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО 2 достигается пропусканием воздуха через водный раствор NaOH;

2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;

3) охлаждение сжатого воздуха в теплообменниках;

4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;

5) сжижение и ректификация воздуха с получением кислорода и азота;

6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;

7) контроль качества получаемого кислорода;

8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.

Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.

По ГОСТу 5583-58 выпускается газообразный технический кислород трех сортов: высший — с содержанием не менее 99,5% О 2 , 1-й — не менее 99,2% О 2 и 2-й — не менее 98,5% О 2 , остальное — аргон и азот (0,5—1,5%). Содержание влаги не должно превышать 0,07 г/ж 3 . Кислород, получаемый электролизом воды, не должен содержать водорода более 0,7% по объему.

По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О 2 и сорт Б с содержанием не менее 98,5% О 2 . Содержание ацетилена в жидком кислороде не должно превышать 0,3 см 3 /л.

Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О 2 .

Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.

Администрация Общая оценка статьи: Опубликовано: 2012.06.01

Цель урока:

  • способствовать формированию знаний учащихся о способах получения кислорода в природе, промышленности и лаборатории, доказательства наличия и способах его собирания;
  • способствовать формированию умений выделять общие и существенные признаки; умений видеть проблему и найти пути ее решения; умений применять полученные знания на практике и оценивать результаты выполненных действий;
  • продолжить развивать память, внимание, творческую активность;
  • продолжить развитие самостоятельности, умения работать в группах;
  • продолжить формирование коллектива.

Организационный момент.

Вводная часть

– Какую главу изучаем? (Простые вещества.)

– Какие вещества называются простыми? (Вещества, молекулы которых состоят из атомов одного вида.)

– На какие группы делятся простые вещества? (На металлы и неметаллы.)

Изучение нового материала.

Мы продолжаем знакомиться с простыми веществами. Сегодня узнаем больше о веществе, о котором Берцелиус сказал, что вокруг него вращается земная химия. Что это за вещество вы узнаете, выполнив следующее задание. Вместо … вставьте слово, которое соответствует элементу вещества, и запишите слово в тетради. (Приложение 2.)

1. … – самый распространенный элемент земной коры.

2. Молекула простого вещества озона образована элементом …

3. В воздухе содержится 21% …

4. Оксиды – сложные вещества, состоящие из двух элементов, одним из которых является …

5. В состав воды входят два атома водорода и один атом …

– Вы записали одно слово?

– Кто записал несколько слов?

– Какое это слово? (Кислород.)

Итак, начинаем изучать простое вещество кислород!

– Почему изучаем эту тему? Чем важен кислород? (Кислород необходимое вещество для дыхания, самый распространенный элемент земной коры, входит в состав воды.)

– В разделе простые вещества стоит жизненная задача, которая связана с кислородом. Прочитайте ее.

Жизненная задача.

Для путешествия по пещере необходим запас кислорода. Как его можно добыть в походных условиях?

– На основе жизненной задачи скажите, что должны изучать сегодня? (Как получают кислород?)

Тема урока: “Получение кислорода”.

При изучении этой темы:

  • вы узнаете
, какие вещества и химические реакции используются для получения кислорода;
  • научитесь
  • записывать соответствующие уравнения реакций;
  • научитесь
  • получать кислород и доказывать его наличие.

    Для решения той жизненной задачи, которая перед нами стоит, поработайте в группах.

    Класс разбит на пять групп по 4 человека. Каждая группа имеет свое задание. (Приложение 1.)

    – Внимательно изучите информацию, ответьте на вопросы, запишите уравнения реакций.

    Работа в группах.

    Затем представление выполненного задания. Один представитель от группы отвечает устно на вопросы задания, а второй записывает уравнения реакций на доске.

    – Будьте внимательны, слушая друг друга. По ходу ваших выступлений будем оформлять схему – получение кислорода.

    Используя кислород воздуха для дыхания, уменьшаем его количество. Но содержание в воздухе остается постоянным – 21%. Как же поддерживается необходимое нам постоянное содержание кислорода? Как получается кислород в природе?

    Выступление 1 группы о получении кислорода в природе.

    Уравнение реакции

    Общий вывод: кислород в природе получается благодаря процессу фотосинтеза в растениях на свету.

    Оформляется часть схемы

    – Подходит ли данный способ для решения жизненной задачи? (Нет, для фотосинтеза необходим свет.)

    Кислород необходим не только в природе. В промышленности его используют для получения металлов и других необходимых веществ. Для этого кислород необходим в больших количествах. Способы получения, которые используются при этом, так и называются – промышленные.

    Выступление 2 группы о получении кислорода в промышленности.

    Уравнение реакции

    Общий вывод: кислород в промышленности получают из воздуха и воды.

    – Почему для получения больших количеств кислорода используют воздух и воду? (наиболее распространенные вещества в природе, содержащие кислород)

    Оформляется часть следующая часть схемы “Получение кислорода”

    – Подходит ли данный способ для решения жизненной задачи? (нет, дорогостоящее оборудование, такие процессы занимают много времени)

    В Англии на одной из площадей г. Лидса стоит памятник ученому. В правой руке он держит линзу, чтобы собрать пучок солнечных лучей, а в левой – тигель с оксидом ртути. Молодой человек сосредоточен и внимателен, ожидает результаты опыта. Это Джозеф Пристли, англ. ученый, запечатленный в момент получения кислорода в своей лаборатории.

    Рассматриваем лабораторные способы получения кислорода.

    Выступление 3 группы о некоторых способах получения кислорода в лаборатории.

    Уравнения реакций

    Вывод: данные способы не подходят для решения жизненной задачи, т.к. соединения ртути ядовито, а калийной селитры может и не оказаться в походных условиях.

    – Этими лабораторными способами не ограничивается получение кислорода. Есть еще несколько способов получения кислорода в лаборатории.

    Выступление 4 группы о наиболее распространенный способах получения кислорода в лаборатории.

    Уравнения реакций

    MnO 2 – катализатор, ускоряет химическую реакцию, но сам при этом не расходуется.

    Все химические реакции разложения.

    Общий вывод: в лаборатории кислород получают реакциями разложения кислородсодержащих веществ при нагревании или действии катализатора.

    Оформляется оставшаяся часть схемы.

    Учащиеся высказывают предположения.

    Например, для получения кислорода в походных условиях можно использовать реакцию разложения перманганат калия, который всегда есть в аптечке. Можно использовать также разложение пероксида водорода, для данной реакции применить в качестве катализатора можно кровь, слюну, которые содержат природные катализаторы.

    – Получив кислород, необходимо также определенным образом его собрать и доказать наличие.

    Выступление 5 группы о способах собирания кислорода и доказательстве его присутствия.

    Общий вывод: кислород собирают методом вытеснения воздуха и воды, наличие кислорода доказывают с помощью тлеющей лучинки.

    Выполнение лабораторной работы “Получение кислорода разложением перманганата калия и доказательство его наличия” в парах.

    Перед работой повторяются правила по технике безопасности при работе со спиртовкой и при нагревании.

    Заключение.

    – Достигли ли целей урока?

    – Как получают кислород?

    Вывод по уроку: кислород можно получить в природе, промышленности и лаборатории. Для получения кислорода используют реакции разложения кислородсодержащих веществ. Реакции протекают при нагревании или в присутствии катализатора.

    Домашнее задание.

    Выберете то задание, которое вам больше нравится.

    Задание № 1.

    Расскажите своему другу, который отсутствовал на уроке изучения темы “Получение кислорода”, используя знания о стилях речи, полученные на уроках русского языка.

    Задание № 2.

    Подготовить выступление для школьной конференции – Ломоносовские чтения на тему “История открытия кислорода”, используя знания о стилях речи, полученные на уроках русского языка.

    Сегодня я узнал(а) …
    Было трудно …
    Теперь я могу …
    Я понял, что …
    У меня получилось..
    Было интересно …
    Меня удивило …
    Мне захотелось …

    Открытие кислорода ознаменовало новый период в развитии химии. С глубокой древности было известно, что для горения необходим воздух. Процесс горения веществ долгое время оставался непонятным. В эпоху алхимии широкое распространение получила теория флогистона, согласно которой вещества горят благодаря их взаимодействию с огненной материей, то есть с флогистоном, который содержится в пламени.

    Кислород был получен английским химиком Джозефом Пристли в 70-х годах XVIII века. Химик нагревал красный порошок оксида ртути (II), в итоге вещество разлагалось, с образованием металлической ртути и бесцветного газа:

    2HgO t° → 2Hg + O2

    Оксиды – бинарные соединения, в состав которых входит кислород

    При внесении тлеющей лучины в сосуд с газом она ярко вспыхивала. Ученый считал, что тлеющая лучина вносит в газ флогистон, и он загорается.

    Д. Пристли пробовал дышать полученным газом, и был восхищен тем, как легко и свободно им дышится. Тогда ученый и не предполагал, что удовольствие дышать этим газом предоставлено каждому.

    Результатами своих опытов Д. Пристли поделился с французским химиком Антуаном Лораном Лавуазье. Имея хорошо оснащенную на то время лабораторию, А. Лавуазье повторил и усовершенствовал опыты Д. Пристли.

    А. Лавуазье измерил количество газа, выделяющееся при разложении определенной массы оксида ртути. Затем химик нагрел в герметичном сосуде металлическую ртуть до тех пор, пока она не превратилась в оксид ртути (II). Он обнаружил, что количество выделившегося газа в первом опыте равно газу, поглотившемуся во втором опыте. Следовательно, ртуть реагирует с каким-то веществом, содержащимся в воздухе. И это же вещество выделяется при разложении оксида. Лавуазье первым сделал вывод, что флогистон здесь совершенно ни при чем, и горение тлеющей лучины вызывает именно неизвестный газ, который в последствии был назван кислородом. Открытие кислорода ознаменовало крах теории флогистона!

    Способы получения и собирания кислорода в лаборатории

    Лабораторные способы получения кислорода весьма разнообразны. Существует много веществ, из которых можно получить кислород. Рассмотрим наиболее распространенные способы.

    1) Разложение оксида ртути (II)

    Одним из способов получения кислорода в лаборатории, является его получение по описанной выше реакции разложения оксида ртути (II). Ввиду высокой токсичности соединений ртути и паров самой ртути, данный способ используется крайне редко.

    2) Разложение перманганата калия

    Перманганат калия (в быту мы называем его марганцовкой) – кристаллическое вещество темно-фиолетового цвета. При нагревании перманганата калия выделяется кислород.

    В пробирку насыплем немного порошка перманганата калия и закрепим ее горизонтально в лапке штатива. Недалеко от отверстия пробирки поместим кусочек ваты. Закроем пробирку пробкой, в которую вставлена газоотводная трубка, конец которой опустим в сосуд- приемник. Газоотводная трубка должна доходить до дна сосуда-приемника.

    Ватка, находящаяся около отверстия пробирки нужна, чтобы предотвратить попадание частиц перманганата калия в сосуд-приемник (при разложении выделяющийся кислород увлекает за собой частички перманганата).

    Когда прибор собран, начинаем нагревание пробирки. Начинается выделение кислорода.

    Уравнение реакции разложения перманганата калия:

    2KMnO4 t° → K2MnO4 + MnO2 + O2

    Как обнаружить присутствие кислорода? Воспользуемся способом Пристли. Подожжем деревянную лучину, дадим ей немного погореть, затем погасим, так, чтобы она едва тлела. Опустим тлеющую лучину в сосуд с кислородом. Лучина ярко вспыхивает!

    Газоотводная трубка была не случайно опущена до дна сосуда-приемника. Кислород тяжелее воздуха, следовательно, он будет собираться в нижней части приемника, вытесняя из него воздух.

    Кислород можно собрать и методом вытеснения воды. Для этого газоотводную трубку необходимо опустить в пробирку, заполненную водой, и опущенную в кристаллизатор с водой вниз отверстием. При поступлении кислорода газ вытесняет воду из пробирки.

    Разложение пероксида водорода

    Пероксид водорода – вещество всем известное. В аптеке оно продается под названием «перекись водорода». Данное название является устаревшим, более правильно использовать термин «пероксид». Химическая формула пероксида водорода Н2О2

    Пероксид водорода при хранении медленно разлагается на воду и кислород. Чтобы ускорить процесс разложения можно произвести нагрев или применить катализатор.

    Катализатор – вещество, ускоряющее скорость протекания химической реакции

    Нальем в колбу пероксид водорода, внесем в жидкость катализатор. Катализатором может служить порошок черного цвета – оксид марганца MnO2. Тотчас смесь начнет вспениваться вследствие выделения большого количества кислорода. Внесем в колбу тлеющую лучину – она ярко вспыхивает. Уравнение реакции разложения пероксида водорода:

    2H2O2 MnO2 → 2H2O + O2

    Обратите внимание: катализатор, ускоряющий протекание реакции, записывается над стрелкой, или знаком «=», потому что он не расходуется в ходе реакции, а только ускоряет ее.

    Разложение хлората калия

    Хлорат калия – кристаллическое вещество белого цвета. Используется в производстве фейерверков и других различных пиротехнических изделий. Встречается тривиальное название этого вещества – «бертолетова соль». Такое название вещество получило в честь французского химика, впервые синтезировавшего его, – Клода Луи Бертолле. Химическая формула хлората калия KСlO3.

    При нагревании хлората калия в присутствии катализатора – оксида марганца MnO2 , бертолетова соль разлагается по следующей схеме:

    2KClO3 t°, MnO2 → 2KCl + 3O2.

    Разложение нитратов

    Нитраты – вещества, содержащие в своем составе ионы NO3⎺. Соединения данного класса используются в качестве минеральных удобрений, входят в состав пиротехнических изделий. Нитраты – соединения термически нестойкие, и при нагревании разлагаются с выделением кислорода:

    Обратите внимание, что все рассмотренные способы получения кислорода схожи. Во всех случаях кислород выделяется при разложении более сложных веществ.

    Реакция разложения

    В общем виде реакцию разложения можно описать буквенной схемой:

    АВ → А + В.

    Реакции разложения могут протекать при действии различных факторов. Это может быть нагревание, действие электрического тока, применение катализатора. Существуют реакции, в которых вещества разлагаются самопроизвольно.

    Получение кислорода в промышленности

    В промышленности кислород получают путем выделения его из воздуха. Воздух – смесь газов, основные компоненты которой представлены в таблице.

    Сущность этого способа заключается в глубоком охлаждении воздуха с превращением его в жидкость, что при нормальном атмосферном давлении может быть достигнуто при температуре около -192°С . Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип. О2 = -183°С; Ткип.N2 = -196°С (при нормальном атмосферном давлении).

    При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения, и, по мере его выделения, жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией жидкого воздуха.

    • В лаборатории кислород получают реакциями разложения
    • Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые
    • Кислород можно собрать методом вытеснения воздуха или методом вытеснения воды
    • Для обнаружения кислорода используют тлеющую лучину, она ярко вспыхивает в нем
    • Катализатор – вещество, ускоряющее химическую реакцию, но не расходующееся в ней

    В атмосферном воздухе кислород занимает 21%. Большая часть его находится в земной коре, пресной воде и живых микроорганизмах. Он применяется во многих сферах промышленности и задействуется для хозяйственных и медицинских потребностей. Востребованность вещества обусловлена химическими и физическими особенностями.

    Как добывают кислород в промышленности. 3 метода

    Производство кислорода в промышленности осуществляется за счет деления атмосферного воздуха. Для этого задействуются следующие методы:

    Производство кислорода в промышленных масштабах несет в себе высокую значимость. К выбору технологии и соответствующего оборудования нужно уделить повышенное вынимание. Допущенные ошибки могут негативно отразиться на технологичном процессе и повлечь за забой увеличение затрат.

    Технические особенности оборудования для получения кислорода в промышленности

    Наладить процесс получения кислорода в газообразном состоянии помогают генераторы промышленного типа «ОКСИМАТ». Их технические характеристики и конструктивные особенности направлены на получение данного вещества в промышленности необходимой чистоты и требуемом количестве на протяжении суток (без перерыва). Следует учесть, что работать оборудование может в любом режиме как с остановками, так и без них. Агрегат функционирует под давлением. На входе должен быть осушенный воздух в сжатом состоянии очищенный от влаги. Предусматриваются модели малой, средней и большой производительности.

    На сегодня вопрос экологии выходит на первый план. Но здоровая экология невозможна без кислорода. Именно он является основным кирпичиком поддержания жизни на планете . Кроме этого, кислород часто участвует во многих химических реакциях. Давайте рассмотрим, как получить кислород в условиях химической лаборатории.

    Чтобы получить кислород укрепим пробирку из тугоплавкого стекла на штативе и внесем в нее 5 г порошкообразной (нитрата калия KNO 3 или нитрата натрия NaNO 3). Поставим под пробирку чашку из огнеупорного материала, наполненную песком, так как при этом опыте часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится кислород (обнаружим это с помощью тлеющей лучины – она воспламенится в пробирке). При этом нитрат калия перейдет в нитрит KNO 2 . Бросим затем тигельными щипцами или пинцетом кусок черенковой в расплав (никогда не держать лицо над пробиркой). Сера воспламенится и сгорит с выделением большого количества тепла. Опыт следует проводить при открытых окнах (из-за получающихся окислов серы).

    Процесс протекает следующим образом (нагревание):

    2KNO 3 → 2KNO 2 + О 2

    Получить кислород можно и другими методами. Перманганат калия КМnО 4 отдает при нагревании кислород и превращается при этом в оксид марганца (4):

    2КМnO 4 → МnO 2 + К 2 МnО 4 + O 2 .

    Из 10 г перманганата калия можно получить примерно литр кислорода, значит двух граммов достаточно, чтобы наполнить кислородом пять пробирок нормальной величины.

    Некоторое количество перманганата калия нагреем в тугоплавкой пробирке и уловим в пробирки выделяющийся кислород с помощью пневматической ванны. Кристаллы, растрескиваясь, разрушаются, и, зачастую некоторое количество пылеобразного перманганата увлекается вместе с газом. Вода в пневматической ванне и отводной трубке в этом случае окрасится в красный .

    В больших количествах получить кислород можно также из пероксида (перекиси) водорода Н 2 О 2 . Пероксид водорода мало устойчив. Уже при стоянии на воздухе он разлагается на кислород и :

    2Н 2 O 2 → 2H 2 O + О 2

    Получить кислород можно существенно быстрее, если добавить к пероксиду немного диоксида марганца МnО 2 , активного угля, металлического порошка, крови (свернувшейся или свежей), слюны. Эти вещества действуют как катализаторы .

    Мы можем в этом убедиться, если в маленькую пробирку поместим примерно 1 мл пероксида водорода с одним из названных веществ, а наличие выделяющегося кислорода установим с помощью пробы лучинкой. Если в химическом стакане к 5 мл трехпроцентного раствора пероксида водорода добавить равное количество крови животного, то смесь сильно вспенится, пена застынет и вздуется в результате выделения пузырьков кислорода.

    Катализаторы повышают скорость реакции химического процесса и при этом сами не расходуются. В конечном итоге они снижают энергию активации, необходимую для возбуждения реакции. Но существуют и вещества, действующие противоположным образом. Их называют отрицательными катализаторами или ингибиторами . Например, фосфорная кислота препятствует разложению пероксида водорода. Поэтому продажный раствор пероксида водорода обычно стабилизирован фосфорной или мочевой кислотой. В живой природе во многих процессах участвуют так называемые биокатализаторы (энзимы, гормоны).