Первый закон Ньютона и инерциальные системы отсчёта. Первый закон ньютона Примеры действия первого закона ньютона

Помни!!!

  • В основе динамики материальной точки лежат три закона Ньютона.
  • Первый закон Ньютона - закон инерции
  • Под телом подразумевают материальную точку, движение которой рассматривают в инерциальной системе отсчета.

1. Формулировка

«Существуют такие инерциальные системы отсчёта, относительно которых тело, если на него не действуют другие силы (либо действие других сил компенсируется), находится в покое либо движется равномерно и прямолинейно».

2. Определение

Первый закон Ньютона - всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Первый закон Ньютона - закон инерции (Галилей вывел закон инерции)

Закон инерции : Если на тело нет внешних воздействий, то данное тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Инерциальная система отсчёта (ИСО) – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Т.е. система отсчета, в которой выполняется 1-й закон Ньютона.

  • Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.
  • Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

Объяснение законов Ньютона – важнейший этап, необходимый для понимания классической механики. Всего их три: инерции, движения и взаимодействия тел.

Во времена Ньютона уже были накоплен большой объем наблюдений за механическими процессами. Строились корабли, здания, мануфактуры. Разрабатывались станки и механизмы для производства, артиллерийские орудия для видения войны. Научные труды Галилея, Декарта, Борелли уже содержали все основы, необходимые, чтобы вывести базовые закономерности классической механики. Сегодня любой закон Ньютона считается аксиомой, базирующейся на обобщенных результатах многочисленных экспериментов.

Первый закон Ньютона

Ньютон писал, что имеются инерциальные системы отсчета, где тела перемещаются прямо и равномерно, если нет воздействия любых сил или если действие этих сил было скомпенсировано.

Допустим, что имеется шар и абсолютно ровная поверхность, пренебрежём силами сопротивления воздуха и трения. Если мы в таких условиях его толкнем, то шар будет катиться вечно, не меняя скорости. Причина находится в инерции – способности шара сохранять скорость по величине и направленности при полном отсутствии воздействия на него. Конечно, в реальности такие условия не встречаются. Поверхность шара будет тереться о поверхность дороги, ему придется преодолевать сопротивление воздуха или столкнуться с другими факторами воздействия, например, ветром.

Ньютон был не первым, кто сформулировал этот закон. До него Галилео Галилей писал, что тело будет либо покоится, либо равномерно двигаться при условии отсутствия внешних сил. Но именно он сгруппировал все знания в этой сфере в единый

Второй закон Ньютона

Второй закон Ньютона говорит, что ускорение объекта в описанной выше инерциальной системе обратно пропорционально его массе и прямо пропорционально величине силы, которая была приложена. То есть устанавливается связь между силой, воздействующей на объект, ускорением и его массой.

Где a является ускорением, F – приложенной силой, а m – его массой.

Если сил несколько, то в формуле это отражается как векторная сумма показателей F.

Рассмотрим этот закон на примере. В реальности скорость шара всегда изменяется, он может замедляться или по каким-то причинам ускоряться. Это происходит в тот момент, как на него начинает действовать некая сила. Если изменение происходит плавно, то такое движение называют равноускоренным. При падении на все предметы действует ускорение свободного падение, равное постоянной величине g, поэтому они движутся равноускорено. Это обусловлено воздействием силы тяжести.

Интересно знать!

решаются подобно остальным заданиям по физике. Поэтому адаптируем обычный алгоритм. Для этого нужно точно понимать, что собой представляет движение тел. Это изменение их положения в пространстве. Для оценки оперируют понятиями скорости, времени, расстояния, количеством объектов.

Следует отметить, что третий закон Ньютона используется только при движении объектов со скоростью, которая значительно ниже скорости света. Термин «тело» сегодня заменяют на такое понятие как «материальная точка», это нечто, что не может совершать вращательные движения.

Третий закон Ньютона

Описание этого закона гласит, что взаимодействие двух объектов между собой равно и направлено в противолежащие стороны. То есть, если на некий объект воздействует сила, то обязательно имеется вторая материальная точка, на которую воздействует объект с аналогичной по значению, но направленной в другую сторону силой. Эту закономерность называют законом взаимодействия.

Приведем пример описанной закономерности. Имеются две тележки. К одной прикрепим упругую металлическую пластину, согнутую и связанную нитью. Вторую тележку поставим таким образом, чтобы она соприкасалась с краем пластины и перережем нить. Пластина, превращенная в своеобразную пружину, резко выпрямится и тележки начнут двигаться, получив ускорение. Так как их масса идентичная, то ускорение и скорость будут равны по модулю. Тележки переместятся на одинаковое расстояние.

Положим на первую из тележек груз и вновь активируем своеобразную пружину. В этот раз они переместятся на разное расстояние, так как ускорение тележки с грузом будем меньшим по значению. Можно отметить, что чем меньше груз, положенный сверху, тем большее ускорение приобретается объектом.

Где F1 и F2 обозначаем силу каждого типа. Разнонаправленность векторов отражает знак «минус».

Вспоминая предыдущие законы Ньютона, отметим, что силы, появляющиеся при взаимодействии между собой объектов, но приложенные к разным материальным точкам между собой не уравновешены. Они могут быть уравновешеными только, если приложены к одному телу.

На этих закономерностях построено множество задач. Сгруппировать их можно в два основных типа:

  • Известен закон Ньютона, требуется найти силы, воздействующие на движение объекта.
  • Определить закон Ньютона, зная что воздействует на объект.

Три закона сэра Исаака Ньютона описывают движение массивных тел и как они взаимодействуют.

В то время как законы Ньютона могут показаться очевидными для нас сегодня, более трех веков назад они считались революционными.

Содержание:

Ньютон, пожалуй, наиболее известен своей работой по изучению гравитации и движения планет. Призванный астрономом Эдмондом Галлеем после признания того, что за несколько лет до этого он потерял доказательство эллиптических орбит, Ньютон опубликовал свои законы в 1687 году в своей оригинальной работе «Philosophiæ Naturalis Principia Mathematica» (Математические принципы естественной философии), в которой он формализовал описание того, как массивные тела движутся под воздействием внешних сил.

Формулируя свои три закона, Ньютон упростил обращение к массивным телам, считая их математическими точками без размера или вращения. Это позволило ему игнорировать такие факторы, как трение, сопротивление воздуха, температура, свойства материала и т. д. и сосредоточиться на явлениях, которые могут быть описаны исключительно по массе, длине и времени. Следовательно, три закона не могут быть использованы для описания точности поведения больших жестких или деформируемых объектов. Однако во многих случаях они обеспечивают подходящие точные приближения.

Законы Ньютона

Законы Ньютона относятся к движению массивных тел в инерциальной системе отсчета, иногда называемой ньютоновской системой отсчета, хотя сам Ньютон никогда не описывал такую ​​систему. Инерциальную систему отсчета можно описать как трехмерную систему координат, которая либо стационарна, либо равномерно линейна, т. е. Не ускоряется и не вращается. Он обнаружил, что движение в такой инерциальной системе отсчета может быть описано тремя простыми законами.

Первый закон движения Ньютона

Гласит: Если на тело не действуют силы или их действие скомпенсировано, то данное тело находится в состоянии покоя или равномерного прямолинейного движения. Это просто означает, что вещи не могут начинать, останавливать или изменять направление самостоятельно.

Требуется сила, действующая на них извне, чтобы вызвать такое изменение. Это свойство массивных тел сопротивляться изменениям в их движении иногда называют инерцией.

В современной физике первый закон Ньютона принято формулировать в следующем виде:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

Второй закон движения Ньютона

Описывает, что происходит с массивным телом, когда на него воздействует внешняя сила. В нем говорится: Сила, действующая на объект, равна массе этого объекта своего ускорения. Это написано в математической форме как F = ma, где F — сила, m — масса, a — ускорение. Жирные буквы указывают, что сила и ускорение являются векторными величинами, что означает, что они имеют как величину, так и направление. Сила может быть одной силой, или это может быть векторная сумма более чем одной силы, которая является чистой силой после объединения всех сил.

Когда постоянная сила действует на массивное тело, она заставляет ее ускоряться, т. е. Изменять свою скорость с постоянной скоростью. В простейшем случае сила, приложенная к неподвижному объекту, заставляет его ускоряться в направлении силы. Однако, если объект уже находится в движении или если эта ситуация просматривается из движущейся системы отсчета, это тело может показаться ускоряющимся, замедляющим или изменяющим направление в зависимости от направления силы и направлений, в которых объект и система отсчета перемещается относительно друг друга.

В современной физике второй закон Ньютона принято формулировать в следующем виде:

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

Третий закон движения Ньютона

Гласит: Для каждого действия существует равное противодействие. Этот закон описывает то, что происходит с телом, когда оно оказывает силу на другое тело. Силы всегда встречаются парами, поэтому, когда одно тело толкает другого, второе тело отталкивается так же сильно. Например, когда вы нажимаете тележку, тележка отталкивается от вас; когда вы тянете за веревку, веревка откидывается на вас; когда сила тяжести тянет вас к земле, земля подталкивает вас и когда ракета воспламеняет свое топливо за ним, расширяющийся выхлопной газ толкается на ракете, заставляя его ускоряться.

Если один объект намного, гораздо более массивный, чем другой, особенно в случае привязки первого объекта к Земле, практически все ускорение передается второму объекту, и ускорение первого объекта можно безопасно игнорировать, Например, если вы бросили мяч на запад, вам не нужно было бы считать, что вы на самом деле заставили вращаться Землю быстрее, пока мяч находился в воздухе. Однако, если вы стоите на роликовых коньках, и вы бросили мяч для боулинга, вы начнете двигаться назад с заметной скоростью.

В современной физике третий закон Ньютона принято формулировать в следующем виде:

Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Три закона были проверены бесчисленными экспериментами за последние три столетия, и до сих пор они широко используются для описания видов предметов и скоростей, с которыми мы сталкиваемся в повседневной жизни. Они составляют основу того, что сейчас известно как классическая механика, а именно изучение массивных объектов, которые больше, чем очень мелкие масштабы, рассматриваемые квантовой механикой, и которые движутся медленнее, чем очень высокие скорости, релятивистские механики.

На этом уроке мы изучим третий закон Ньютона, в котором описываются силы взаимодействия двух тел. Также вспомним основные сведения о первом и втором законе Ньютона. Помимо этого, мы вспомним основной экспериментальный закон динамики, рассмотрим принцип относительности Галилея. В конце урока узнаем, как применять третий закон Ньютона при разборе качественных задач.

Известно, что при взаимодействии оба тела воздействуют друг на друга. Не бывает такого, чтобы одно тело толкнуло другое, а второе в ответ никак не отреагировало бы.

Проведем эксперимент. Возьмем два динамометра (рис. 1). Один из них наденем колечком на что-то неподвижное, например на гвоздь в стене, а второй соединим с первым крючками. Потянем за колечко второго динамометра. Оба прибора покажут одинаковые по модулю силы натяжения.

Рис. 1. Опыт с динамометрами

Другой пример. Представьте, что вы и ваш друг катаетесь на скейте, причем друг катается на одном скейте с братом (рис. 2).

Рис. 2. Приобретение ускорения при взаимодействии

Ваша масса - , масса друга с братом - . Если вы отталкиваетесь друг от друга, то приобретаете ускорения, которые направлены по одной прямой в противоположные стороны . Отношение масс участников этого процесса обратно пропорционально отношению модулю ускорений.

Следовательно:

Согласно второму закону Ньютона:

Сила, с которой на вас действует друг с братом

Сила, с которой вы действуете на друга с братом

Так как ускорения противонаправленные, то:

Данное равенство выражает третий закон Ньютона : тела действуют друг на друга с силами, которые имеют одинаковые модули и противоположные направления (рис. 3).

Рис. 3. Третий закон Ньютона

Основной экспериментальный закон динамики

При выводе третьего закона Ньютона мы видели, что при взаимодействии двух тел отношение двух ускорений, которые приобретает первое и второе тело, является величиной постоянной. Причем отношение этих ускорений не зависит от характера взаимодействия (рис. 4), следовательно, оно определяется самими телами, какой-то его характеристикой.

Рис. 4. Отношение ускорений не зависит от характера взаимодействия

Такая характеристика называется инертностью . Мерой инертности является масса. Поэтому отношение ускорений, приобретаемых телами в результате взаимодействия друг с другом, равно обратному отношению масс этих тел. Этот факт иллюстрирует эксперимент, в котором две тележки с разными массами () отталкиваются друг от друга с помощью упругой пластинки (рис. 5). В результате такого взаимодействия большее ускорение приобретет тележка с меньшей массой.

Рис. 5. Взаимодействие двух тел с разными массами

Рис. 6. Основной экспериментальный закон динамики

Закон, который описывает соотношение масс тел и ускорений, приобретенных в результате взаимодействия, называется основным экспериментальным законом динамики (рис. 6).

Более простая формулировка третьего закона Ньютона звучит так: сила действия равна силе противодействия.

Сила действия и сила противодействия - это всегда силы одной природы. Например, в предыдущем опыте сила действия первого динамометра на второй и сила действия второго динамометра на первый - это силы упругости; силы действия одного заряженного тела на другое и наоборот - это силы электрической природы.

Каждая из сил взаимодействия приложена к разным телам. Следовательно, силы взаимодействия между телами не могут компенсировать друг друга, хотя формально:

Рис. 7. Парадокс равнодействующей силы

Продемонстрируем опыт, который подтверждает третий закон Ньютона. До начала опыта весы находятся в равновесии: силы, действующие слева, равны всем силам, действующим справа (рис. 8).

Рис. 8. Силы, действующие слева, равны всем силам, действующим справа

Поместим грузик в сосуд с водой, не касаясь его стенок и дна. На грузик со стороны воды действует выталкивающая сила, направленная вертикально вверх. Но, по третьему закону Ньютона, силы обязательно возникают парами. Значит, со стороны грузика на воду начнет действовать равная по модулю силе Архимеда, но противоположно направленная сила, которая «толкнет» сосуд вниз. А значит, равновесие нарушится в сторону сосуда с грузиком (рис. 9).

Рис. 9. Равновесие нарушится в сторону сосуда с грузиком

Таким образом, первый закон Ньютона утверждает: если на тело не действует посторонние тела, то оно находится в состоянии покоя или равномерного прямолинейного движения относительно инерциальных систем отсчета. Из него следует, что причиной изменения скорости тела является сила. Второй закон Ньютона объясняет, как движется тело под действием силы. Он устанавливает количественное отношение между ускорением и силой.

В первом и во втором законах Ньютона рассматривается только одно тело. В третьем законе рассматривается взаимодействие двух тел с силами, одинаковыми по модулю и противоположными по направлению. Эти силы называют силами взаимодействия. Они направлены вдоль одной прямой и приложены к разным телам.

Некоторые особенности взаимодействия тел. Принцип относительности Галилея

Выводы, которые возникают при рассмотрении законов Ньютона:

1. Все силы в природе всегда возникают парами (рис. 10). Если появилась одна сила, то обязательно появится противоположно направленная ей вторая сила, действующая со стороны первого тела на второе. Обе эти силы одной природы.

Рис. 10. Все силы в природе всегда возникают парами

2. Каждая из сил взаимодействия приложена к разным телам, следовательно, силы взаимодействия между телами не могут компенсировать друг друга.

3. Ускорения тел в разных инерциальных системах отсчета одинаковы. Меняются перемещения, скорости, но ускорения - нет. Масса тел тоже не зависит от выбора системы отсчета, а значит, и сила не будет зависеть от этого. То есть в инерциальных системах отсчета все законы механического движения одинаковы - это и есть принцип относительности Галилея .

Разбор качественной задачи

1. Может ли человек поднять сам себя по веревке, перекинутой через блок, если второй конец веревки привязан к поясу человека, а блок неподвижен?

Рис. 11. Иллюстрация к задаче

С первого взгляда, кажется, что сила, с которой человек действует на веревку, равна силе, с которой веревка действует на человека (рис. 11). Но сила приложена через веревку к блоку, а сила - к человеку, следовательно, человек сможет поднять себя по этой веревке. Такая система не замкнутая. Система «человек - веревка» включает в себя блок.

2. Может ли человек толкать лодку, если он сам находится в этой лодке и упирается руками в один из бортов?

Рис. 12. Иллюстрация к задаче

В этой задаче система «человек - лодка» замкнутая (рис. 12), то есть сила, с которой человек давит на борт лодки, равна силе, с которой борт лодки действует на человека, но направлена в противоположную сторону. Никакого движения не будет.

3. Может ли человек вытащить самого себя из болота за волосы?

Рис. 13. Иллюстрация к задаче

Система также замкнутая. Сила, с которой рука действует на волосы, равна силе, с которой волосы действуют на руку, но направлена в противоположную сторону (рис. 14). Человек вытащить самого себя из болота за волосы не может.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «raal100.narod.ru» ()
  2. Интернет-портал «physics.ru» ()
  3. Интернет-портал «bambookes.ru» ()
  4. Интернет-портал «bourabai.kz» ()

Домашнее задание

  1. Вопросы в конце параграфа 26 (стр. 70) - Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Третий закон Ньютона самим Ньютоном был сформулирован так: «Действию всегда есть равное и противоположное противодействие». Есть ли физическое различие между действием и противодействием? Что собой представляют «действие» и «противодействие» Ньютона?
  3. Верно ли утверждение: скорость тела определяется действующей на него силой?
  4. О ветровое стекло движущегося автомобиля ударился комар. Сравните силы, действующие на комара и автомобиль во время удара.

Мир полон движения: движутся звезды и планеты и на нашей планете мы также видим движение всюду – течет вода в реках, ветер гонит облака и качает деревья, по дорогам едут автомобили, по рельсам – поезда, в воздухе летят самолеты. Наукой доказано движение невидимых глазом частиц – молекул, атомов. Движение является основным свойством материи и подчиняется законам Ньютона.

Закон инерции, или Первый закон Ньютона

Механическое движение характеризуется скоростью. И вот другое основное положение, которое утверждает, что движущееся тело не может само по себе изменить свою скорость. Если на движущееся тело не действуют никакие другие тела, то тело не может ни ускориться, ни замедлиться, ни изменить направление своего движения, оно будет двигаться с какой-то определенной по модулю и направлению скоростью. Только воздействие тел извне может изменить эту скорость.

Свойство тел сохранять модуль и направление своей скорости называется инерцией

Первым явление инерции объяснил Галилей. Ньютон же сформулировал «закон инерции». Формулировка его звучит следующим образом: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения, пока действия со стороны других тел не изменят этого состояния.

Рис. 1. Портрет Ньютона.

Ни один предмет сам собой не придет в движение. Стоящий в комнате стол никогда сам собой не начнет двигаться по комнате. Движущееся тело не может само собой остановиться.

Когда водитель трамвая резко тормозит, то находящиеся в вагоне пассажиры помимо воли наклоняются вперед, продолжая свое движение по инерции.

Резко трогающийся с места поезд метрополитена заставляет пассажиров отступать или откидываться назад. А на крутом повороте дороге можно вылететь из санок в сугроб.

Примеров инерции существует огромное множество. Инерционность – неотъемлемое свойство движущейся материи.

Что же может произойти в мире, если бы мгновенно исчезло свойство тел, которое мы называем инерцией. Луна упала бы на Землю, а планеты – на Солнце. Движение тела осуществлялось бы только под действием силы и прекращалось с исчезновением последней. Даже больше: исчезновение инерции означало бы исчезновение самого движения. Таким образом, инерция есть не что иное, как выражение единства материи и движения.

Рис. 2. Солнечная система.

И в природе, и в технике нет тел, на которые не действовали бы другие тела. Например, на тело, находящееся на столе, действует опора и Земля. Тело находится в покое, потому что действия опоры и Земли уравновешивают друг друга. Опускаясь на парашюте, парашютист движется равномерно и прямолинейно (V=const), несмотря на то, что на него действует Земля и воздух. Ракета вдали от звезд будет также двигаться равномерно и прямолинейно, так как на нее не будут действовать другие тела.

Движение одних тел под действием других тел подчиняется законам динамики

Галилей, исходя из многочисленных наблюдений пришел к выводу, что если действия нет или все действия скомпенсированы (равнодействующая всех сил равна 0; R=0), то тело покоится или движется равномерно и прямолинейно (V=const; a=0).

Но движение тела необходимо рассматривать относительно других тел, иначе невозможно будет определить положение тела в пространстве. Значит, говоря о явлении инерции, необходимо указать, относительно чего тело покоится или движется равномерно и прямолинейно.

Поэтому первый закон Ньютона, названный законом инерции, также носит следующее определение:

Существуют системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если действие на него других тел скомпенсировано.

Формулы первого закона Ньютона не существует.

Инерциальные системы отсчета

Системы отсчета, которые упоминаются в первом законе Ньютона, называются инерциальными системами отсчета (ИСО).

Какие же системы отсчета можно отнести к инерциальным?

  • те, в которых при R=0; V=const
  • те, которые движутся относительно ИСО равномерно и прямолинейно (например, звезды). На самом деле не существует такой ситуации, при которой на тело не действовали другие тела. Однако, если действие одних тел скомпенсировано, а действие других слишком мало, то принято считать, что в определенном приближении на тело никакие тела не действуют.

Рис. 3. Инерциальные и неинерциальные системы отсчета.

Солнце и Земля не являются инерциальными системами отсчета. Но эффекты, вызванные их неинерцианальностью, незначительны. в ряде случаев ими можно пренебречь, правда не всегда

Первый закон Ньютона выполняется не во всех СО, а только в инерциальных. Во всех ИСО при первоначальных одинаковых условиях механические явления протекают одинаково, то есть подчиняются одинаковым законам. Это утверждение носит название – принцип относительности Галилея.

Все ИСО равноправны:

Никакими механическими опытами, проведенными в пределах данной системы, нельзя установить, находится ли она в состоянии покоя или в состоянии равномерного и прямолинейного движения.

Что мы узнали?

В данной статье кратко и понятно объясняется первый закон Ньютона, инерциальные системы отсчета и их взаимосвязь. Ведь, как известно, первый закон Ньютона действителен только для инерциальных систем отсчета.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 180.