Презентация к уроку по физике (10 класс) на тему: экспериментальная работа по физике "Изменение давления". «Измерение коэффициента трения скольжения»

фЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

ИМЕНИ а. н. рАДИЩЕВА

Г. кУЗНЕЦК - 12

ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАДАНИЯ ПО ФИЗИКЕ

1. Измерение модуля начальной скорости и времени торможения тела, движущегося под действием силы трения

Приборы и материалы: 1) брусок от лабораторного трибометра, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями.

1. Положите брусок на стол и заметьте его начальное поло­жение.

2. Толкните слегка брусок рукой и заметьте его новое поло­жение на столе (см. рис.).

3. Измерьте тормозной путь бруска относительно стола._________

4. Измерьте модуль веса бруска и вычислите его массу.__

5. Измерьте модуль силы трения скольжения бруска по столу.___________________________________________________________

6. Зная массу, тормозной путь и модуль силы трения скольжения, вычислите модуль начальной скорости и время торможения бруска.______________________________________________

7. Запишите результаты измерений и вычислений.__________

2. Измерение модуля ускорения тела, движущегося под действием сил упругости и трения

Приборы и материалы: 1) трибометр лабораторный, 2) динамометр учебный с фиксатором.

Порядок выполнения работы

1. Измерьте модуль веса бруска с помощью динамометра._______

_________________________________________________________________.

2. Зацепите динамометр за брусок и положите их на линейку трибометра. Указатель динамометра установите на нулевое деление шкалы, а фиксатор - около упора (см. рис.).

3. Приведите брусок в равномерное движение вдоль линейки трибометра и измерьте модуль силы трения скольжения. ________

_________________________________________________________________.

4. Приведите брусок в ускоренное движение вдоль линейки трибометра, подействовав на него силой, большей модуля силы трения скольжения. Измерьте модуль этой силы. __________________

_________________________________________________________________.

5. По полученным данным вычислите модуль ускорения бруска._

_________________________________________________________________.

__________________________________________________________________

2. Переместите брусок с грузами равномерно вдоль линейки трибометра и запишите показания динамометра с точностью до 0,1 Н.__________________________________________________________.

3. Измерьте модуль перемещения бруска с точностью до 0,005 м

относительно стола. ___________________________________________.

__________________________________________________________________

5. Вычислите абсолютную и относительную погрешности измерения работы._______________________________________________

__________________________________________________________________

6. Запишите результаты измерений и вычислений.__________

__________________________________________________________________

_________________________________________________________________

Ответьте на вопросы:

1. Как направлен вектор силы тяги относительно вектора перемещения бруска?_____________________________________________

_________________________________________________________________.

2. Какой знак имеет работа, совершенная силой тяги по перемещению бруска?____________________________________________

__________________________________________________________________

Вариант 2.

1. Положите брусок с двумя грузами на линейку трибометра. За крючок бруска зацепите динамометр, расположив его под углом 30° к линейке (см. рис.). Угол наклона динамометра проверьте с помощью угольника.

2. Переместите равномерно брусок с грузами по линейке, сохраняя первоначальное направление силы тяги. Запишите показания динамометра с точностью до 0,1 Н.____________________

_________________________________________________________________.

3. Измерьте модуль перемещения бруска с точностью до 0,005 м относительно стола._______________________________________________

4. Вычислите работу силы тяги по перемещению бруска относительно стола._______________________________________________

__________________________________________________________________

__________________________________________________________________.

5. Запишите результаты измерений и вычислений.__________

__________________________________________________________________

Ответьте на вопросы:

1. Как направлен вектор силы тяги относительно вектора перемещения бруска? ____________________________________________

_________________________________________________________________.

2. Какой знак имеет работа силы тяги по перемещению бруска?

_________________________________________________________________.

_________________________________________________________________

4. Измерение КПД подвижного блока

П риборы и материалы : 1) блок, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) грузы массой по 100 г с двумя крючками – 3 шт., 5) штатив с лапкой, 6) нить длиной 50 см с петлями на концах.

Порядок выполнения работы

1. Соберите установку с подвижным блоком, как показано на рисунке. Через блок перебросьте нить. Один конец нити зацепите за лапку штатива, второй - за крючок динамометра. К обойме блока подвесьте три груза массой по 100 г.

2.Возьмите динамометр в руку, расположите его вертикально так, чтобы блок с грузами повис на нитях, и измерьте модуль силы натяжения нити._____________

___________________________________________

3.Поднимите равномерно грузы на некоторую высоту и измерьте модули перемещений грузов и динамометра относительно стола. ___________________________________________________________

_________________________________________________________________.

4.Вычислите полезную и совершенную работы относительно стола. ___________________________________________________________

__________________________________________________________________

5.Вычислите КПД подвижного блока. ________________________

Ответьте на вопросы:

1.Какой выигрыш в силе дает подвижный блок?______________

2.Можно ли при помощи подвижного блока получить выигрыш в работе? _______________________________________________

_________________________________________________________________

3.Как повысить КПД подвижного блока?_____________________

____________________________________________________________________________________________________________________________________________________________________________________________________.

5. Измерение момента силы

П риборы и материалы : 1) желоб лабораторный, 2) динамометр учебный, 3) лента измерительная с сантиметровыми делениями, 4) петля из прочной нити.

Порядок выполнения работы

1.Наденьте петлю на конец желоба и зацепите ее динамометром, как показано на рисунке. Поднимая динамометр, поворачивайте желоб вокруг горизонтальной оси, проходящей через другой его конец.

2.Измерьте модуль силы, необходимой для вращения желоба._

3.Измерьте плечо этой силы. ________________________________.

4.Вычислите момент этой силы.______________________________

__________________________________________________________________.

5.Передвиньте петлю в середину желоба, и снова измерьте модуль силы, необходимой для вращения желоба, и ее плечо.______

___________________________________________________________________________________________________________________________________.

6.Вычислите момент второй силы. ___________________________

_________________________________________________________________.

7.Сравните вычисленные моменты сил. Сделайте вывод. _____

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________.

6. «Измерение жесткости пружины.

Цель работы: найти жесткость пружины.

Материалы : 1) штатив с муфтами и лапкой; 2) спиральная пружина.

Порядок выполнения работы:

Закрепите на штативе конец спиральной пружины (другой конец пружины снабжен стрелкой - указателем и крючком).

Рядом с пружиной или за ней установите и закрепите линейку с миллиметровыми делениями.

Отметьте и запишите то деление линейки, против которого приходится стрелка-указатель пружины. __________________________

Подвесьте к пружине груз известной массы и измерьте вызванное им удлинение пружины.________________________________

___________________________________________________________________

К первому грузу добавьте второй, третий и т. д. грузы, записывая каждый раз удлинение /х/ пружины. По результатам измерений заполните таблицу _____________________________________

___________________________________________________________________

__________________________________________________________________.

DIV_ADBLOCK195">

_______________________________________________________________.

3. Взвесьте брусок и груз.______________________________________

________________________________________________________________.

4.К первому грузу добавьте второй, третий грузы, каждый раз взвешивая брусок и грузы и измеряя силу трения. _______________

____________________________________________________________________________________________________________________________________________________________________________________________.


5. По результатам измерений постройте график зависимости силы трения от силы давления и, пользуясь им, определите среднее значение коэффициента трения μ ср. ______________________________-

_____________________________________________________________________________________________________________________________________________________________________________________________________.

Лабораторная работа

Измерение жесткости пружины

Цель работы : найти жесткость пружины с помощью измерения удлинения пружины при уравновешивании силы тяжести груза силой упругости пружины и построить график зависимости силы упругости данной пружины от ее удлинения.

Оборудование: набор грузов; линейка с миллиметровыми делениями; штатив с муфтой и лапкой; спиральная пружина (динамометр).

Вопросы для самоподготовки

1. Как определить силу тяжести груза?_________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

4. Груз неподвижно висит на пружине. Что можно сказать в этом случае о силе тяжести груза и о силе упругости пружины? _________

__________________________________________________________________

__________________________________________________________________

5. Как с помощью указанного оборудования можно измерить жесткость пружины? _____________________________________________

__________________________________________________________________

__________________________________________________________________

6. Как, зная жесткость, построить график зависимости силы упругости от удлинения пружины?________________________________

__________________________________________________________________

__________________________________________________________________

Примечание . Примите ускорение свободного падения равным (10 ±0,2) м/с2, массу одного груза (0,100 ± 0,002) кг, массу двух грузов - (0,200±0,004) кг и т. д. Достаточно сделать три опыта.

Лабораторная работа

«Измерение коэффициента трения скольжения»

Цель работы : определить коэффициент трения.

Материалы: 1) деревянный брусок; 2) деревянная линейка; 3) набор грузов.

Порядок выполнения работы

Положите брусок на горизонтально расположенную деревянную линейку. На брусок поставьте груз.

Прикрепив к бруску динамометр, как можно более равномерно тяните его вдоль линейки. Заметьте при этом показание динамометра. ____________________________________________________

__________________________________________________________________

Взвесьте брусок и груз._________________________________________

К первому грузу добавьте второй, третий грузы, каждый раз взвешивая бру­сок и грузы и измеряя силу трения._________________

_________________________________________________________________

_________________________________________________________________

По результатам измерений заполните таблицу:


5. По результатам измерений постройте график зависимости силы трения от силы давления и, пользуясь им, определите среднее значение коэффициента трения μ. ________________________________

__________________________________________________________________

__________________________________________________________________

6. Сделайте вывод.

Лабораторная работа

Изучение капиллярных явлений, обусловленных поверхностным натяжением жидкости.

Цель работы : измерить средний диаметр капилляров.

Оборудование : сосуд с подкрашенной водой, полоска фильтровальной бумаги размером 120 х 10 мм, полоска хлопчатобумажной ткани размером 120 х 10 мм, линейка измерительная.

Смачивающая жидкость втягивается внутрь капилляра. Подъём жидкости в капилляре происходит до тех пор, пока результирующая сила, действующая на жидкость вверх, Fв не уравновесится силой тяжести mg столба жидкости высотой h:

По третьему закону Ньютона сила Fв, действующая на жидкость, равна силе поверхностного натяжения Fпов, действующей на стенку капилляра по линии соприкосновения её с жидкостью:

Таким образом, при равновесии жидкости в капилляре (рисунок 1)

Fпов = mg. (1)

Будем считать, что мениск имеет форму полусферы, радиус которой r равен радиусу капилляра. Длина контура, ограничивающего поверхность жидкости, равна длине окружности:

Тогда сила поверхностного натяжения равна:

Fпов = σ2πr, (2)

где σ – поверхностное натяжение жидкости.

рисунок 1

Масса столба жидкости объёмом V = πr2h равна:

m = ρV = ρ πr2h. (3)

Подставляя выражение (2) для Fпов и массы (3) в условие равновесия жидкости в капилляре, получим

σ2πr = ρ πr2hg,

откуда диаметр капилляра

D = 2r = 4σ/ ρgh. (4)

Порядок выполнения работы.

Полосками фильтровальной бумаги и хлопчатобумажной ткани одновременно прикоснитесь к поверхности подкрашенной воды в стакане (рисунок 2), наблюдая поднятие воды в полосках.

Как только прекратится подъём воды, полоски выньте и измерьте линейкой высоты h1 и h2 поднятия в них воды.

Абсолютные погрешности измерения Δ h1 и Δ h2 принимают равными удвоенной цене деления линейки.

Δ h1 = 2 мм; Δ h2 = 2 мм.

Рассчитайте диаметр капилляров по формуле (4).

D2 = 4σ/ ρgh2.

Для воды σ ± Δσ = (7, 3 ± 0, 05)х10-2 Н/ м.

Рассчитайте абсолютные погрешности Δ D1 и Δ D2 при косвенном измерении диаметра капилляров.

рисунок 2

Δ D1 = D1(Δσ/ σ + Δ h1/ h1);

Δ D2 = D2(Δσ/ σ + Δ h2/ h2).

Погрешностями Δ g и Δ ρ можно пренебречь.

Окончательный результат измерения диаметра капилляров представьте в виде

Физике»

У читель физики :

Горшенёва Наталья Ивановна

2011 г
Роль эксперимента в обучении физике.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Без эксперимента нет, и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках.

Учебный эксперимент - это средство обучения в виде специально организованных и проводимых учителем и учеником опытов.


Цели учебного эксперимента:

  • Решение основных учебно – воспитательных задач;

  • Формирование и развитие познавательной и мыслительной деятельности;

  • Политехническая подготовка;

  • Формирование мировоззрения учащихся.
Функции эксперимента:

  • Познавательная (осваиваются основы наук на практике);

  • Воспитывающая (формирование научного мировоззрения);

  • Развивающая (развивает мышление и навыки).

Виды физических экспериментов .

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь , конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Что можно сказать о приведенных выше формах обучения?

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

Учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

У учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты , устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента основную деятельность выполняют сам учитель и, в лучшем случае, один - два ученика, остальные учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Лабораторные занятия.

При обучении физике в средней школе экспериментальные умения формируются, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе . Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

В практике обучения физике в школе сложились три вида лабораторных занятий:

Фронтальные лабораторные работы по физике;

Физический практикум;

Домашние экспериментальные работы по физике.

Выполнение самостоятельных лабораторных работ.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Тут возникает сложность: не всегда в школьном кабинете физики есть достаточное количество комплектов приборов и оборудования для проведения таких работ. Старое оборудование приходит в негодность, а, к сожалению, не все школы могут позволить себе закупку нового. Да и от ограничения по времени никуда не денешься. А если у одной из бригад что-то не получается, не работает какой-то прибор или чего-либо не хватает, тогда они начинают просить о помощи учителя , отвлекая других от выполнения лабораторной работы.

В 9-11 классах проводится физический практикум.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Проводится физический практикум, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ.

К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

А что будет, если учитель предложит ученикам выполнить опыт или провести наблюдение вне школы, то есть дома или на улице? опыты, задаваемые на дом, должны не требовать применения каких-либо приборов и существенных материальных затрат. Это должны быть опыты с водой, воздухом, с предметами которые есть в каждом доме. Кто-то может усомниться в научной ценности таких опытов, конечно, она там минимальна. Но разве плохо, если ребенок сам может проверить открытый за много лет до него закон или явление? Для человечества пользы никакой, но какова она для ребенка! Опыт - задание творческое, делая что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление. Здесь надо заметить то, чтобы дети научились отличать физические опыты от всяческих фокусов, не путать одно с другим.

Домашние экспериментальные работы. Домашние лабораторные работы - простейший самостоятельный эксперимент, который выполняется учащимися дома, вне школы, без непосредственного контроля со стороны учителя за ходом работы.

Главные задачи экспериментальных работ этого вида:

Формирование умения наблюдать физические явления в природе и в быту;

Формирование умения выполнять измерения с помощью измерительных средств, использующихся в быту;

Формирование интереса к эксперименту и к изучению физики;

Формирование самостоятельности и активности.

Домашние лабораторные работы могут быть классифицированы в зависимости от используемого при их выполнении оборудования:

Работы, в которых используются предметы домашнего обихода и подручные материалы (мерный стакан, рулетка, бытовые весы и т.п.);

Работы, в которых используются самодельные приборы (рычажные весы, электроскоп и др.);

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, наверное, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ребенка форме сказано, что надо делать, на что обратить внимание. Кроме того, учитель обязан провести подробный инструктаж.

Требования, предъявляемые к домашним экспериментам. Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно, без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного кратко сформулируем предъявляемые к домашним экспериментальным заданиям требования :

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Легкость последующего контроля учителем;

Наличие творческой окраски.
Домашний эксперимент можно задавать после прохождения темы в классе. Тогда ученики увидят собственными глазами и убедятся в справедливости изученного теоретически закона или явления. При этом полученные теоретически и проверенные на практике знания достаточно прочно отложатся в их сознании.

А можно и наоборот, задать задание на дом, а после выполнения провести объяснение явления. Таким образом, можно создать у учащихся проблемную ситуацию и перейти к проблемному обучению, которое непроизвольно рождает у учащихся познавательный интерес к изучаемому материалу, обеспечивает познавательную активность учащихся в ходе обучения, ведет к развитию творческого мышления учеников. В таком случае, даже если школьники не смогут объяснить увиденное дома на опыте явление сами, то они будут с интересом слушать рассказ преподавателя.

Этапы проведения эксперимента:


  1. Обоснование постановки эксперимента.

  2. Планирование и проведение эксперимента.

  3. Оценка полученного результата.
Любой эксперимент должен начинаться с гипотезы, а заканчиваться выводом.


  1. Формулировка и обоснование гипотезы, которую можно положить в основу эксперимента.

  2. Определение цели эксперимента.

  3. Выяснение условий, необходимых для достижения поставленной цели эксперимента.

  4. Планирование эксперимента, включающего ответ на вопросы:

    • какие наблюдение провести

    • какие величины измерить

    • приборы и материалы, необходимые для проведения опытов

    • ход опытов и последовательность их выполнения

    • выбор формы записи результатов эксперимента

  5. Отбор необходимых приборов и материалов

  6. Сбор установки.

  7. Проведение опыта, сопровождаемое наблюдениями, измерениями и записью их результатов

  8. Математическая обработка результатов измерений

  9. Анализ результатов эксперимента, формулировка выводов
Общую структуру физического эксперимента можно представить в виде:

Проводя любой эксперимент, необходимо помнить о требованиях, предъявляемых к эксперименту.

Требования к эксперименту:


  • Наглядность;

  • Кратковременность;

  • Убедительность, доступность, достоверность;

  • Безопасность.

Кроме вышеперечисленных видов экспериментов, существуют мысленные, виртуальные эксперименты (см. Приложение), которые проводятся в виртуальных лабораториях и имеют большое значение в случае отсутствия оборудования.


Психологи отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается лучше, чем рассказ учителя о физическом опыте.

Школа -это самая удивительная лаборатория, потому что в ней создается будущее! И какое оно будет, зависит от нас, учителей!

Я считаю, что если учитель в преподавании физики пользуется экспериментальным методом, при котором учащиеся систематически включаются в поиски путей решения вопросов и задач, то можно ожидать, что результатом обучения будет развитие разностороннего, оригинального, не скованного узкими рамками мышления. А - это путь к развитию высокой интеллектуальной активности обучаемых.

Приложение.
Классификация видов экспериментов .
Полевой

(экскурсии)


Домашний

Школьный


Мысленный

Реальный

Виртуальный

В зависимости от количества и размеров


Лаборатор
Практичес
демонстрационные

По месту проведения

По способу проведения

В зависимости от субъекта

Эксперимент

)

преподаватель физики
ГАОУ НПО Профессиональное училище №3 г.Бузулук

Pedsovet.su – тысячи материалов для ежедневной работы учителя

Опытно-экспериментальная работа по развитию умения учащихся профессиональных училищ решать задачи по физике.

Решение задач является одним из основных способов развития мышления учащихся, а также закрепления их знаний. Поэтому проанализировав сложившуюся ситуацию, когда некоторые учащиеся не могли решить даже элементарную задачу, не только из-за проблем с физикой, но и с математикой. Моя задача состояла из математической стороны и физической.

В своей работе по преодолению математических затруднений учащихся я использовала опыт учителей Н.И. Одинцовой (г.Москва, Московский педагогический государственный университет) и Е.Е. Яковец(г.Москва, средняя школа №873) с коррекционными карточками. Карточки составлены по образцу карточек, используемых в курсе математики, но ориентированы на курс физики. Карточки сделаны по всем вопросам курса математики, вызывающим трудности у учащихся на уроках физики(«Перевод единиц измерения», «Использование свойств степени с целым показателем», «Выражение величины из формулы» и др.)

Коррекционные карточки имеют сходные структуры:

    правило→ образец→ задание

    определение, действия→ образец→ задание

    действия → образец→ задание

Коррекционные карточки применяются в следующих случаях:

    Для подготовки к контрольной работе и как материал для самостоятельных занятий.

Учащиеся на уроке или дополнительном занятии по физике перед контрольной работой, зная свои пробелы по математике, могут получить конкретную карточку по слабо усвоенному математическому вопросу, позаниматься и устранить пробел.

    Для работы над математическими ошибками, допущенными в контрольной.

После проверки контрольной работы педагог анализирует математические затруднения учащихся и обращает их внимание на допущенные ошибки, которые они ликвидируют на уроке либо на дополнительном занятии.

    Для работы с учащимися по подготовке к ЕГЭ и различным олимпиадам.

При изучении очередного физического закона, и в конце изучения небольшой главы или раздела предлагаю учащимся первый раз совместно, а затем самостоятельно(домашнее задание) заполнить таблицу№2. При этом даю пояснение, что такие таблицы помогут нам при решении задач.

Таблица № 2

Наименование

физической величины

С этой целью на первом уроке по решению задач показываю учащимся на конкретном примере как пользоваться этой таблицей. И предлагаю алгоритм решения элементарных физических задач.

    Установить, какая величина неизвестна в задаче.

    Пользуясь таблице №1, выяснить обозначение, единицы измерения величины, а также математический закон, связывающий неизвестную величину и заданные в задаче величины.

    Проверить полноту данных, необходимых для решения задачи. При их недостатке, использовать соответствующие значения из справочной таблицы.

    Оформить краткую запись, аналитическое решение и численный ответ задачи в общепринятых обозначениях.

Обращаю внимание учащихся, что алгоритм достаточно прост и универсален. Он может применяться к решению элементарной задачи практически из любого раздела школьной физики. Позднее элементарные задачи будут входить как вспомогательные в задачи более высокого уровня.

Таких алгоритмов решения задач по конкретным темам достаточно много, но запомнить их все практически невозможно, поэтому целесообразнее научить учащихся не методам решения отдельных задач, а методу поиска их решения.

Процесс решения задачи заключается в постепенном соотнесении условия задачи с её требованием. Начиная изучать физику, учащиеся не имеют опыта решения физических задач, но некоторые элементы процесса решения задач по математике могут быть перенесены на решение задач по физике. Процесс обучения учащихся умению решать физические задачи основывается на сознательном формировании у них знаний о средствах решения.

С этой целью на первом уроке по решению задач следует познакомить учащихся с физической задачей: представить им условие задачи как конкретную сюжетную ситуацию, в которой происходит некоторое физическое явление.

Разумеется, что процесс формирования у учащихся умения самостоятельно решать задачи начинается с выработки у них умения выполнять простейшие операции. В первую очередь учащихся следует научить правильно и полно записывать краткую запись («Дано»). Для этого им предлагается выделить из текста нескольких задач структурные элементы явления: материальный объект, его начальное и конечное состояния, воздействующий объект и условия их взаимодействия. По этой схеме сначала учитель, а затем каждый из учеников самостоятельно анализируют условия полученных задач.

Проиллюстрируем сказанное примерами анализа условия следующих физических задач (таблица№3):

    Эбонитовый шарик, заряженный отрицательно, подвешен на шёлковой нити. Изменится ли сила её натяжения, если второй такой же, но положительно заряженный шарик поместить в точке подвеса?

    Если заряженный проводник покрыт пылью, то он быстро теряет свой заряд. Почему?

    Между двумя пластинами, расположенными горизонтально в вакууме на расстояние 4,8 мм друг от друга, находятся в равновесии отрицательно заряженная капелька масла массой 10 нг. Сколько «избыточных» электронов имеет капля, если на пластины подано напряжение 1кВ?

Таблица № 3

Структурные элементы явления

Безошибочное нахождение структурных элементов явления в тексте задачи всеми учащимися (после анализа 5-6 задач) позволяет перейти к следующей части урока, имеющей целью усвоение учащимися последовательности выполнения операций. Таким образом, в общей сложности учащиеся анализируют около 14 задач (не доводя решения до конца), что оказывается достаточным для обучения выполнению действия «выделение структурных элементов явления».

Таблица №4

Карточка – предписание

Задание: выразите структурные элементы явления в

физических понятиях и величинах

Ориентировочные признаки

    Замените указанный в задаче материальный объект соответствующим идеализированным объектом Выразите характеристики начального объекта с помощью физических величин. Замените указанный в задаче воздействующий объект соответствующим идеализированным объектом. Выразите характеристики воздействующего объекта с помощью физических величин. Выразите характеристики условий взаимодействия с помощью физических величин. Выразите характеристики конечного состояния материального объекта с помощью физических величин.

Далее учащиеся обучаются выражению структурных элементов рассматриваемого явления и их характеристик на языке физической науки, что чрезвычайно важно, поскольку все физические законы сформулированы для определённых моделей, и для реального явления, описанного в задаче, должна быть построена соответствующая модель. Например: «маленький заряженный шарик» - точечный заряд; «тонкая нить» - пренебрежимо мала масса нити; «шёлковая нить» - нет утёчки заряда и т.п.

Процесс формирования этого действия аналогичен предыдущему: сначала преподаватель в беседе с учащимися показывает на 2-3 примерах, как нужно его выполнять, затем учащиеся производят операции самостоятельно.

Действие «составление плана решения задачи» формируется у учащихся сразу, так как составляющие операции уже известны учащимся и освоены ими. После показа образца выполнения действия каждому учащемуся для самостоятельной работы выдаётся карточка – предписание «Составление плана решения задачи». Формирование этого действия проводится до тех пор, пока оно не будет выполняться безошибочно всеми учащимися.

Таблица №5

Карточка – предписание

«Составление плана решения задачи»

Выполняемые операции

    Определите, какие характеристики материального объекта изменились в результате взаимодействия. Выясните причину, обусловливающую данное изменение состояния объекта. Запишите причинно-следственную связь между воздействием при данных условиях и изменением состояния объекта в виде уравнения. Выразите каждый член уравнения через физические величины, характеризующие состояния объекта и условия взаимодействия. Выделите искомую физическую величину. Выразите искомую физическую величину через другие известные.

Четвёртый и пятый этапы решения задач проводятся традиционно. После освоения всех действий, составляющих содержание метода поиска решения физической задачи, полный их перечень выписывается на карточку, которая служит учащимся ориентиром при самостоятельном решении задач в течение нескольких уроков.

Для меня этот метод ценен тем, что усвоенный учащимися при изучении одного из разделов физики (когда он становится стилем мышления), успешно применяется при решении задач любого раздела.

В ходе эксперимента возникла необходимость напечатать алгоритмы решения задач на отдельных листах для работы учащимися не только на уроке и после урока, но и дома. В результате работы по развитию предметной компетентности по решению задач была скомплектована папка дидактический материал для решения задач, которым мог воспользоваться любой учащийся. Затем совместно с учащимися было сделано несколько копий таких папок, на каждый стол.

Использование индивидуального подхода помогало формировать у учащихся важнейших компонентов учебной деятельности - самооценки и самоконтроля. Правильность хода решения задачи проверялась учителем и учащимися - консультантами, а затем всё больше учащихся все чаще стали помогать друг другу, непроизвольно втягиваясь в процесс решения задач.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование зависимости давления твердых тел от силы давления и от площади поверхности, на которую действует сила давления

В 7 классе мы выполняли задание по расчету давления, которое производит ученик, стоя на полу. Задание интересное, познавательное и имеет большое практическое значение в жизни человека. Мы решили изучить этот вопрос.

Цель: исследовать зависимость давления от силы и площади поверхности, на которую действует тело Оборудование: весы; обувь с разной площадью подошвы; бумага в клетку; фотоаппарат.

Для того чтобы вычислить давление нам необходимо знать площадь и силу Р= F/S P- давление (Па) F- сила (Н) S- площадь (м кв.)

ЭКСПЕРИМЕНТ-1 З ависимость давления от площади, при неизменной силе Цель: определить зависимость давления твердого тела от площади опоры. Методика вычисления площади тел неправильной формы такова: - подсчитываем количество квадратов целых, - подсчитываем количество квадратов известной площади не целых и делим пополам, -суммируем площади целых и нецелых квадратов Для этого я мы должны с помощью карандаша обвести края подметки и каблука; посчитать число полных (В) и неполных клеток (С) и определить площадь одной клетки (S к); S 1 = (В + С/2) · S к Ответ получим в см кв., которые нужно перевести в м кв. 1см кв.=0,0001 м кв.

Для того чтобы вычислить силу нам понадобиться масса исследуемого тела F=m*g F – сила тяжести m - масса тела g – ускорение свободно падения

Данные для нахождения давления № опыта Обувь с разной S S (м кв.) F (Н) P (Па) 1 Туфли на шпильке 2 Туфли на платформе 3 Туфли на плоской подошве

Давление, оказываемое на поверхность Туфли на шпильке р= Туфли на платформе р= Туфли на плоской подошве р= Вывод: давление твёрдого тела на опору с увеличением площади уменьшается

Какую обувь носить? - Учёные выяснили, что давление, оказываемое одной шпилькой приблизительно равно давлению, которое оказывают 137 гусеничных тракторов. - Слон давит на 1 квадратный сантиметр поверхности в 25 раз с меньшим весом, чем женщина на 13 сантиметровом каблуке. Каблуки – главнейшая причина возникновения плоскостопии у женщин

ЭКСПЕРИМЕНТ-2 Зависимость давления от массы, при неизменной площади Цель: определить зависимость давления твердого тела от его массы.

Как зависит давление от массы? Масса ученика m= Р= Масса ученика с ранцем на спине m= Р=


По теме: методические разработки, презентации и конспекты

Организация опытно-экспериментальной работы по внедрению системы мониторинга качества обучения в практику работы учителя-предметника

Мониторинг в образовании не заменяет и не ломает традиционную систему внутришкольного управления и контроля, а способствует обеспечению ее стабильности, долгосрочности и надежности. Он проводится там,...

1. Пояснительная записка к экспериментальной работе по теме «Формирование грамматической компетенции у дошкольников в условиях логопункта".2. Календарно-тематический план логопедических занятий...

Программа даёт чёткую систему изучения творчества Ф.И. Тютчева в 10 классе....

ЭКСПЕРИМЕНТАЛЬНЫЕ

ЗАДАЧИ

ПРИ ОБУЧЕНИИ

ФИЗИКИ

Сосина Наталия Николаевна

учитель физики

МБОУ «ЦО №22 – Лицей искусств»

Экспериментальные задачи играют большую роль в обучении учащихся физики. Они развивают мышление и познавательную активность, способствуют более глубокому пониманию сущности явлений, выработке умения строить гипотезу и проверять ее на практике. Основное значение решения экспериментальных задач заключается в формировании и развитии с их помощью наблюдательности, измерительных умений, умений обращаться с приборами. Экспериментальные задачи способствуют повышению активности учащихся на уроках, развитию логического мышления, учат анализировать явления.

К экспериментальным задачам относятся те, которые не могут быть решены без постановки опытов или измерений. Эти задачи по роли эксперимента в решении можно разделить на несколько видов:

    Задачи, в которых без эксперимента нельзя получить ответ на вопрос;

    Эксперимент используется для создания проблемной ситуации;

    Эксперимент используется для иллюстрации явления, о котором идет речь в задаче;

    Эксперимент используется для проверки правильности решения.

Решать экспериментальные задачи можно и на уроке и дома.

Рассмотрим некоторые экспериментальные задачи, которые можно использовать на уроке.

НЕКОТОРЫЕ ПРОБЛЕМНЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАДАЧИ

    Объяснить наблюдаемое явление

- Если нагреть воздух в банке и сверху на горлышко банки положить слегка надутый воздушный шар с водой, то он засасывается в банку. Почему?

(Воздух в банке остывает, его плотность увеличивается, а объем

уменьшается – шарик втягивается в банку)

- Если слегка надутый воздушный шар полить горячей водой, то он увеличится в размере. Почему?

(Воздух нагревается, скорость молекул увеличивается и, они чаще ударяются о стенки шарика. Давление воздуха увеличивается. Оболочка эластичная, сила давления растягивает оболочку и шарик увеличивается в размере)

- Резиновый шарик, опущенный в пластиковую бутылку, невозможно надуть. Почему? Что надо сделать, чтобы можно было надуть шарик?

(Шарик изолирует атмосферу воздуха в бутылке. При увеличении объема шарика, воздух в бутылке сжимается, давление растет и препятствует надуванию шарика. Если в бутылке сделать отверстие, то давление воздуха в бутылке будет равно атмосферному и шарик можно надуть).

- Можно ли вскипятить воду в спичечном коробке?

    Расчетные задачи

- Как определить потерю механической энергии за одно полное колебание груза?

(Потеря энергии равна разности значений потенциальной энергии груза в начальном и в конечном положении через один период).

(Для этого надо знать массу спички и время ее горения).

    Экспериментальные задачи, побуждающие к поиску информации

для ответа на вопрос

- Поднесите к головке спички сильный магнит, она почти не притягивается. Сожгите серную головку спички и вновь поднесите к магниту. Почему теперь притягивается головка спички к магниту?

Найдите информацию о составе спичечной головки.

ДОМАШНИЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАДАЧИ

Большой интерес у учащихся вызывают домашние экспериментальные задачи. Проводя наблюдения, за каким либо физическим явлением, ставя дома эксперимент, который нужно объяснить при выполнении этих заданий, ученики учатся самостоятельно мыслить, развивают свои практические навыки. Выполнение экспериментальных задач играет особенно важную роль в подростковом возрасте, так как в этот период перестраивается характер учебной деятельности школьника. Подростка уже не всегда удовлетворяет то, что ответ на его вопрос есть в учебнике. У него появляется потребность получить этот ответ из жизненного опыта, наблюдений за окружающей действительностью, из результата собственных экспериментов. Домашние опыты и наблюдения, лабораторные работы, экспериментальные задачи учащиеся выполняют охотнее и с большим интересом, чем другие виды домашних заданий. Задания становятся более осмысленными, глубокими, повышается интерес к физике и технике. Умение наблюдать, экспериментировать, исследовать и конструировать становятся составной частью в подготовке учащихся к дальнейшему творческому труду в различных областях производства.

Требования, предъявляемые к домашним экспериментам

Прежде всего, это, конечно, безопасность. Так как опыт проводится учеником дома самостоятельно без непосредственного контроля учителя, то в опыте не должно быть никаких химических веществ и предметов, имеющих угрозу для здоровья ребенка и его домашнего окружения. Опыт не должен требовать от ученика каких-либо существенных материальных затрат, при проведении опыта должны использоваться предметы и вещества, которые есть практически в каждом доме: посуда, банки, бутылки, вода, соль и так далее. Выполняемый дома школьниками эксперимент должен быть простым по выполнению и оборудованию, но, в то же время, являться ценным в деле изучения и понимания физики в детском возрасте, быть интересным по содержанию. Так как учитель не имеет возможности непосредственно контролировать выполняемый учащимися дома опыт, то результаты опыта должны быть соответствующим образом оформлены (примерно так, как это делается при выполнении фронтальных лабораторных работ). Результаты опыта, проведенного учениками дома, следует обязательно обсудить и проанализировать на уроке. Работы учащихся не должны быть слепым подражанием установившимся шаблонам, они должны заключать в себе широчайшее проявление собственной инициативы, творчества, исканий нового. На основе вышесказанного можно сформулировать предъявляемые к домашним экспериментальным заданиям требования:

– безопасность при проведении;
– минимальные материальные затраты;
– простота по выполнению;
– иметь ценность в изучении и понимании физики;
– легкость последующего контроля учителем;
– наличие творческой окраски.

НЕКОТОРЫЕ ДОМАШНИЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ЗАДАЧИ

- Определить плотность плитки шоколада, куска мыла, пакетика сока;

- Возьмите блюдце и опустите его ребром в кастрюлю с водой. Блюдце тонет. Теперь опустите блюдце на воду дном, оно плавает. Почему? Определите выталкивающую силу, действующее на плавающее блюдце.

- Проделайте шилом в дне пластиковой бутылки отверстие, быстро заполните водой и плотно закройте крышкой. Почему вода перестала выливаться?

- Как определить начальную скорость пули игрушечного пистолета, располагая только рулеткой.

- На баллоне лампы написано 60 Вт, 220 В. Определите сопротивление спирали. Рассчитайте длину спирали лампы, если известно, что она изготовлена из вольфрамовой проволоки диаметром 0,08 мм.

- Запишите по паспорту мощность электрического чайника. Определите количество теплоты, выделяемое за 15 мин и стоимость потребляемой за это время энергии.

Для организации и проведения урока с проблемными экспериментальными задачами перед учителем открывается большая возможность проявить свои творческие способности, подобрать задачи по своему усмотрению, рассчитанные на тот или иной класс, в зависимости от степени подготовки учащихся. В настоящее время существует большое количество методической литературы, на которую может опереться учитель при подготовке к урокам.

Можно использовать такие книги как

Л. А. Горев. Занимательные опыты по физике в 6-7 классах средней школы – М.: «Просвещение», 1985 г

В. Н. Ланге. Экспериментальные физические задачи на смекалку: Учебное руководство.- М. : Наука. Главная редакция физико-математической литературы, 1985

Л. А. Горлова. Нетрадиционные уроки, внеурочные мероприятия – М.: «Вако», 2006

В. Ф. Шилов. Домашние экспериментальные задания по физике. 7 – 9 классы. – М.: «Школьная пресса», 2003

В приложениях даны некоторые экспериментальные задачи.

ПРИЛОЖЕНИЕ 1

(с сайта учителя физики В. И. Елькина)

Экспериментальные задачи

1 . Определите, сколько капель воды содержится в стакане, если у вас есть пипетка, весы, разновес, стакан с водой, сосуд.

Решение. Накапайте, скажем, 100 капель в пустой сосуд и определите их массу. Во сколько раз масса воды в стакане больше массы 100 капель, во столько раз больше число капель.

2 . Определите площадь однородной картонки неправильной формы, если у вас есть ножницы, линейка, весы, разновес.

Решение. Взвесьте пластинку. Вырежьте из неё фигуру правильной формы (например, квадрат), площадь которого легко измерить. Найдите отношение масс – оно равно отношению площадей.

3 . Определите массу однородной картонки правильной формы (например, большого плаката), если у вас есть ножницы, линейка, весы, разновес.

Решение. Весь плакат взвешивать не нужно. Определите его площадь, а затем вырежьте с краю фигуру правильной формы (например, прямоугольник) и измерьте его площадь. Найдите отношение площадей – оно равно отношению масс.

4 . Определите радиус металлического шарика, не пользуясь штангенциркулем.

Решение. Объём шарика определите с помощью мензурки, а из формулы V = (4/3) R 3 определите его радиус.

Решение. Намотайте плотно на карандаш, например, 10 витков нити и измерьте длину обмотки. Разделив на 10, узнайте диаметр нити. С помощью линейки определите длину катушки, разделите её на диаметр одной нити и получите число витков в одном слое. Измерив внешний и внутренний диаметры катушки, найдите их разность, поделите на диаметр нити – узнаете число слоёв. Рассчитайте длину одного витка в средней части катушки и подсчитайте длину нити.

Оборудование. Мензурка, пробирка, стакан с крупой, стакан с водой, линейка.

Решение. Считайте крупинки примерно равными и шарообразными. Используя метод рядов, вычислите диаметр крупинки, а затем её объём. В пробирку с крупой налейте воды так, чтобы вода заполнила промежутки между крупинками. Используя мензурку, вычислите общий объём крупы. Поделив общий объём крупы на объём одной крупинки, подсчитайте число крупинок.

7 . Перед вами кусок проволоки, измерительная линейка, кусачки и весы с разновесом. Как с одного раза отрезать два куска проволоки (с точностью до 1 мм), чтобы получить самодельные разновесы массой 2 и 5 г?

Решение. Измерьте длину и массу всей проволоки. Вычислите длину проволоки, приходящуюся на каждый грамм её массы.

8 . Определите толщину вашего волоса.

Решение. Намотайте виток к витку волос на иголку и измерьте длину ряда. Зная количество витков, вычислите диаметр волоса.

9 . Об основании города Карфагена сложено предание. Дидона, дочь тирского царя, потеряв мужа, убитого её братом, бежала в Африку. Там она купила у нумидийского царя столько земли, «сколько занимает воловья шкура». Когда сделка состоялась, Дидона разрезала воловью шкуру на тонкие ремешки и благодаря такой уловке охватила участок земли, достаточный для сооружения крепости. Так, будто бы, возникла крепость Карфаген, а впоследствии был построен и город. Попробуйте приблизительно определить, какую площадь могла занять крепость, если считать, что размер воловьей шкуры 4 м2, а ширина ремешков, на которые Дидона её разрезала, 1 мм.

Ответ. 1 км 2 .

10 . Выясните, имеет ли алюминиевый предмет (например, шарик) внутри полость.

Решение. С помощью динамометра определите вес тела в воздухе и воде. В воздухе P = mg, а в воде P = mg – F, где F = gV – сила Архимеда. По справочнику найдите и вычислите объём шарика V в воздухе и в воде.

11 . Вычислите внутренний радиус тонкой стеклянной трубочки, используя весы с разновесом, измерительную линейку, сосуд с водой.

Решение. В трубочку наберите воду. Измерьте высоту столба жидкости, затем вылейте воду из трубочки и определите её массу. Зная плотность воды, определите её объём. Из формулы V = SH = R 2 H вычислите радиус.

12 Определите толщину алюминиевой фольги, не пользуясь микрометром или штангенциркулем.

Решение. Массу алюминиевого листа определите взвешиванием, площадь – с помощью линейки. По справочнику найдите плотность алюминия. Затем вычислите объём и из формулы V = Sd – толщину фольги d.

13 . Вычислите массу кирпича в стене дома.

Решение. Так как кирпичи стандартные, то в стене отыщите кирпичи, у которых можно измерить длину, толщину или ширину. По справочнику найдите плотность кирпича, и вычислите массу.

14 . Изготовьте «карманные» весы для взвешивания жидкости.

Решение. Простейшие «весы» – мензурка.

15 . Два ученика сделали для определения направления ветра по флюгеру. Сверху они поместили красивые флажки, вырезанные из одного и того же куска жести – на одном флюгере прямоугольной формы, на другом – треугольной. Для какого флажка, треугольного или прямоугольного, требуется краски больше?

Решение. Так как флажки изготовлены из одного и того же куска жести, то их достаточно взвесить, больший по массе имеет большую площадь.

16 . Листок бумаги накройте книгой и рывком поднимите её. Почему за ней поднимается листок?

Ответ. Листок бумаги поднимает атмосферное давление, т.к. в момент отрыва книги между ней и листком образуется разрежение.

17 . Как вылить воду из банки, стоящей на столе, не прикасаясь к ней?

Оборудование. Трёхлитровая банка, на 2/3 заполненная водой, длинная резиновая трубочка.

Решение. В банку опустите один конец длинной резиновой трубочки, заполненной водой полностью. Второй конец трубки возьмите в рот и отсасывайте воздух до тех пор, пока уровень жидкости в трубке не окажется выше края банки, затем выньте её изо рта, а второй конец трубочки опустите ниже уровня воды в банке – вода потечёт сама. (Этот приём часто используют водители при переливании бензина из бака автомобиля в канистру).

18 . Определите, какое давление оказывает металлический брусок, плотно лежащий на дне сосуда с водой.

Решение. Давление на дно стакана складывается из давления столба жидкости над бруском и давления, оказываемое на дно непосредственно бруском. С помощью линейки определите высоту столба жидкости, а также площадь грани бруска, на которой он лежит.

19 . Два одинаковых по массе шарика погружены один – в чистую, другой – в сильно солёную воду. Рычаг, к которому они подвешены, находится в равновесии. Определите, в каком сосуде чистая вода. Пробовать воду на вкус нельзя.

Решение. Шарик, погружённый в солёную воду, теряет в весе меньше, чем шарик в чистой воде. Поэтому его вес будет больше, следовательно, это тот шарик, который висит на более коротком плече. Если убрать стаканы, то перетянет шарик, подвешенный к более длинному плечу.

20 . Что необходимо сделать, чтобы кусочек пластилина плавал в воде?

Решение. Из пластилина изготовить «лодочку».

21 . Пластмассовую бутылку из-под газированной воды заполнили на 3/4 водой. Что нужно сделать, чтобы брошенный в бутылку шарик из пластилина тонул, но всплывал бы, если пробку закрутить и сжать стенки бутылки?

Решение. Внутри шарика нужно сделать воздушную полость.

22 . Какое давление на пол оказывает кошка (собака)?

Оборудование. Листок бумаги в клетку (из ученической тетради), блюдечко с водой, бытовые весы.

Решение. Взвесьте животное на домашних весах. Смочите лапки и заставьте его пробежать по листку бумаги в клетку (из ученической тетради). Определите площадь лап и вычислите давление.

23 . Чтобы быстро вылить сок из банки, надо проделайте две дырки в крышке. Главное, чтобы, когда вы начинаете выливать сок из банки, они оказались одна вверху, другая диаметрально внизу. Почему нужны две дырки, а не одна? Объяснение. В верхнюю дырку поступает воздух. Под действием атмосферного давления сок вытекает из нижней. Если дырка одна, то давление в банке будет периодически меняться, и сок начнёт «булькать».

24 . По листу бумаги катится шестиугольный карандаш, ширина грани которого 5 мм. Какова траектория движения его центра? Начертите.

Решение. Траектория – синусоида.

25 . На поверхности круглого карандаша поставили точку. Карандаш установили на наклонную плоскость и дали возможность, вращаясь, скатиться. Нарисуйте траекторию движения точки относительно поверхности стола, увеличенную в 5 раз.

Решение. Траектория – циклоида.

26 . Подвесьте металлический стержень на двух штативах так, чтобы его движение могло быть поступательным; вращательным.

Решение. Стержень подвесьте на двух нитях так, чтобы он был горизонтальным. Если его толкнуть вдоль, то он будет перемещаться, оставаясь параллельным самому себе. Если его толкнуть поперёк, он начнёт колебаться, т.е. совершать вращательное движение.

27 . Определите скорость движения конца секундной стрелки ручных часов.

Решение. Измерьте длину секундной стрелки – это радиус окружности, по которой она движется. Затем рассчитайте длину окружности, и вычислите скорость

28 . Определите, какой шарик имеет большую массу. (Шарики в руки брать нельзя.)

Решение. Шарики установите в ряд и с помощью линейки одновременно всем сообщите одинаковую силу толчка. Тот, что отлетит на самое маленькое расстояние, и есть самый тяжёлый.

29 . Определите, какая пружинка из двух с виду одинаковых имеет больший коэффициент жёсткости.

Решение. Пружинки сцепите, и растягивайте в противоположные стороны. Пружинка с меньшим коэффициентом жёсткости растянется больше.

30 . Вам даны два одинаковых резиновых мячика. Как доказать, что один из мячиков подпрыгнет выше другого, если их уронить с одинаковой высоты? Бросать мячи, сталкивать между собой, поднимать со стола, катать по столу – нельзя.

Решение. На мячи нужно нажать рукой. Какой мяч более упругий, тот и отскакивать будет выше.

31 . Определите коэффициент трения скольжения стального шарика по дереву.

Решение. Возьмите два одинаковых шарика, соедините их между собой пластилином с тем, чтобы они при скатывании не вращались. Деревянную линейку установите в штативе под таким углом, чтобы скользящие по ней шарики двигались прямолинейно и равномерно. В этом случае = tg , где – угол наклона. Измерив высоту наклонной плоскости и длину её основания, найдите тангенс этого угла наклона (коэффициент трения скольжения).

32 . У вас игрушечный пистолет и линейка. Определите скорость вылета «пули» при выстреле.

Решение. Выстрел сделайте вертикально вверх, засеките высоту подъёма. В наивысшей точке кинетическая энергия равна потенциальной – из этого равенства найдите скорость.

33 . Горизонтально расположенный стержень массой 0,5 кг лежит одним концом на опоре, а другим – на съёмном столике демонстрационного динамометра. Каковы показания динамометра?

Решение. Общий вес стержня 5 Н. Так как стержень опирается на две точки, то вес тела распределяется на обе точки опоры поровну, следовательно, динамометр покажет 2,5 Н.

34 . На ученическом столе – тележка с грузом. Ученик слегка толкает её рукой, и тележка, пройдя некоторое расстояние, останавливается. Как найти начальную скорость тележки?

Решение. Кинетическая энергия тележки в начальный момент её движения равна работе силы трения на всём пути движения, следовательно, m 2 /2 = Fs. Чтобы найти скорость, надо знать массу тележки с грузом, силу трения и пройденный путь. Исходя из этого, необходимо иметь весы, динамометр, линейку.

35 . На столе лежат шар и куб, сделанные из стали. Массы их одинаковы. Вы подняли оба тела и прижали к потолку. Одинаковой ли потенциальной энергией они будут обладать?

Решение. Нет. Центр тяжести куба ниже центра тяжести шара, следовательно, потенциальная энергия шара меньше.

ПРИЛОЖЕНИЕ 2

(из книги В. Н. Ланге «Экспериментальные физические задачи на смекалку» - экспериментальные задачи в домашней обстановке)

1. Вам предложили найти плотность сахара. Как это сделать, располагая только бытовой мензуркой, если опыт нужно провести с сахарным песком?

2. Как с помощью 100-граммовой гирьки, трехгранного напильника и линейки с делениями приближенно определить массу некоторого тела, если она не особенно отличается от массы гирьки? Как поступить, если вместо гирьки дан набор «медных» монет?

3. Как с помощью медных монет найти массу линейки?

4. Шкала весов, имеющихся в доме, проградуирована только до 500 г. Как с их помощью взвесить книгу, масса которой около 1 кг, располагая также катушкой с нитками?

5. В вашем распоряжении имеются наполненная водой ванна, маленькая банка с широким горлышком, несколько копеечных монет, пипетка, цветной мелок (или мягкий карандаш). Как с помощью этих - и только этих - предметов найти массу одной капли воды?

6. Как с помощью весов, набора гирь и сосуда с водой определить плотность камня, если его объем невозможно измерить непосредственно?

7. Как различить, имея в распоряжении пружину (или полоску резины), шпагат и кусок железа, в какой из двух непрозрачных сосудов налит керосин, а в каком - керосин с водой?

8. Как, пользуясь весами и набором гирь, можно найти вместимость (т. е. внутренний объем) кастрюли?

9. Как разделить содержимое цилиндрического стакана, до краев наполненного жидкостью, на две одинаковые части, располагая еще одним сосудом, но другой формы и несколько меньшего объема?

10. Два товарища отдыхали на балконе и размышляли над тем, как определить, не открывая спичечных коробков, в чьем коробке осталось меньше спичек. А какой способ можете предложить вы?

11. Как определить положение центра масс гладкой палки, не пользуясь никакими инструментами?

12. Как измерить диаметр футбольного мяча с помощью жесткой (например, обычной деревянной) линейки?

13. Как найти диаметр небольшого шарика с помощью мензурки?

14. Необходимо возможно точнее узнать диаметр сравнительно тонкой проволоки, располагая для этой цели только школьной тетрадью «в клетку» и карандашом. Как следует поступить?

15. Имеется частично заполненный водой сосуд прямоугольного сечения, в котором плавает погруженное в воду тело. Как с помощью одной линейки найти массу этого тела?

16. Как с помощью стальной спицы и мензурки с водой найти плотность пробки?

17. Как, имея только линейку, найти плотность дерева, из которого изготовлена палочка, плавающая в узком цилиндрическом сосуде?

18. Стеклянная пробка имеет внутри полость. Можно ли с помощью весов, набора гирь и сосуда с водой определить объем.полости, не разбивая пробки? А если можно, то как?

19. Имеются железный лист, прибитый к полу, легкая деревянная палка (стержень) и линейка. Разработайте способ определения коэффициента трения дерева о железо с применением только перечисленных предметов.

20. Находясь в комнате, освещенной электрической лампой, нужно узнать, какая из двух собирающих линз с одинаковыми диаметрами имеет большую оптическую силу. Никаких специальных приборов для этой цели не дано. Укажите способ решения задачи.

21. Имеются две линзы с одинаковыми диаметрами: одна собирающая, другая рассеивающая. Как определить, какая из них обладает большей оптической силой, не прибегая к помощи приборов?

22. В длинном коридоре, лишенном окон, висит электрическая лампа. Ее можно зажечь и погасить выключателем, установленным у входной двери в начале коридора. Это неудобно, выходящему на улицу, поскольку до выхода он вынужден пробираться в темноте. Впрочем, вошедший и включивший при входе лампу тоже недоволен: пройдя коридор, он оставляет горящую напрасно лампу. А нельзя ли придумать схему, позволяющую включать и выключать лампу из разных концов коридора?

23. Представьте себе, что для измерения высоты дома вам было предложено воспользоваться пустой консервной банкой и секундомером. Сумели бы вы справиться с заданием? Расскажите, как нужно действовать?

24. Как найти скорость истечения воды из водопроводного крана, имея цилиндрическую банку, секундомер и штангенциркуль?

25. Из неплотно прикрытого водопроводного крана тоненькой струйкой вытекает вода. Как с помощью только одной линейки можно определить скорость истечения воды, а также ее объемный расход (т. е. объем воды, вытекающий из крана в единицу времени)?

26. Предлагается определить ускорение свободного падения, наблюдая за струйкой воды, вытекающей из неплотно закрытого водопроводного крана. Как выполнить задание, располагая для этой цели линейкой, сосудом известного объема и часами?

27. Допустим, что вам нужно наполнить водой большой бак известного объема с помощью гибкого шланга, снабженного цилиндрической насадкой. Вы хотите знать, сколько времени продлится это скучное занятие. Нельзя ли его вычислить, располагая только линейкой?

28. Как с помощью гирьки известной массы, легкого шнура, двух гвоздей, молотка, кусочка пластилина, математических таблиц и транспортира определить массу некоторого предмета?

29. Как определить давление в футбольном мяче с помощью чувствительных весов и линейки?

30. Как с помощью цилиндрического сосуда с йодом и линейки определить давление внутри перегоревшей электрической лампочки?

31. Попробуйте решить предыдущую задачу, если нам разрешено использовать наполненную водой кастрюлю и весы с набором гирь.

32. Дана узкая стеклянная трубка, запаянная с одного конца. Трубка содержит воздух, отделенный от окружающей атмосферы столбиком ртути. Имеется также миллиметровая линейка. Определите с их помощью атмосферное давление.

33. Как определить удельную теплоту парообразования воды, располагая домашним холодильником, кастрюлей неизвестного объема, часами и равномерно горящей газовой горелкой? Удельную теплоемкость воды считать известной.

34. Нужно узнать мощность, потребляемую от городской сети телевизором (или другим электрическим прибором), с помощью настольной лампы, катушки с нитками, кусочка железа и электросчетчика. Как выполнить это задание?

35. Как найти сопротивление электрического утюга в рабочем режиме (сведения о его мощности отсутствуют) с помощью электросчетчика и радиоприемника? Рассмотреть отдельно случаи радиоприемников, питающихся от батарей и городской сети.

36. За окном снег, а в комнате тепло. К сожалению, измерить температуру нечем - нет термометра. Но зато есть батарея гальванических элементов, очень точные вольтметр и амперметр, сколько угодно медной проволоки и физический справочник. Нельзя ли с их помощью найти температуру воздуха в комнате?

37. Как решить предыдущую задачу, если физического справочника не оказалось, но дополнительно к перечисленным предметам разрешено пользоваться электрической плиткой и кастрюлей с водой?

38. У имеющегося в нашем распоряжении подковообразного магнита стерлись обозначения полюсов. Конечно, существует множество способов узнать, какой из них является южным, а какой - северным. Но вам предложено выполнить это задание с помощью телевизора! Как вы должны поступить?

39. Как определить знаки полюсов немаркированной батареи с помощью мотка изолированной проволоки, железного стержня и телевизора.

40. Как узнать, намагничен ли стальной стержень, имея в распоряжении кусок медной проволоки и катушку с нитками?

41. Дочь обратилась к отцу, записывающему при свете лампы показания электросчетчика, с просьбой отпустить ее погулять. Давая разрешение, отец попросил дочь вернуться ровно через час. Как отец сможет проконтролировать длительность прогулки, не пользуясь часами?

42. Задача 22 довольно часто публикуется в различных сборниках и поэтому хорошо известна. А вот задание того же характера, но несколько более сложное. Придумайте схему, позволяющую включать и выключать электрическую лампу или какой-нибудь другой прибор, работающий от электросети, из любого числа различных пунктов.

43. Если поставить деревянный кубик на покрытый сукном диск проигрывателя радиолы близко к оси вращения, кубик будет вращаться вместе с диском. Если же расстояние до оси вращения велико, кубик, как правило, сбрасывается с диска. Как определить коэффициент трения дерева о сукно с помощью одной лишь линейки?

44. Разработайте метод определения объема комнаты с помощью достаточно длинной и тонкой нити, часов и гирьки.

45. При обучении музыке, балетному искусству, в тренировке спортсменов и для некоторых других целей часто используется метроном - прибор, издающий периодические отрывистые щелчки. Длительность интервала между двумя ударами (щелчками) метронома регулируется перемещением грузика по специальной качающейся шкале. Как проградуировать шкалу метронома в секундах с помощью нити, стального шарика и рулетки, если это не сделано на заводе?

46. Грузик метронома с неотградуированной шкалой (см. предыдущую задачу) нужно установить в такое положение, чтобы промежуток времени между двумя ударами был равен одной секунде. Для этой цели разрешено воспользоваться длинной лестницей, камнем и рулеткой. Как следует распорядиться этим набором предметов, чтобы выполнить задание?

47. Имеется деревянный прямоугольный параллелепипед, у которого одно ребро значительно превышает два других. Как с помощью одной только линейки определить коэффициент трения бруска о поверхность пола в комнате?

48. Современные кофемолки приводятся в действие электродвигателем небольшой мощности. Как, не разбирая кофемолки, определить направление вращения ротора ее двигателям

49. Два полых шара, имеющих одинаковую массу и объем, покрашены одинаковой краской, царапать которую нежелательно. Один шар изготовлен из алюминия, а другой - из меди. Как проще всего узнать, какой шар алюминиевый, а какой - медный?

50. Как определить" массу некоторого тела с помощью однородной рейки с делениями и куска не очень толстой медной проволоки? Разрешено также пользоваться физическим справочником.

51. Как оценить радиус вогнутого сферического зеркала (или радиус кривизны вогнутой линзы) с помощью секундомера и стального шарика известного радиуса?

52. Две одинаковые сферические колбы из стекла наполнены различными жидкостями. Как определить, в какой жидкости скорость света больше, располагая для этой цели только электрической лампочкой и листом бумаги?

53. Окрашенную целлофановую пленку можно использовать как простейший монохроматор - приспособление, выделяющее из сплошного спектра довольно узкий интервал световых волн. Как с помощью настольной лампы, проигрывателя с пластинкой (лучше долгоиграющей), линейки и листа картона с небольшим отверстием определить среднюю длину волны из этого интервала? Хорошо, если в вашем эксперименте будет участвовать товарищ с карандашом.