Презентация на тему двойные звезды. Двойные звезды

Двойная звездаДвойная звезда, или двойная система - система
из двух гравитационно связанных звёзд,
обращающихся по замкнутым орбитам вокруг
общего центра масс. Двойные звёзды - весьма
распространённые объекты. Примерно половина
всех звёзд нашей Галактики принадлежит к
двойным системам.

Измерив период
обращения и расстояние
между звёздами, иногда
можно определить массы
компонентов системы. Этот
метод практически не
требует дополнительных
модельных
предположений, и поэтому
является одним из главных
методов определения масс
в астрофизике. По этой
причине двойные системы,
компонентами которых
являются чёрные
дыры или нейтронные
звезды, представляют
большой интерес
для астрофизики.

Визуально-двойные звёзды

Возможность наблюдать звезду как визуально-двойную
определяется разрешающей способностью телескопа,
расстоянием до звёзд и расстоянием между ними. Таким
образом, визуально-двойные звезды - это в основном
звезды окрестностей Солнца с очень большим
периодом обращения (следствие большого расстояния
между компонентами).
При наблюдениях визуально-двойной звезды измеряют
расстояние между компонентами и позиционный угол
линии центров, иначе говоря, угол между
направлением на северный полюс мира и направлением
линии, соединяющей главную звезду с её спутником.

Спекл-интерферометрические двойные звезды

Спекл-интерферометрия, наряду
с адаптивной оптикой позволяет достичь
дифракционного предела разрешения звёзд,
что в свою очередь позволяет обнаруживать
двойные звезды. То есть по сути своей, спеклинтерферометрические двойные это те же
самые визуально-двойные. Но если в
классическом визуально-двойном методе
необходимо получить два отдельных
изображения, то в данном случае приходится
анализировать спекл-интерферограммы.
Спекл-интерферометрия эффективна для
двойных с периодом в несколько десятков лет

Астрометрические двойные звёзды

В случае визуально-двойных звёзд мы видим
перемещение по небу сразу двух объектов. Однако,
если представить себе, что один из двух
компонентов нам не виден по тем или иным
причинам, то двойственность все равно можно
обнаружить по изменению положения на небе
второго. В таком случае говорят об
астрометрически-двойных звёздах.

Затменно-двойные звёзды

Бывает, что орбитальная плоскость
наклонена к лучу зрения под очень
маленьким углом: орбиты звёзд
такой системы расположены как бы
ребром к нам. В такой системе
звёзды будут периодически
затмевать друг друга, то есть блеск
пары будет меняться. Двойные
звёзды, у которых наблюдаются
такие затмения, называются
затменно-двойными или затменнопеременными. Самой известной и
первой открытой звездой такого
типа является Алголь (Глаз
Дьявола) в созвездии Персея.

Если наличествуют высокоточные
астрометрические наблюдения, то
двойственность можно предположить,
зафиксировав нелийность движения:
первую производную собственного
движения и вторую Астрометрические
двойные звезды используются для
измерения массы коричневых карликов
разных спектральных классов

Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими
астрономами А. Г. Масевичем и П. П. Паренаго, обратившими
внимание на несоответствие масс компонентов Алголя и их
эволюционной стадии. Согласно теории эволюции звёзд,
скорость эволюции массивной звезды гораздо больше, чем у
звезды с массой, сравнимой с солнечной, или немногим более.
Очевидно, что компоненты двойной звезды образовались в
одно и то же время, следовательно, массивный компонент
должен проэвоэлюционировать раньше, чем маломассивный.
Однако в системе Алголя более массивный компонент был
моложе.
Объяснение этого парадокса связано с феноменом перетекания
масс в тесных двойных системах и впервые предложено
американским астрофизиком Д. Кроуфордом. Если
предположить, что в ходе эволюции у одного из компонентов
появляется возможность переброса массы на соседа, то
парадокс снимается

Масса звёзд

Масса всех без исключения звёзд достаточно высока.
Именно этим объясняется способность удерживать планеты и
другие небесные тела, ведь чем больше масса тела, тем
сильнее его гравитация.
Масса влияет не только на силу гравитации звезды, но и на
другие её характеристики. Например, масса прямо
пропорциональна давлению и температуре в центре светила,
а эти два параметра являются определяющими
характеристики звезды.
Напрямую массу звезды можно определить только на
основании закона всемирного тяготения. Однако это
возможно лишь для звёзд, входящих в двойные системы. Так
называют пару звёзд, вращающихся вокруг общего центра. В
других случаях массы звёзд вычисляют, анализируя
различные характеристики, косвенно связанные с массой.
Обычно для этого используют светимость звёзд,
пропорциональную массе.
Масса самых лёгких звёзд примерно в 10 раз меньше
солнечной, а самых тяжёлых примерно в 10 больше, чем у
Солнца.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Как показали наблюдения, многие из них образуют пары или являются членами сложных систем. При этом только в нашей Галактике примерно половина всех звёзд принадлежит к двойным системам. Двойными звёздами называют близко расположенные пары звёзд.

3 слайд

Описание слайда:

Происхождение и эволюция двойных звезд Как и одинарные звезды, двойные системы образуются под влиянием гравитационных сил из газопылевого облака. В современной астрономии существует три наиболее популярных теории образования двойных звезд. Первая из них связывает образование двойных систем с разделением на раннем этапе общего ядра протооблака, которое послужило материалом для возникновения двойной системы. Вторая теория связана с фрагментацией протозвездного диска, в результате чего могут появиться не только двойные, но и многократные системы звезд. Происходит фрагментация протозвездного диска на более позднем этапе, чем фрагментация ядра. Последняя теория гласит, что образование двойных звезд возможно путем динамических физико-химических процессов внутри протооблака, которое служит материалом для образования звезд

4 слайд

Описание слайда:

Ученые утверждают, что двойные звезды составляют примерно половину всех звезд нашей галактики. Двойная звезда представляет собой систему, состоящую из двух объектов (звезд), связанных между собой гравитационными силами. Обе звезды, входящие в систему, вращаются вокруг общего центра их масс. Расстояния между звездами могу отличаться, равно как и масса этих звезд, а также их размеры. Обе звезды, входящие в гравитационную систему, могут иметь, как схожие, так и отличительные характеристики. Например, звезда А может иметь большую массу или размер, чем звезда В.+ Двойные звезды помечают латинскими буквами традиционно. Обычно буквой «А» помечают более яркого и массивного компаньона. Буквой «В» - менее яркую и массивную звезду. Ярким примером системы двойной звезды выступает ближайшая к нам звездная система – Альфа Центавра А и В. Она представляет собой целостную систему из двух звезд. Сама же Альфа Центавра состоит из трех компонентов. Если взглянуть на эту звезду, не прибегая к помощи различных оптических приборов, невооруженным глазом она будет визуально восприниматься, как одна звезда. Если посмотреть на нее через телескоп, то мы отчетливо увидим два, а то и три компонента этой системы. В качестве других примеров двойных звезд можно привести систему Бета Лиры, систему Бета Персея (Алголь), Сириус и другие звезды.

5 слайд

Описание слайда:

Среди звёзд, которые видны на небе рядом, различают оптические двойные и физические двойные. В первом случае две звезды проецируются на небесную сферу рядом друг с другом. Хотя в действительности они могут располагаться на огромном расстоянии друг от друга. А вот физические двойные звёзды действительно расположены в пространстве рядом друг с другом. Они не только связаны между собой силами тяготения, но и обращаются около общего центра масс.

6 слайд

Описание слайда:

Впервые идея о существовании двойных звёзд была выдвинута английским учёным и священником Джоном Мичеллом в 1767 году. А наблюдательные подтверждения этой гипотезы были опубликованы в 1802 году Уильямом Гершелем. Первая известная ещё с древности звёздная пара - это Мицар и Алькор, наблюдаемые в ручке «ковша» Большой Медведицы. Эта звёздная пара - хороший пример оптической двойной звезды, так как Алькор отстоит от Мицара примерно на 12 угловых минут.

7 слайд

Описание слайда:

Когда число звёзд в системе, связанных взаимным тяготением, оказывается больше двух, то их называют кратными. Существуют звёзды тройные, четверные и даже более высокой кратности. Примером кратных звёзд может служить тройная звезда α Центавра. Причём, что интересно, одна из компонентов - Проксима - является ближайшей к Земле звездой после Солнца. К кратным звёздам принято причислять звёзды, имеющие менее 10 компонентов. Если же в системе насчитывается большее количество звёзд, то её называют звёздным скоплением. Классическим примером служит рассеянное скопление Плеяд, видное на ночном небе невооружённым глазом.

8 слайд

Описание слайда:

Физические двойные звёзды, в зависимости от способа их наблюдения, принято делить на несколько классов. Визуально-двойные звёзды - это двойные звёзды, компоненты которых можно увидеть раздельно (в телескоп или сфотографировать). Возможность наблюдать звезду как визуально-двойную определяется разрешающей способностью телескопа. Поэтому все известные визуально-двойные звёзды расположены в окрестностях Солнца с очень большим периодом обращения (вплоть до нескольких тысяч лет). А их орбиты сравнимы по размерам с орбитами планет-гигантов нашей Солнечной системы. В связи с этим, из свыше 110 000 таких объектов менее чем у сотни орбиты определены с большой точностью. Второй класс двойных систем составляют затменно-двойные или затменно-переменные звёзды. Они представляют собой тесные пары, обращающиеся с периодом от нескольких часов до нескольких суток по орбитам, большая полуось которых сравнима с самими звёздами. Это приводит к тому, что угловое расстояние между звёздами очень мало. Поэтому мы не можем увидеть компоненты системы по-отдельности. Однако судить о том, что система действительно является двойственной, можно по периодическим колебаниям её блеска. Предположим, что плоскости орбит звёзд по лучу зрения практически совпадают. Тогда при обращении звёздной пары, когда один из компонентов оказывается впереди или сзади другого, наблюдаются затмения. Разность звёздных величин в минимуме и максимуме блеска называется амплитудой. А промежуток времени между двумя последовательными наименьшими минимумами - периодом переменности.




Мицар и Алькор не только проецируются рядом на небесную сферу, но и движутся вокруг общего центра масс. Период обращения – около 2 млрд.лет. В Галактике много двойных и кратных звезд. Мира – Омикрон Кита – двойная звезда. На фотографии а изображены компоненты двойной звезды, находящиеся на расстоянии 0,6". На фотографиях b и с видно, что их форма не является сферичной, виден хвостик от Миры в сторону меньшей звезды. Это может происходить из-за гравитационного взаимодействия Миры Кита со своим спутником ac b


Кратные системы часто представляются невооруженному глазу как одиночные звезды. В хорошие бинокли и телескопы можно заметить их двойственность или кратность. Звезда ε Лиры является физической системой, состоящей из двух тесных звездных пар ε 1 и ε 2. Кратные звезды


Звезда θ Ориона представляет собой сложную кратную систему. θ 1 и θ 2 при наблюдении в небольшой телескоп предстают как четырехкратная система и трехкратная система. В сильный телескоп можно рассмотреть еще больше звезд. Вся система носит название Трапеция Ориона. Трапеция Ориона (в центре)


Примером кратной системы может служить α Центавра (Ригиль Кентаврус), расположенная в 4,3 световых годах от Солнца. Компонент С имеет координаты α = 14 h 26 m, δ = –62°28" и является ближайшей звездой к Солнцу. Его собственное имя – Проксима Центавра. Ригиль Кентаврус – ближайшая к Солнцу звездная система


К системам двойных звезд применимы закон всемирного Тяготения и обобщенные Ньютоном законы Кеплера. Это позволяет оценить массу звезд в двойных системах. По третьему закону Кеплера можно написать пропорцию где m 1 и m 2 – массы двух звезд, имеющих период обращения Р, А – большая полуось орбиты звезды, обращающейся вокруг другой звезды. Массы М и m – массы Солнца и Земли, Т = 1 год, а – расстояние от Земли до Солнца. Эта формула дает сумму масс компонент двойной звезды, т.е. членов этой системы. α – угловое расстояние между компонентами π – годичный параллакс звезды Если из наблюдений определить расстояния звезд до их общего центра тяжести, то можно определить массу каждой звезды.













Презентація по слайдам:

Слайд 1

Слайд 2

Типы двойных звезд Для начала выясним, какие звезды так называют. Давайте сразу отбросим тот тип двойных, который носит название "оптически двойные звезды". Это - пары звезд, случайно оказавшиеся рядом на небе, то есть в одном направлении, а в пространстве, на самом деле, их разделяют большие расстояния. Этот тип двойных мы рассматривать не станем. Нас будет интересовать класс физически двойных, то есть действительно связанных гравитационным взаимодействием звезд.

Слайд 3

Положение центра масс Физически двойные звезды по эллипсам вращаются вокруг общего центра масс. Однако, если отсчитывать координаты одной звезды относительно другой, то получится, что звезды движутся друг относительно друга тоже по эллипсам. На этом рисунке за начало отсчета мы взяли более массивную голубую звезду. В такой системе центр масс (зеленая точка) описывает вокруг голубой звезды эллипс. Хочется предостеречь читателя от распространенного заблуждения, заключающегося в том, что часто полагается будто бы более массивная звезда сильнее притягивает звезду с малой массой, чем наоборот. Любые два объекта притягивают друг друга одинаково. Но объект с большой массой труднее сдвинуть с места. И хотя падающий на Землю камень притягивает Землю с той же силой, что и Земля его, этой силой невозможно побеспокить нашу планету, и мы видим, как движется камень.

Слайд 4

Часто, правда, встречаются так называемые кратные системы, с тремя и более компонентами. Однако движение трех и более взаимодействующих тел неустойчиво. Всиcтеме, скажем, из трех звезд всегда можно выделить, двойную подсистему и третью звезду, вращающуюся вокруг этой пары. В системе из четырех звезд могут существовать две двойные подсистемы, вращающиеся вокруг общего центра масс. Иными словами, в природе, устойчивые кратные системы всегда сводятся к системам из двух членов. К системе из трех звезд принадлежит небезызвестная Альфа Центавра, считающаяся многими ближайшей к нам звездой, а на самом деле, третий слабый компонент этой системы - Проксима Центавра, красный карлик, - находится ближе. Все три звезды системы из-за близости видны раздельно. Действительно, иногда то, что звезда двойная, видно в телескоп. Такие двойные называются визуально двойными (не путать с оптически двойными!). Как правило, это не тесные пары, расстояния между звездами в них велики, гораздо больше их собственных размеров.

Слайд 5

Слайд 6

Блеск двойных звёзд Часто звезды в парах сильно различаются по блеску, тусклую звездочку затмевает блеском яркая. Иногда в таких случаях астрономы узнают о двойственности звезды по отклонениям в движении яркой звезды под действием невидимого спутника от рассчитанной для одиночной звезды траектории в пространстве. Такие пары называют астрометрически двойными. В частности, Сириус долго относился к такому типу двойных, пока мощность телескопов не позволила разглядеть невидимый доселе спутник - Сириус В. Эта пара стала визуально двойной. Бывает, что плоскость обращения звезд вокруг их общего центра масс проходит или почти проходит через глаз наблюдателя. Орбиты звезд такой системы расположены, как бы, ребром к нам. Здесь звезды будут периодически затмевать друг друга, блеск всей пары будет с тем же периодом меняться. Этот тип двойных называется затменно-двойными. Если же говорить о переменности звезды, то такую звезду называют затменно-переменной, что также указывает на ее двойственность. Самой первой открытой и самой известной двойной такого типа является звезда Алголь (Глаз Дьявола) в созвездии Персея.

Слайд 7

Слайд 8

Спектрально двойные звёзды Последним типом двойных являются спектрально двойные. Их двойственность определяется при изучении спектра звезды, в котором замечаются периодические смещения линий поглощения или видно, что линии являются двойными, на чем основывается вывод о двойственности звезды.

Слайд 9

Чем же интересны двойные звезды? Во-первых, они дают возможность узнать массы звезд, так как легче всего и надежнее всего она вычисляется по видимому взаимодействию двух тел. Прямые наблюдения позволяют узнать общий "вес" системы, а если добавить к ним известные соотношения между массами звезд и их светимостями, о которых говорилось выше в рассказе о судьбе звезд, то можно выяснить массы компонентов, проверить теорию. Одиночные звезды такой возможности нам не предоставляют. Кроме того, как тоже было упомянуто ранее, судьба звезд в таких системах может разительно отличаться от судьбы таких же одиночных звезд. Небесные пары, расстояния между которыми велики, по сравнению с размерами самих звезд, на всех стадиях своей жизни живут по тем же законам, что и одиночные звезды, не мешая друг другу. В этом смысле, их двойственность никак не проявляется.

Слайд 10

Тесные пары: первый обмен массами Звезды двойной рождаются вместе из одной газопылевой туманности, у них один возраст, но часто - разные массы. Мы уже знаем, что более массивные звезды живут "быстрее", следовательно, более массивная звезда в процессе эволюции обгонит свою сверстницу. Она расширится, превращаясь в гиганта. В этом случае, размер звезды способен стать таким, что вещество с одной звезды (раздувшейся) начнет перетекать на другую. Как следствие, масса первоначально более легкой звезды может стать больше первоначально тяжелой! Кроме того, мы получим две звезды одинакового возраста, причем более массивная звезда еще находится на главной последовательности, то есть в ее центре по-прежнему продолжается синтез гелия из водорода, а более легкая звезда уже израсходовала свой водород, в ней образовалось геливое ядро. Вспомним, что в мире одиночных звезд такого произойти не может. За несоответствие возраста звезды с ее массой это явление названо парадоксом Алголя, в честь той же самой затменно-двойной. Звезда Бета Лиры - еще одна пара, в которой прямо сейчас происходит обмен массами.

Слайд 11

Вещество с раздувшейся звезды, перетекая на менее массивную компоненту, попадает на нее не сразу (этому мешает взаимное вращение звезд), а сначала образует вращающийся диск вещества вокруг меньшей звезды. Силы трения в этом диске будут уменьшать скорость частиц вещества, и оно будет оседать на поверхность звезды. Такой процесс называется аккрецией, а образовавшийся диск - аккреционным. В результате, первоначально более массивная звезда имеет необычный химический состав: весь водород внешних ее слоев перетекает к другой звезде, а остается лишь гелиевое ядро с примесями более тяжелых элементов. Такая звезда, называемая гелиевой, быстро эволюционирует, образуя белый карлик или релятивистскую звезду, в зависимости от своей массы. При этом, в двойной системе в целом произошла важная перемена: первоначально более массивная звезда уступила это свое перевенство.

Слайд 12

Слайд 13

Второй обмен массами В двойных же системах встречаются также рентгеновские пульсары, излучающие в более высокоэнергетическом диапазоне длин волн. Это излучение связано с аккрецией вещества вблизи магнитных полюсов релятивистской звезды. Источником аккреции служат частицы звездного ветра, испускаемые второй звездой (та же природа и у солнечного ветра). Если звезда имеет большие размеры, звездный ветер достигает значительной плотности, энергия излучения рентгеновского пульсара может доходить до сотни и тысячи светимостей Солнца. Рентгеновский пульсар - единственный способ косвенного обнаружения черной дыры, которую, как мы помним, увидеть нельзя. Да и нейтронная звезда является редчайшим объектом для визуальных наблюдений. На этом еще далеко не все. Вторая звезда тоже рано или поздно раздуется, и вещество начнет перетекать на соседку. И это - уже второй обмен веществом в двойной системе. Достигнув больших размеров, вторая звезда начинает "возвращать" забранное при первом обмене.

Слайд 14

Если на месте первой звезды оказывается белый карлик, то в результате второго обмена на его поверхности могут происходить вспышки, которые мы наблюдаем как новые звезды. В один момент, когда вещества, выпавшего на поверхность сильно нагретого белого карлика, становится слишком много, температура газа возле поверхности резко повышается. Это провоцирует взрывоподобный всплеск ядерных реакций. Светимость звезды значительно увеличивается. Такие вспышки могут повторяться, и их называют уже повторными новыми. Повторные вспышки слабее первых, в результате которых звезда может увеличивать свой блеск в десятки раз, что мы и наблюдаем с Земли как появление "новой" звезды.

Слайд 15

Другой исход в системе с белым карликом - вспышка сверхновой. Следствием перетекания вещества со второй звезды может стать достижение белым карликом предельной массы в 1,4 солнечной. Если это уже железный белый карлик, то он не в силах будет удержать гравитационное сжатие и взорвется. Вспышки сверхновых в двойных системах очень похожи по яркости и развитию друг на друга, так как всегда взрываются звезды одной и той же массой - 1,4 солнечной. Напомним, что в одиночных звездах этой критической массы достигает центральное железное ядро, а наружные слои могут иметь разную массу. В двойных системах, как ясно из нашего повествования, эти слои почти отсутствуют. Именно поэтому подобные вспышки имеют одинаковую светимость. Замечая их в далеких галактиках, мы можем высчитывать расстояния гораздо большие, чем можно определить, используя звездный параллакс или цефеиды. Потеря значительной части массы всей системы в результате взрыва сверхновой может привести к распаду двойной. Сила гравитационного притяжения между компонентами сильно уменьшается, и они по инерции своего движения могут разлететься.

«Нейтронная звезда» - 7. 8. Измеренные массы нейтронных звезд. Звезды с большей центральной плотностью и с большей массой оказываются неустойчивыми. Внутреннее строение нейтронных звезд. 2. Прямое введение многочастичных сил в изовекторных каналах: Модель релятивистского среднего поля (RMF). Введение многочастичных сил.

«Двойные звёзды» - Визуально двойными астрометрически двойными затменно-двойные спектрально двойные. Для начала выясним, какие звезды так называют. Чем же интересны двойные звезды. Одиночные звезды такой возможности нам не предоставляют. Последним типом двойных являются спектрально двойные. Спектрально двойные. Затменно-двойные.

«Масса звёзд» - Масса почти равна солнечной, и в размере в 2,5 раза больше, чем Земля. Источник энергии Солнца и звёзд. Главная последовательность. Плотности звёзд главной последовательности сравнимы с солнечной плотностью. Массы звёзд составляют приблизительно от 1/20 до 100 масс Солнца. К сверхгигантам красного цвета относится Бетельгейзе.

«Созвездия» - Есть также звезды седьмой, восьмой и даже восемнадцатой величины. Звезда первой величины ровно в 2,512 раза ярче, чем звезда второй величины. В безоблачную и безлунную ночь вдали от населенных пунктов можно различит около 3000 звезд. Зимний треугольник составляют ярчайшие звезды Ориона, Большого Пса и Малого Пса.

«Астрономия созвездия» - Основывается прежде всего на наблюдениях. Но не только Акид влюбился в Галатею. Спиральная галактика М74. Названия созвездий связывали с мифами, именами богов, названиями приборов и механизмов. Знакомство с созвездиями начнем с летнего неба. Малая медведица. Зодиаки. На севере висит перевернутый ковш Большой Медведицы.