Прогноз по линейному уравнению регрессии. Прогнозирование с применением уравнения регрессии

Если модель регрессии признана адекватной, то переходят к построению прогноза.

Прогнозируемое значение переменной у получается при подстановке в уравнение регрессии ожидаемой величины независимой переменной х прогн :

Данный прогноз называется точечным. Вероятность реализации точечного прогноза практически равна нулю, поэтому рассчитывается доверительный интервал прогноза с большой надежностью:

где t – t-критерий Стьюдента, определяемый по таблице при уровне значимости 0,05 и числе степеней свободы k=n-2 (для парной регрессии);

– остаточная дисперсия на одну степень свободы, определяемая по формуле:

;

s – стандартная ошибка предсказания, определяемая по формуле:

.

По статистическим данным, описывающим зависимость удельного веса бракованной продукции от удельного веса рабочих со специальной подготовкой на предприятиях построить уравнение парной регрессии и определить его значимость.

1. Построим диаграмму рассеяния для определения наличия зависимости между признаками и типа этой зависимости.

Диаграмма рассеяния или корреляционное поле показывает наличие линейной обратной связи.

2. Определим линейный коэффициент корреляции по формуле . Для этого построим вспомогательную таблицу:

Номер предприя-тия Удельный вес рабочих со специальной подготовкой, % х Удельный вес бракован-ной продукции, % y (x-xср)^2 (y-yср)^2 xy
857,6531 83,59184
371,9388 9,877551
86,22449 1,306122
0,510204 0,734694
114,7959 8,163265
429,0816 14,87755
661,2245 34,30612
Сумма 2521,429 152,8571
Среднее значение 44,28571 8,857143 360,2041 21,83673 306,4286

Линейный коэффициент корреляции будет равен:

С помощью встроенной функции КОРРЕЛ Excel получаем такое же значение линейного коэффициента корреляции. Для этого в ячейку необходимо ввести =КОРРЕЛ(массив1; массив2), причем не имеет значения последовательность ввода массивов.

Таким образом, делаем вывод о сильной обратной линейной зависимости между изучаемыми признаками.

2. Построим уравнение парной линейной регрессии . Оценим параметры уравнения регрессии а и b с помощью МНК. Для этого построим вспомогательную таблицу.



Номер х у x^2 xy
Сумма

Система нормальных уравнений для нахождения параметров парной линейной регрессии имеет вид:

Подставим необходимые данные и получим:

Решив систему, получим

С помощью встроенной функции ЛИНЕЙН Excel получаем такие же значения параметров уравнения регрессии. Для этого необходимо выделить две ячейки в одной строке, выбрать в главном меню Вставка/Функция , далее выбрать из категории Статистические функцию ЛИНЕЙН . В образовавшемся окне заполнить аргументы функции:

Известные значения y – диапазон, содержащий данные результативного признака;

Известные значения x – диапазон, содержащий данные факторного признака;

Константа – логическое значение, которое указывает на наличие или отсутствие свободного члена в уравнении регрессии, может принимать значение 0 или 1. Указываем 1.

Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если указать 0, будут выведены только значения параметров уравнения регрессии а и b в двух выделенных ячейках.

Чтобы вывести всю статистику по уравнению регрессии изначально необходимо выделить диапазон из пяти строк и двух столбцов и задать логическое значение 1 в аргументе функции ЛИНЕЙН Статистика . Дополнительная регрессионная статистика будет выводится в порядке, указанном в следующей схеме:

Для разбираемого примера таблица будет выглядеть следующим образом:

-0,23824 19,40793
0,027796 1,339265
0,936275 1,395765
73,46237
143,1163 9,740793

Таким образом, уравнение регрессии будет иметь вид: .

. Табличное значение t-критерия Стьюдента составляет 2,57. Поскольку расчетное значение больше табличного параметр а признается статистически значимым.

t-критерий Стьюдента для параметра а будет равен . Поскольку , параметр b признается статистически значимым.

Т.к. коэффициент детерминации , коэффициент корреляции равен и будет иметь отрицательное значение, поскольку связь обратная, на что указывает отрицательный коэффициент при х в уравнении регрессии.

Расчетное значение F-критерия Фишера равно 73,46, табличное значение F-критерия Фишера равно 6,61. Поскольку расчетное значение F-критерия больше табличного или критического, уравнение парной линейной регрессии в целом признается статистически значимым с вероятностью 95%.

t-критерий Стьюдента для линейного коэффициента корреляции определяется по формуле: , что больше табличного значения, поэтому линейный коэффициент корреляции признается статистически значимым.

В прогнозных расчетах по уравнению регрессии определяется предсказываемое (y p ) значение как точечный прогноз при x p = x k , т.е. путем подстановки в уравнение регрессии соответствующего значения x . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. и соответственно, интервальной оценкой прогнозного значения:

Чтобы понять, как строится формула для определения величин стандартной ошибки , обратимся к уравнению линейной регрессии: . Подставим в это уравнение выражение параметра a :

тогда уравнение регрессии примет вид:

Отсюда вытекает, что стандартная ошибка зависит от ошибки y и ошибки коэффициента регрессии b , т.е.

Из теории выборки известно, что . Используя в качестве оценки s 2 остаточную дисперсию на одну степень свободы S 2 , получим формулу расчета ошибки среднего значения переменной y :

Ошибка коэффициента регрессии, как уже было показано, определяется формулой:

.

Считая, что прогнозное значение фактора x p = x k , получим следующую формулу расчета стандартной ошибки предсказываемого по линии регрессии значения, т.е. :

Соответственно имеет выражение:

. (1.26)

Рассмотренная формула стандартной ошибки предсказываемого среднего значения y при заданном значении x k характеризует ошибку положения линии регрессии. Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере того, как "удаляется" от в любом направлении. Иными словами, чем больше разность между x k и x , тем больше ошибка , с которой предсказывается среднее значение y для заданного значения x k . Можно ожидать наилучшие результаты прогноза, если признак-фактор x находится в центре области наблюдений x и нельзя ожидать хороших результатов прогноза при удалении x k от . Если же значение x k оказывается за пределами наблюдаемых значений x , используемых при построении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколько x k отклоняется от области наблюдаемых значений фактора x .

На графике доверительные границы для представляют собой гиперболы, расположенные по обе стороны от линии регрессии (рис. 1.5).



Рис. 1.5 показывает, как изменяются пределы в зависимости от изменения x k : две гиперболы по обе стороны от линии регрессии определяют 95% -ые доверительные интервалы для среднего значения y при заданном значении x .

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки e , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку S .



Средняя ошибка прогнозируемого индивидуального значения y составит:

. (1.27)

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y , но и от точности прогноза значения фактора x . Его величина может задаваться на основе анализа других моделей, исходя из конкретной ситуации, а также анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y () может быть использована также для оценки существенности различия предсказываемого значения, исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Для прогнозирования с помощью уравнения регрессии необходимо вычислить коэффициенты и уравнения регрессии. И здесь существует еще одна проблема сказывающаяся на точности прогнозирования. Она заключается в том, что обычно нет всех возможных значений переменных Х и У, т.е. генеральная совокупность совместного распределения в задачах прогнозирования не известна, известна только выборка из этой генеральной совокупности. В результате этого при прогнозировании помимо случайной составляющей возникает еще один источник ошибок – ошибки, вызванные не полным соответствием выборки генеральной совокупности и порождаемыми этим погрешностями в определении коэффициентов уравнения регрессии.

Иными словами вследствие того, что генеральная совокупность не известна, точные значения коэффициентов и уравнения регрессии определить не возможно. Используя выборку из этой неизвестной генеральной совокупности можно лишь получить оценки и истинных коэффициентов и.

Для того чтобы ошибки прогнозирования в результате такой замены были минимальными, оценку необходимо осуществлять методом который гарантирует несмещенность и эффективность полученных значений. Метод обеспечивает несмещенные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается выполнение условия и. Метод обеспечивает эффективные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается минимальная дисперсия коэффициентов a и b, т.е. выполняются условия и.

В теории вероятности доказана теорема согласно которой эффективность и несмещенность оценок коэффициентов уравнения линейной регрессии по данным выборки обеспечивается при применении метода наименьших квадратов.

Суть метода наименьших квадратов заключается в следующем.

Для каждой из точек выборки записываются уравнение вида. Затем находятся ошибка между расчетным и фактическим значениями. Решение оптимизационной задачи по нахождению таких значений и которые обеспечивают минимальную сумму квадратов ошибок для всех n точек, т.е. решение задачи поиска, дает несмещенные и эффективные оценки коэффициентов и. Для случая парной линейной регрессии это решение имеет вид:

Следует отметить, что полученные таким образом по выборке несмещенные и эффективные оценки истинных значений коэффициентов регрессии для генеральной совокупности вовсе не гарантируют от ошибки при однократном применении. Гарантия заключается в том, что, в итоге многократного повторения этой операции с другими выборками из той же генеральной совокупности, гарантирована меньшая сумма ошибок по сравнению любым другим способом и разброс этих ошибок будет минимален.


Полученные коэффициенты уравнения регрессии определяют положение регрессионной прямой, она является главной осью облака образованного точками исходной выборки. Оба коэффициента имеют вполне определенный смысл. Коэффициент показывает значение при, но в многих случаях не имеет смысла, кроме того часто также не имеет смысла, по этому приведенной трактовкой коэффициента нужно пользоваться осторожно. Более универсальная трактовка смысла заключается в следующем. Если, то относительное изменение независимой переменной (изменение в процентах) всегда меньше чем относительное изменение зависимой переменной.

Коэффициент показывает насколько единиц изменится зависимая переменная при изменении независимой переменной на одну единицу. Коэффициент часто называют коэффициентом регрессии подчеркивая этим, что он важнее чем. В частности, если вместо значений зависимой и независимой переменных взять их отклонения от своих средних значений, то уравнение регрессии преобразуется к виду.

Коэффициент корреляции меняется в пределах от –1 до +1. Чем он ближе по абсолютному значению к единице, тем сильнее зависимость (тем сильнее облако данных прижато к своей главной оси). Если то наклон линии регрессии отрицателен, чем ближе он к 0 тем слабее связь, при линейной связи между переменными нет, а при связь переменных является функциональной. Коэффициент корреляции позволяет получить оценку точности уравнения регрессии - коэффициент детерминации. Для парной линейной регрессии он равен квадрату коэффициента корреляции, для многомерной или нелинейной регрессии его определение сложнее. Коэффициент детерминации показывает, сколько процентов дисперсии зависимой переменной объясняется уравнением регрессии, а - сколько процентов дисперсии осталась необъясненной (зависит от неконтролируемого нами случайного члена).

32. Временные ряды: понятие, классификация.

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд – это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Виды временных рядов.

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел. Примерами моментных временных рядов могут служить также ряды численности населения или стоимости основных фондов, т.к. значения уровней этих рядов определяются ежегодно на одно и то же число.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней

служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

33. Компонентный анализ рядов динамики.

Ряды динамики - это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Для более глубокого изучения закономерностей развития показателя используется компонентный анализ, который представляет из себя разложение данного временного ряда на конечное число соответствующих. Любой экономический процесс может быть представлен хотя бы одним из нижеуказанных компонент.

Наиболее часто встречающимися, на которые можно разложить временной ряд, являются следующие:

U (t) – характеризует устойчивые систематические изменения уровней ряда, т.е. тренд

K (t) – нестрого периодические циклические колебания

V (t) – строго периодические колебания (сезонные).

E (t) – случайная компонента (несистематические колебания, которые возникают от случая.

Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают) и общая тенденция развития неясна.

На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

34. Способы установления наличия тенденции в ряду динамики.

Приемы для установления тенденций или закономерностей.

o Преобразование ряда - применяется для большей наглядности зменений изучаемых явлений. Одно число ряда принимается за 1, чаще всего за 100 или 1000, и, по отношению к данному числу ряда, рассчитываются остальные.

o Выравнивание ряда - применяется при скачкообразных изменениях (колебаниях) уровней ряда. Цель выравнивания - устранить влияние случайных факторов и выявить тенденцию изменений значений явлений (или признаков), а в дальнейшем установить закономерности этих изменений

Способы и методы выявления тренда:

1)Увеличение интервалов.

Первоначальный ряд динамики заменяется другим рядом, уровни которого относятся к большим по продолжительности периодам времени. Новые уровни образуются суммированием старых.

2)Вычисление средних уровней для укрупненных интервалов. Является частным случаем первого метода.

3)Определение скользящей средней – для первоначального ряда динамики формируются увеличенные интервалы, состоящие из одинакового количества уровней. Каждый новый интервал получается из предыдущего смещением на один уровень.

Интервалы прогноза по линейному уравнению регрессии.

В прогнозных расчётах по уравнению регрессии определяется то, что уравнение не является реальным , для есть ещё стандартная ошибка . Поэтому интервальная оценка прогнозного значения

Выразим из уравнения

То есть стандартная ошибка зависит и ошибки коэффициента регрессии b,

Из теории выборки известно, что . Используя в качестве оценки остаточную дисперсию на одну степень свободы , получим формулу расчёта ошибки среднего значения переменной y: .

Ошибка коэффициента регрессии: .

В прогнозных расчетах по уравнению регрессии определяется уравнение как точечный прогноз при , то есть путём подстановки в уравнение регрессии . Однако точечный прогноз явно нереален.

- формула стандартной ошибки предсказываемого значения y при заданных , характеризует ошибку положения линии регрессии. Величина стандартной ошибки , достигает min при , и возрастает по мере того, как «удаляется» от в любом направлении. То есть чем больше разность между и x, тем больше ошибка , с которой предсказывается среднее значение y для заданного значения .

Можно ожидать наилучшие результаты прогноза, если признак - фактор x находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от .

Если же значение оказывается за пределами наблюдаемых значений х, используемых при построении ЛР, то результаты прогноза ухудшаются в зависимости то того, насколько отклоняется от области наблюдаемых значений фактора х. Доверит. интервалы при .

На графике доверительной границы представляет собой гиперболы, расположенные по обе стороны от линии регрессии.

Две гиперболы по обе стороны от ЛР определяют 95%-ные доверительные интервалы для среднего значения y при заданном значении x.

Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку.

Средняя ошибка прогнозируемого индивидуального значения y составит:

.

При прогнозировании на основе УР следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y, но и от точности прогноза значений фактора x.

Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

Рассмотренная формула средней ошибки индивидуального значения признака y() может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы развития событий.

Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (КЛММР). Определение параметров уравнения множественной регрессии методом наименьших квадратов.

Парная регрессия используется при моделировании, если влияние других факторов, воздействующих на объект исследования можно пренебречь.

Например, при построении модели потребления того или иного товара от дохода исследователь предполагает, что в каждой группе дохода одинаково влияние на потребление таких факторов, как цена товара, размер семьи, ее состав. Однако, уверенности в справедливости данного утверждения нет.

Прямой путь решения такой задачи состоит в отборе единиц совокупности с одинаковыми значениями всех других факторов, кроме дохода. Он приводит к планированию эксперимента – метод, который используется в естественно-научных исследованиях. Экономист лишен возможности регулировать другие факторы. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство прочих условий для оценки влияния одного исследуемого фактора.

Как поступить в этом случае? Надо выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии.

такого рода уравнения используется при изучении потребления.

Коэффициенты b j – частные производные у по факторами х i

при условии, что все остальные х i = const

Рассмотрим современную потребительскую функцию (впервые 30е годы предложил Кейнс Дж.М.) как модель вида С = f(y,P,M,Z)

c- потребление. у – доход

P – цена, индекс стоимости.

M – наличные деньги

Z – ликвидные активы

При этом

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функций издержек производства, в макроэкономических вопросах и других вопросах эконометрики.

В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике.

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого их них в отдельности, а также совокупное воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Она включает в себя 2 круга вопросов:

1. отбор факторов

2. выбор уравнения регрессии.

Включение в уравнение множественной регрессии того или иного набора факторов связано с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Требования к факторам, включаемым во множественную регрессию

1. они должны быть количественно измеримы, если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов; в модели стоимости объектов недвижимости: районы должны быть проранжированы).

2. факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда R у x 1

Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются интерпретируемыми.

В уравнение предполагается, что факторы х 1 и х 2 независимы друг от друга, r х1х2 = 0, тогда параметр b1 измеряет силу влияния фактора х 1 на результат у при неизменном значении фактора х 2 . Если r х1х2 =1, то с изменением фактора х 1 фактор х 2 не может оставаться неизменным. Отсюда b 1 и b 2 нельзя интерпретировать как показатели раздельного влияния х 1 и х 2 и на у.



Пример, рассмотрим регрессию себестоимости единицы продукции у (руб.) от заработной платы работника х (руб.) и производительности труда z (ед. в час).

у = 22600 - 5x - 10z + e

коэффициент b 2 = -10, показывает, что с ростом производительности труда на 1 ед. себестоимость единицы продукции снижается на 10 руб. при постоянном уровне оплаты.

Вместе с тем параметр при х нельзя интерпретировать как снижение себестоимости единицы продукции за счет роста заработной платы. Отрицательное значение коэффициента регрессии при переменной х обусловлено высокой корреляцией между х и z (r х z = 0,95). Поэтому роста заработной платы при неизменности производительности труда (не учитывая инфляции) быть не может.

Включенные во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строиться модель с набором р факторов, то для нее рассчитывается показатель детерминации R 2 , которая фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р факторов. Влияние других неучтенных в модели факторов оценивается как 1-R 2 c соответствующей остаточной дисперсией S 2 .

При дополнительном включении в регрессию р+1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшается.

R 2 p +1 >= R 2 p и S 2 p +1 <= S 2 p

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включенный в анализ фактор x р+1 не улучшает модель и практически является лишним фактором.

Если для регрессии, включающей 5 факторов R 2 = 0,857, и включенный 6 дало R 2 = 0,858, то нецелесообразно включать в модель этот фактор.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической не значимости параметров регрессии по критерию t-Стьюдента.

Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости.

Отбор факторов производиться на основе теоретико-экономического анализа. Однако, он часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов осуществляется в две стадии:

на первой – подбирают факторы, исходя из сущности проблемы.

на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Коэффициенты интеркоррелиции (т.е. корреляция между объясняющими переменными) позволяют исключить из моделей дублирующие факторы. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если r х i х j >=0.7.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, т.е. Rх i x j = 0, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами. В этом требовании проявляется специфика множественной регрессии как метода исследования комплексного воздействия факторов в условиях их независимости друг от друга.

Рассмотрим матрицу парных коэффициентов корреляции при изучении зависимости у = f(x, z, v)

y x z v
y
x 0,8
z 0,7 0,8
v 0,6 0,5 0,2

Очевидно, факторы x и z дублируют друг друга. В анализ целесообразно включит фактор z, а не х, так как корреляция z с у слабее чем корреляция фактора х с у (r у z < r ух), но зато слабее межфакторная корреляция (r zv < r х v)

Поэтому в данном случае в уравнение множественной регрессии включает факторы z и v

По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Но наиболее трудности возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой, и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарности факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

Если рассмотренная регрессия у = a + bx + cx + dv + e, то для расчета параметров, применяется МНК

S y = S факт +S e

общая сумма = факторная + остаточная

Кв.отклонения

В свою очередь, при независимости факторов друг от друга выполнимо равенство:

S = S x +S z + S v

Суммы квадратов отклонения, обусловленных влиянием соответствующих факторов

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно в силу следующего:

· затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированы; параметры линейной регрессии теряют экономический смысл;

· оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.

Для оценки мультиколлинеарных факторов будем использовать определитель матрицы парных коэффициентов корреляции между факторами. Если бы факторы не коррелировали между собой, то матрица парных коэффициентов была бы единичной.

y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + e

Если же между факторами существует полная линейная зависимость, то:

Чем ближе к 0 определитель, тем сильнее межколлинеарность факторов и ненадежны результаты множественной регрессии. Чем ближе к 1, тем меньше мультиколлинеарность факторов.

Оценка значимости мультиколлинеарности факторов может быть проведена методами испытания гипотезы 0 независимости переменных H 0:

Доказано, что величина имеет приближенное распределение с степенями свободы. Если фактически значение превосходит табличное (критическое) то гипотеза H 0 отклоняется. Это означает, что , недиагональные коэффициенты указывают на коллинеарность факторов. Мультиколлинеарности считается доказанной.

Через коэффициенты множественной детерминации можно найти переменные, ответственные за мультиколлинеарность факторов. Для этого в качестве зависимой переменной рассматривается каждый из факторов. Чем ближе значение R 2 к 1, тем сильнее проявляется мультиколлинеарность. Сравнивая между собой коэффициенты множественной детерминации и т.п.

Можно выделить переменные, ответственные за мультиколлинеарность, следовательно, решить проблему отбора факторов, оставляя в уравнения факторы с минимальной величиной коэффициента множественной детерминации.

Существует ряд походов преодоления сильной межфакторной корреляции. Самый простой путь устранения МК состоит в исключении из модели одного или несколько факторов.

Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.

Если y = f(x 1 , x 2 , x 3), то возможно построение следующего совмещенного уравнения:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 12 x 1 x 2 + b 13 x 1 x 3 + b 23 x 2 x 3 + e.

Это уравнение включает взаимодействие первого порядка (взаимодействие двух факторов).

Возможно включение в уравнение взаимодействий и более высокого порядка, если будет доказано их статистически значимость по F-критерию

b 123 x 1 x 2 х 3 – взаимодействие второго порядка.

Если анализ совмещенного уравнения показал значимость только взаимодействия факторов х 1 и х 3 , то уравнение будет имеет вид:

у = a + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 13 x 1 x 3 + e.

Взаимодействие факторов х 1 и х 3 означает, что на разных уровнях фактора х 3 влияние фактора х 1 на у будет неодинаково, т.е. оно зависит от значения фактора х 3 . На рис. 3.1 взаимодействие факторов представляет непараллельными линями связи с результатом у. И наоборот, параллельные линии влияние фактора х 1 на у при разных уровнях фактора х 3 означают отсутствие взаимодействия факторов х 1 и х 3 .

Рис 3.1. Графическая иллюстрация взаимодействия факторов.

а - х 1 влияет на у, причем это влияние одинаково при х 3 =В 1 , так и при х 3 =В 2 (одинаковый наклон линий регрессии), что означает отсутствие взаимодействия факторов х 1 и х 3 ;

б – с ростом х 1 результативный признак у возрастает при х 3 =В 1 , с ростом х 1 результативный признак у снижается при х 3 =В 2 . Между х 1 и х 3 существует взаимодействие.

Совмещенные уравнения регрессии строятся, например, при исследовании эффекта влияния на урожайность разных видов удобрений (комбинации азота и фосфора).

Решению проблемы устранения мультиколлинеарности факторов может помочь и переход к устранениям приведенной формы. С этой целью в уравнение регрессии производится подстановка рассматриваемого фактора через выражение его из другого уравнения.

которое представляет собой приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде:

К нему для оценки параметров может быть применен МНК.

Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Походы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно разным методикам. В зависимости от того, какая методика построение уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.

Наиболее широкое применение получили следующие методы построение уравнения множественной регрессии :

· метод исключения;

· метод включения;

· шаговый регрессионный анализ.

Каждый из этих методов по-своему решает проблему отбора факторов, давая в целом близкие результаты – отсев факторов из полного его отбора (метод исключение), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедура отсева фактора. При отборе факторов рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6-7 раз меньше объема совокупности, по которой строит регрессии. Если это отношение нарушено, то число степеней свободны остаточной вариаций очень мало. Это приводит к тому, что параметры уравнения регресс оказываются статистически незначимыми, а F-критерий меньше табличного значения.

В прогнозных расчетах по уравнению регрессии определяется предсказываемое значение как точечный прогнозпри
то есть путем подстановки в линейное уравнение регрессии
соответствующего значенияx. Однако точечный прогноз явно нереален, поэтому он дополняется расчетом стандартной ошибкито есть
, и соответственно мы получаем интервальную оценку прогнозного значения:

(2.29)

Для того чтобы понять, как строится формула для определения величин стандартной ошибки
тогда уравнение регрессии примет вид:

Отсюда следует, что стандартная ошибка
зависит от ошибкии ошибки коэффициента регрессииb, то есть:

(2.31)

Из теории выборки известно, что

Используя в качестве оценки остаточную дисперсию на одну степень свободы, получим формулу расчета ошибки среднего значения переменнойy:

(2.32)

Ошибки коэффициента регрессии, как уже было показано, определяется формулой

(2.33)

Считая, что прогнозное значение фактора
, получим следующую формулу расчета стандартной ошибки предсказываемого по линии регрессии значения, то есть

. (2.34)

Соответственно
имеет выражение:

(2.35)

Рассмотренная формула стандартной ошибки предсказываемого среднего значения yпри заданном значениихарактеризует ошибку положения линии регрессии. Величина стандартной ошибки
достигает минимума при
и возрастает по мере того, как «удаляется» отв любом направлении. Иными словами, чем больше разность междуи, тем больше ошибки
, с которой предсказывается среднее значениеyдля заданного значения. Можно ожидать наилучшие результаты прогноза, если признак-фактор х находится в центре области наблюдений х, и нельзя ожидать хороших результатов прогноза при удаленииот. Если же значениеоказывается за пределами наблюдаемых значений х, используемых при построении линейной регрессии, то результаты прогноза ухудшаются в зависимости от того, насколькоотклоняется от области наблюдаемых значений фактора х. [И. И. Елисеева с. 72]

2.6 Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы
параболы второй степени
и др.

Различают два класса нелинейных регрессий:

    регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

    регрессии, нелинейные по оцениваемым параметрам;

Примером нелинейной регрессии по включенным в нее объясняющим переменным могут служить следующие функции:


К нелинейным регрессиям по оцениваемым параметрам относятся функции:


Нелинейная регрессия по включенным переменным не имеет никаких сложностей для оценки ее параметров. Они определяются, как и в линейной регрессии, методом наименьших квадратов, ибо эти функции линейны по параметрам. Так, в параболе второй степени
заменив переменные
получим двухфакторное уравнение линейной регрессии:

Для оценки параметров которого используется МНК.

Полином любого порядка сводится к линейной регрессии с ее способами оценивания характеристик и проверки гипотез. Как показывает опыт большинства исследователей, между нелинейной полиномиальной регрессии наиболее часто употребляется парабола второй степени; в отдельных вариантах – полином третьего порядка. Ограничения в использовании полиномов наиболее высоких степеней связаны с требованием односторонности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и в соответствии с этим меньше односторонность совокупности по результативному признаку.

Парабола второй степени целесообразна к использованию, если для конкретного промежутка значений фактора изменяется характер взаимосвязи рассматриваемых показателей: прямая взаимосвязь меняется на обратную или обратная на прямую. В такой ситуации определяется значение фактора, при котором достигается максимальное (или минимальное) значение результативного признака: приравниваем к нулю первую производную параболы второй степени:
b+2cx=0

Если же исходные данные не обнаруживают изменения направленности связи, то параметры параболы второго порядка становятся трудно интерпретируемыми, а форма связи часто заменяется другими нелинейными моделями.

Применение МНК для оценки параметров параболы второй степени приводит к следующей системе нормальных уравнений:

(2.36)

Решить ее относительно параметров a,b,cможно методом определителей:

где - определитель системы;

a,b,c– частные определители для каждого из параметров.

При b>0 иc>0 кривая симметрична относительно высшей точки, то есть точки перелома кривой, изменяющей направление взаимосвязи, а конкретно подъем на падение. Такого рода функцию можно наблюдать в экономике труда при исследовании зависимости заработной платы работников физического труда от возраста – с повышением возраста увеличивается заработная плата ввиду одновременного роста опыта и повышения квалификации работника. Приb<0 иc>0 парабола второго порядка симметрична относительно своего минимума, что позволяет определять минимум функции в точке, меняющей направление связи, то есть снижение на рост.

Ввиду симметричности кривой параболу второй степени не всегда возможно применить в конкретных случаях. Параметры параболической взаимосвязи не всегда могут быть логически объяснены. Таким образом, график зависимости не показывает четко выраженной параболы второго порядка, то она может быть заменена другой нелинейной функцией.

В группе нелинейных функций, параметры которых будут оценены МНК, в эконометрике хорошо известна равносторонняя гипербола
Она может быть использована для объяснения взаимосвязи удельных расходов. Стандартным примером является кривая Филлипса, объясняющая нелинейное соотношение между нормой безработицыxи процентом прироста заработной платыy.

Британский экономист А. В. Филлипс установил обратную взаимозависимость процента прироста заработной платы от уровня безработицы.

Если в уравнении равносторонней гиперболы
заменитьнаz, получим линейное уравнение регрессииy=a+bz+e, параметры будут оценены с помощью МНК. Система нормальных уравнений имеет вид:

(2.37)

При b>0 имеем обратную зависимость, которая при х стремящемуся к бесконечности объясняется нижней асимптотой, то есть минимальным предельным значениемy, оценкой которого служит параметрa.

При b<0 имеем медленно повышающуюся функцию с верхней асимптотой при х стремящемуся к бесконечности, то есть с максимальным предельным уровнемy, оценку которого в уравнении дает параметр а.

Среди нелинейных функций в эконометрических исследованиях глубоко используется степенная функция
Это связано с тем, что параметрbв функции имеет четкое экономическое объяснение, то есть являетсякоэффициентом эластичности . Это говорит о том, что величина коэффициентаbпоказывает, на сколько процентов изменится в средним итог, если фактор изменится на 1%.Формула расчета коэффициента эластичности:

(2.38)

где f’(x) – первая производная, характеризующая соотношение приростов результата для соответствующей формы связи.

В связи с тем, что коэффициент эластичности для линейной функции не является величиной постоянной обычно рассчитывается средний показатель эластичности по формуле:

(2.39)

Для оценки параметров степенной функции применяется МНК к линеаризованному уравнению и решается система нормальных уравнений. Параметр bопределяется из системы, а параметр а – после потенцирования величиныlna.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Поскольку в линейной модели и моделях, нелинейных по переменным, при оценке параметров появляются из критерия
то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а их преобразованным величинам. Это поясняется тем, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах.

При использовании связей среди функций, применяющих lny, в эконометрике преобладают степенные зависимости – это и кривые спроса и предложения, и кривые Энгеля, и производственные функции, и критерии освоения для характеристики связи между трудоемкостью продукции и размерами производства в период освоения выпуска нового вида изделий, и зависимость валового национального дохода от уровня занятости.

При применении линеаризуемых функций, затрагивающих преобразования зависимой переменной y, следует проверить присутствие предпосылок МНК, что бы они не нарушались при преобразовании. При нелинейных отношениях рассматриваемых признаков, приводимых к линейному виду, возможно интервальное оценивание параметров нелинейной функции.

Для внутренне нелинейных моделей, которые путем несложных преобразований не приводятся к линейному виду, оценка параметров не может быть дана привычным МНК. Здесь используются иные подходы. [И. И. Елисеева с. 77]