Распределение больцмана по потенциальной энергии. Распределение больцмана

Бо́льцмана распределение - распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия, которое было открыто в 1868-1871 гг. австрийским физиком Л. Больцманом . Согласно ему, число частиц n i с полной энергией e i равно:

ni = Aω i exp (-e i /kT)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки): ∑n i = N. В случае, когда движение частиц подчиняется классической механике, энергию e i можно считать состоящей из кинетической энергии e i, кин частицы (молекулы или атома), ее внутренней энергии e i, вн (например, энергии возбуждения электронов) и потенциальной энергии e i, пот во внешнем поле, зависящей от положения частицы в пространстве:

e i = e i, кин + e i, вн + e i, пот

Распределение частиц по скоростям (распределение Максвелла) является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения и влиянием внешних полей. В соответствии с ним формулу распределения Больцмана можно представить в виде произведения трех экспонент, каждая из которых дает распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или других планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. e i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула , выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звездных спектров, распределение Больцмана часто используется для определения относительной заселенности электронами различных уровней энергии атомов.

Распределение Больцмана было получено в рамках классической статистики. В 1924-1926 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе-Эйнштейна (для частиц с целым спином) и Ферми-Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение Больцмана, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, то есть когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределения Больцмана можно записать в виде неравенства:

N/V .

где N - число частиц, V - объем системы. Это неравенство выполняется при высокой температуре и малом числе частиц в единице объема (N/V). Из него следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана. Например, внутри белых карликов приведенное выше неравенство нарушается для электронного газа, и поэтому его свойства следует описывать с помощью распределения Ферми-Дирака. Однако оно, а вместе с ним и распределение Больцмана, остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (например, газа фотонов), неравенство не выполняется ни при каких значениях Т и N/V. Поэтому равновесное излучение описывается законом излучения Планка , который является частным случаем распределения Бозе-Эйнштейна.

При рассмотрении закона распределения Максвелла предполагалось, что молекулы равномерно распределяются по всему объему сосуда, что справедливо, если объем сосуда небольшой.

Для больших объемов равномерность распределения молекул по объему нарушается из-за действия силы тяжести, вследствие чего плот­ность, а следовательно, и число молекул в единице объема будут неодинаковым.

Рассмотрим молекулы газа, находящегося в поле тяготения Земли.

Выясним зависимость давления атмосферы от высоты над поверхно­стью Земли. Допустим, на поверхности Земли (h = 0) давление атмосфе­ры P 0 . На высоте h оно равно P. При увеличении высоты на dh давление уменьшится на dP:

dP = - ρgdh (9.49)

[ρ - плотность воздуха на данной высоте, ρ = mn 0 , где m - масса моле­кулы, n 0 - концентрация молекул].

Используя соотношение P = n 0 kТ, получаем

Полагая, что на некоторой высоте h Т = соnst, g = соnst, разделяя пе­ременные, интегрируем выражение (9.50):

Получаем

(9.51) - барометрическая формула .

Барометрическая формула показывает зависимость давления газа от высоты над поверхностью Земли.

Если учесть, что концентрация молекул воздуха в атмосфере определяет дав­ление, то формулу (9.51) можно записать в виде

Из формулы (9.52) следует, что с понижением температуры число частиц на высоте, отличной от нуля, убывает и при Т = 0К обращается в нуль, т. е. при 0К все молекулы расположились бы на земной поверх­ности.

Так как потенциальная энергия молекул на различной высоте раз­лична и на высоте h определяется по формуле где Е П = mgh, то [см.

- закон Больцмана , показывающий распределение участвующих в теп­ловом движении молекул в потенциальном поле сил, в частности в поле силы тяжести.

Методика решения задач

В задачах данного типа используют свойства распределения Максвелла и Больцмана.

Пример 3.3. Определите среднюю арифметическую скорость <υ˃ молекул идеального газа, плотность которого при давлении 35 кПа составляет 0,3 кг/м 3 .

Дано: Р=35кПа=35∙10 3 Па; ρ=0,3 кг/м 3 .

Найти : <υ˃ .

Решение: Согласно основному уравнению молекулярно-кинетической теории идеальных газов,

где n – концентрация молекул; m 0 - масса одной молекулы; кв ˃ .- средняя квадратичная скорость молекул.

Учитывая, что , а, получаем

Так как плотность газа

где m – масса газа; V - его объём; N - число молекул газа, уравнение (1) можно записать в виде

или . Подставляя это выражение в формулу (2), находим искомую среднюю арифметическую скорость:

Ответ: <υ˃=545 м/с.

Пример 3.5. Найти относительное число газа, скорость которого отличается не более чем на δη = 1% значения средней квадратичной скорости.

Дано: δη = 1%.

Найти :

Решение В распределении Максвелла

подставим значение

; δυ = υ кв δη.

Относительное число молекул будет

Ответ :

Пример 3.6. При какой температуре газа число молекул со скоростями в заданном интервале υ, υ + dυ будет максимальной? Масса каждой молекулы m.

Для нахождения искомой температуры необходимо исследовать функцию распределения Максвелла на экстремум .

Пример 3.7. Вычислить наиболее вероятную, среднюю и среднюю квадратичную скорости молекул идеального газа, у которого при нормальном атмосферном давлении плотность ρ = 1кг/м 3 .

Умножив числитель и знаменатель в подкоренных выражениях (3.4) на число Авогадро N а, получим следующие формулы для скоростей:

Запишем уравнение Менделеева-Клапейрона, введя в него плотность

Определим отсюда величину и, подставив её в выражения, определяющие скорость молекул, получим:

Пример 3.4. Идеальный газ с молярной массой M находится в однородном поле тяжести, ускорение свободного падения в котором g. Найти давление газа как функцию высоты h, если при h = 0 давление Р = Р 0 , а температура меняется с высотой как T = T 0 (1 - α·h), где α – положительная постоянная.

При увеличении высоты на бесконечно малую величину давление получает приращение dP = - ρgdh, где ρ - плотность газа. Знак минус появился, так как с увеличением высоты давление уменьшилось.

Поскольку рассматривается идеальный газ, плотность ρ может быть найдена из уравнения Mенделеева-Клапейрона:

Подставим значение плотности ρ и температуры Т, получим разделяя переменные:

Интегрируя это выражение, находим зависимость давления газа от высоты h:

Так как при h = 0 Р = Р 0 получаем значение постоянной интегрирования С = Р 0 . Окончательно функция Р(h) имеет вид

Необходимо отметить, что, так как давление является величиной положительной, полученная формула справедлива для высот .

Пример. Французский физик Ж.Перрен, наблюдал под микроскопом изменение концентрации взвешенных в воде (ρ=1г/см 3 ) шариков гуммигута (ρ 1 =1,25г/см 3 ) с изменением высоты, экспериментально определил постоянную Авогадро. Определите это значение, если температура взвеси Т=298К, радиус шариков =0,21 мкм, а при расстоянии между двумя слоями Δ h =30мкм число шариков гуммигута в одном слое в два раза больше, чем в другом.

Дано: ρ=1г/см 3 =1000кг/м 3 ; ρ=1,25 г/см 3 =1250кг/м 3 ; Т=280 К; r =0,21мкм=0,21∙10 -6 м; Δ h =30мкм=3∙10 -5 м; .

Найти : N A .

Решение. Барометрическую формулу

Используя уравнение состояния P=nkT, можно преобразовать для высот h 1 и h 2 к виду

и ,

где n 0 , n 1 и n 2 - соответственно концентрация молекул на высоте h 0 , h 1 и h 2 ; М – молярная масса; g- ускорение свободного падения; R- молярная газовая постоянная.

Прологарифмировав выражение (1), получим

Масса частицы ; m=ρV=ρπr 3 . Подставив эти формулы в (2) и учитывая поправку на закон Архимеда, получим

Откуда искомое выражение для постоянной Авогадро

Ответ: N A =6,02∙10 23 моль -1 .

Пример. Какова температура Т азота, если средняя длина свободного пробега <ℓ˃ молекул азота при давлении Р=8кПа составляет 1мкм. Эффективный диаметр молекул азота d =0,38нм. .

Дано: <ℓ˃ =1мкм=1∙10 -6 м; Р=8кПа=8∙10 3 Па; d=0,38нм=0,38∙10 -9 м;

Найти : Т.

Решение. Согласно уравнению состояния идеального газа

где n – концентрация молекул; k - постоянная Больцмана.

откуда . Подставив эту формулу в выражение (1), найдём искомую температуру азота

Ответ: Т=372 К.

Пример. При температуре Т=280 К и некотором давлении средняя длина <ℓ 1 ˃ свободного пробега молекул равна 0,1 мкм. Определите среднее число столкновений молекул в 1с, если давление в сосуде уменьшить до 0,02 первоначального давления. Температуру считать постоянной, а эффективный диаметр молекулы кислорода принять равным 0,36нм.

Дано: Т=280 К; <ℓ 1 ˃ =0,1мкм=0,1∙10 -6 м; М=32∙10 -3 кг/моль; ; d=0,36нм=0,36∙10 -9 м;

Найти : .

Решение. Среднее число . молекулы к средней длине её свободного пробега <ℓ 2 ˃. при том же давлении:

где средняя скорость молекул определяется по формуле

где R – молярная газовая постоянная; М – молярная масса вещества.

Из формул иP=nkT следует, что средняя длина свободного пробега молекул обратно пропорциональна давлению:

откуда . Подставив это выражение в формулу (1) и учитывая (2), получаем искомое среднее число столкновений молекул в 1с:

Ответ:

Дано: P =100мкПа=10 -4 Па; r =15см=0,15 м; T=273 К; d=0,38нм=0,38∙10 -9 м.

Найти :

Решение. Вакуум можно считать высоким, если средняя длина свободного пробега молекул газа гораздо больше линейных размеров сосуда, т.е. должно выполняться условие

Средняя длина свободного пробега молекул газа

(учли P=nkT).

Вычисляя, получаем =58,8 м, т.е 58,8 м ˃˃0,3 м.

Ответ: да, вакуум высокий.

РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА

Воспользуемся полученной нами ранее барометрической формулой:

и получим зависимость концентрации молекул от высоты. Поскольку

Если изобразить графики зависимостей в соответствии с (9.17) при различных температурах, то легко видеть, что с понижением температуры основная часть молекул располагается ближе к поверхности Земли. При абсолютном нуле все молекулы должны были бы расположиться на поверхности. Наоборот, при высоких температурах молекулы располагаются почти равномерно.

Конкретное распределение молекул устанавливается в результате действия противоположных факторов: сила притяжения концентрирует молекулы вблизи поверхности, а тепловое движение разбрасывает по всем высотам.

В числителе показателя степени экспоненты (9.17) стоит фактически энергия молекулы в поле силы тяжестиε р . Поэтому (9.17) можно записать в виде

Больцман доказал, что распределение (9.18) справедливо для совокупности любых одинаковых частиц, находящихся в тепловом движении в любом потенциальном поле . Поэтому распределение (18) называют распределением Больцмана . Это распределение можно представить в виде

где – количество молекул, попадающих в пределы объема , расположенного в точке с координатами x, y, z.

Это распределение можно объединить с распределением Максвелла, выделив из молекулы, компоненты скорости которых лежат в пределах от до ,от до , от до :

Очень часто энергия частиц может только дискретные значения из ряда: . В этом случае распределение Больцмана дает количество частиц , которые находятся в состоянии с энергией и имеет вид:

где – коэффициент пропорциональности, который определяется из условия нормировки. В этом случае условие нормировки сводится к требованию того, чтобы сумма частиц во всех состояниях была равна общему количеству частиц в системе :

Найдем значение нолрмирующего множителя, подставив (9.21) в (9.22):

Таким образом, окончательно распределение Больцмана для систем с дискретными разрешенными значениями энергии можно записать в виде:

СТАТИСТИЧЕСКИЙ ВЕС

Понятие «статистический вес » (используется также термин термодинамическая вероятность ) является одним из основных в статистической физике. Чтобы сформулировать его определение необходимо сначала определить понятия макросостояние и микросостояние .

Одно и тоже состояние макроскопического тела можно охарактеризовать по-разному. Если состояние охарактеризовано заданием макроскопических параметров состояния (давление, объем, температура, плотность и т.п.) то такое состояние будем называть макросостоянием .

Если состояние охарактеризовано путем задания координат и скоростей всех молекул тела, то такое состояние будем называть микросостоянием .

Очевидно, что одно и то же макросостояние может быть реализовано различными способами, то есть различными микросостояниями. Число различных микросостояниий, которыми может быть реализовано данное макросостояние называется статистическим весом или термодинамической вероятностью .

Для пояснения указанных понятий рассмотрим модель (!) - сосуд, в котором находятся N молекул. Предположим, что сосуд разделен на две одинаковые части, и различные макросостояния отличаются количеством молекул в левой и правой половинах сосуда . Поэтому в рамках модели будем считать состояние молекулы заданным, если известно, в какой из половин сосуда она находится .

Различные микросостояния отличаются при этом тем, какие именно молекулы находятся справа и слева. 1,2 – 3,4 (как показано на рисунке 9.5) одно из состояний. 1,3 – 2,4 – другое микросостояние.

Каждая из молекул может с равной вероятностью находиться и слева, и справа. Поэтому вероятность i -той молекуле находиться, например, справа равна ½. Появление в левой части сосуда той молекулы наряду с той является статистически независимым событием , поэтому вероятность нахождения слева двух молекул равна ½ ½ = ¼; трех молекул – 1/8; четырех – 1/16 и т.д. Следовательно, вероятность любого размещения (микросостояния) молекул равна .

Утверждение о том, что, вероятности каждого их микросостояний равны, называются эргодической гипотезой , и оно лежит в основе статистической физики.

Рассмотрим N = 4. Каждое из размещений молекул в половинах сосуда является конкретным микросостоянием. Тогда макросостоянию с числом молекул слева соответствует 1 микросостояние. Статистический вес такого макросостояния равен 1, а вероятность его реализации – 1/16. Для иных макростоляний можно утверждать следующее:

Соответствует 6 микросостояний статистический вес 6, 6/16

Соответствует 4 микросостояния статистический вес 4, 4/16

Соответствует 1 микросостояние статистический вес 1, 1/16

Теперь можно видеть, что вследствие принятия эргодической гипотезы, статистический вес оказывается пропорциональным вероятности (обычной!) реализации данного макросостояния.

Если в сосуде содержится N молекул, то можно доказать, что статвес макросостояния, заключающегося в том, что слева n молекул, а справа (N – n)

Если для четырех молекул вероятность собраться в одной из половин сосуда составляет 1/16, то есть вполне ощутимую величину, то уже для N = 24 эта вероятность составляет порядка .

При нормальных условиях в 4 см 3 воздуха содержится около 10 20 молекул. Вероятность собраться им в одной из частей сосуда оценивается величиной .

Таким образом, с увеличением количества молекул в системе вероятность существенных отклонений от приблизительного равенства количеств молекул в частях сосуда очень быстро убывает. Это соответствует тому, что статвес состояний с приблизительно равным количеством молекул в половинах оказывается очень большим и быстро убывает по мере отклонения от равенства молекул в частях.

Если число N не очень велико, то с течением времени наблюдаются – заметные отклонения количества молекул в одной из половины от N / 2 . Случайные отклонения физической величиныx от ее среднего значения называются флуктуациям:

Среднее арифметическое абсолютной флуктуации равно нулю. Поэтому в качестве характеристики флуктуаций чаще рассматривают среднюю квадратичную флуктуацию :

Более удобной и показательной является относительная флуктуация :



Причем в статистической физике доказывается соотношение:

т.е. величина относительной флуктуации обратно пропорционально корню из количества частиц в системе . Это утверждение подтверждает наш качественный вывод.

Аналогично количеству молекул в одной из половин сосуда флуктуируют вблизи средних значений и другие макроскопические характеристики состояния – давление, плотность, и т.п.

Рассмотрим природу равновесных и неравновесных состояний и процессов с точки зрения статистической физики. Равновесным , по определению, является такое состояние, которое не имеет тенденции к изменению с течением времени. Ясно, что таким свойством в наибольшей мере будет обладать наиболее вероятное из всех макросостояний системы, то есть состояние, реализуемое наибольшим количеством микросостояний, а значит обладающее наибольшим статистическим весом. Поэтому равновесное состояние можно определить как состояние, статвес которого максимален .

Примером типичного необратимого процесса может служить распространение на весь объем сосуда молекул газа, первоначально сосредоточенных в одной из его половин. Этот процесс является необратимым, так как вероятность того, что в результате теплового движения все молекулы соберутся в одной из половин сосуда, очень мала. Соответственно всегда необратимым является процесс , обратный которому крайне маловероятен .


ЛЕКЦИЯ № 10 СТАТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА

10.1. ЭНТРОПИЯ

Как мы установили, вероятность состояния системы пропорциональна ее статическому весу, поэтому в качестве характеристики вероятности состояния можно было бы использовать сам статвес W. Однако W не является аддитивной величиной. Поэтому для характеристики состояния системы используют величину

которую называют энтропией системы. Действительно, если мы рассмотрим две системы по 4 молекулы в каждой, то статистический вес состояния, когда в каждой из подсистем находится, например, по одной молекуле слева будет равен 16, т.е. . Это соотношение справедливо для любых состояний. Следовательно, статвес неаддитивен . В то же время энтропия состояния результирующей системы т.е. является величиной аддитивной .

Поскольку при протекании необратимых процессов в изолированной системе она переходит из менее вероятных в более вероятные состояния, можно утверждать, что энтропия изолированной системы возрастает при протекании в ней необратимых процессов .

Равновесное состояние является наиболее вероятным состоянием, а значит, энтропия системы перешедшей в равновесное состояние максимальна.

Поэтому можно утверждать, что энтропия изолированной системы остается постоянной, если она находится в равновесном состоянии, или возрастает, если в ней протекают необратимые процессы.

Утверждение о том, что энтропия изолированной системы не убывает, называетсявторым началом термодинамики или законом возрастания энтропии .

Энтропия является , очевидно, функциейсостояния и должна определятся параметрами состояния. Самыми простыми свойствами обладает одноатомный идеальный газ – его состояния полностью определяется заданием двух параметров, например, температуры и объема. Соответственно его энтропию можно определить как функцию температуры и объема: . Соответствующие вычисления показывают, что энтропия моля идеального газа определяется выражением

где - есть некоторая константа, с точностью до которой определяется энтропия.

Формула(6) оказывается справедливой для любых тел, необходимо только чтобы сообщение количества тепла было обратимым .

Остановимся на физической сущности энтропии .

Введем определения: состояние, осуществляемое относительно малым числом способов будет называться упорядоченным или неслучайным . Состояние, осуществляемое большим количеством способов – беспорядочным или случайным .

Тогда можно утверждать, что энтропия является количественной мерой степени беспорядка в системе . Сообщение системе количества тепла приводит к усилению теплового движения молекул, а значит и к росту энтропии. При этом, чем выше температура системы, тем меньше доля беспорядка вносимого сообщением данного , в чем и заключается физический смысл формулы(6).

Если количество тепла сообщается системе в ходе необратимого процесса, то ее энтропия возрастает не только за счет получения тепла, но и за счет протекания необходимых процессов, поскольку необратимый процесс сопровождается ростом вероятности состояния системы, ее статистического веса

В этом случае под в(7) подразумевается температура резервуара, из которого система получает . Объединяя (6) и(7) вместе можно записать:

При абсолютном нуле всякая система находится в основном состоянии , т. е. состоянии с наименьшей энергией. Статический вес этого вполне определенного состояния равен единице , а значит энтропия системы равна нулю. Это соответствует теореме Нернста , согласно которой энтропия всякого тела стремится к нулю при стремлении к нулю его температуры :

Теорему Нернста называют также третьим началом термодинамики .

Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа. Пусть Р давление газа на высоте h. Тогда давление на высоте h+dh будет P+dP, а разность давлений dP будет равна весу газа mg в объеме V с площадью основания S = 1 м 2 и высотой dh (V=Sdh), отнесенному к S.

Выразим плотность газа ρ через давление P из уравнения Менделеева-Клапейрона

Проинтегрируем отдельно левую и правую части уравнения. Считая температуру постоянной T=const, получим lnP = - , где С – постоянная интегрирования. Выражение для давления будет Постоянную интегрирования определяют из граничного условия. Еслиh = 0, то С = Р 0 и тогда

Это уравнение носит название барометрической формулы и показывает зависимость давления газа от высоты.

Видно, что чем тяжелее молекулы и чем ниже температура, тем быстрее уменьшается давление с увеличением высоты.

Заменим в формуле давление, выразив его через концентрацию молекул из уравнений P = nkT, P 0 = n 0 kT и

где n 0 - концентрация молекул на высоте h=0;

n - концентрация молекул на высоте h≠0.

Данная формула описывает изменение концентрации молекул от высоты h в потенциальном поле земного тяготения и от температуры Т. Можно отметить две тенденции, определяющих распределение молекул по высоте:

1. Притяжение молекул к Земле (mg) стремится расположить их на поверхности Земли.

2. Тепловое движение (kT) стремится разбросать молекулы равномерно по всем высотам от 0 до .

В результате этих конкурирующих процессов распределение молекул газа по высоте имеет промежуточный вид.

Потенциальная энергия молекулы  Р =mgh. Следовательно, полученная формула представляет собой распределение молекул по значениям потенциальной энергии

Это формула функции распределения Больцмана. Здесь n 0 концентрация моле-кул в том месте, где  Р = 0, n –концентрация молекул в той точке простран-ства, где молекула обладает потенциальной энергией  p ≠ 0. Молекулы стремятся расположиться с наибольшей плотностью там, где у них минимальная потенциальная энергия

Закон Максвелла дает распределение молекул по значениям кинетической энергии, а закон Больцмана - по значениям потенциальной энергии.

Больцман доказал, что формула распределения справедлива не только в случае потенциального поля земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Контрольные вопросы

    Что такое степень свободы молекул?

    Чему равно число степеней свободы одно-, двух- и трехатомной молекул?

    Сформулируйте закон распределения энергии по степеням свободы молекул.

    Приведите выражение функции распределения молекул по скоростям.

    По каким формулам определяются среднеарифметическая, наиболее вероятная и среднеквадратичная скорости молекул?

    Каково выражение для функции распределения Больцмана по значениям потенциальной энергии?

Тесты

    чему равно число степеней свободы двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Сколько степеней свободы приходится на вращательное движение у двухатомной молекулы?

а) 1; б) 2; в) 3; г) 4; д) 5.

    Какое из приведенных выражений описывает наиболее вероятную скорость?

Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

где p - давление газа в слое, расположенном на высоте h , p 0 - давление на нулевом уровне (h = h 0), M - молярная масса газа, R - газовая постоянная, T - абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

где M - молярная масса газа, R - газовая постоянная.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT . Чем выше температура T , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как mgh – это потенциальная энергия U , то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

, (2.5.3)

это закон распределения частиц по потенциальным энергиям – распределение Больцмана. Здесь n 0 – число молекул в единице объёма там, где U = 0.