Решить тригонометрическую функцию. Тригонометрические уравнения — формулы, решения, примеры

Тригонометрические уравнения.

Простейшие тригонометрические уравнения.

Методы решения тригонометрических уравнений.

Тригонометрические уравнения. Уравнение, содержащее неизвестное под знаком тригонометрической функции, называется тригонометрическим .

Простейшие тригонометрические уравнения.



Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида (см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

1. Алгебраический метод. Этот метод нам хорошо известен из алгебры

(метод замены переменной и подстановки).

2. Разложение на множители. Этот метод рассмотрим на примерах.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е. Перенесём все члены уравнения влево:

Sin x + cos x – 1 = 0 ,

Преобразуем и разложим на множители выражение в

Левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е. cos 2 x + sin x · cos x sin 2 x – cos 2 x = 0 ,

Sin x · cos x – sin 2 x = 0 ,

Sin x · (cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е. cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

Cos 4x · (cos 2x – cos 4x ) = 0 ,

Cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3.

Приведение к однородному уравнению. Уравнение называется однородным от носительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:

а ) перенести все его члены в левую часть;

б ) вынести все общие множители за скобки;

в ) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos (или sin ) в старшей степени;

д ) решить полученное алгебраическое уравнение относительно tan .

П р и м е р. Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е. 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

Sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

Tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

Корни этого уравнения: y 1 = - 1, y 2 = - 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу. Рассмотрим этот метод на примере:

П р и м е р. Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е. 6 sin (x / 2) · cos (x / 2) – 5 cos ² (x / 2) + 5 sin ² (x / 2) =

7 sin ² (x / 2) + 7 cos ² (x / 2) ,

2 sin ² (x / 2) – 6 sin (x / 2) · cos (x / 2) + 12 cos ² (x / 2) = 0 ,

tan ² (x / 2) – 3 tan (x / 2) + 6 = 0 ,

. . . . . . . . . .

5. Введение вспомогательного угла. Рассмотрим уравнение вида :

a sin x + b cos x = c ,

Где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого

Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Что такое тригонометрические уравнения?

3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.

Что такое тригонометрические уравнения?

Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

Повторим вид решения простейших тригонометрических уравнений:

1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

X= ± arccos(a) + 2πk

2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

Для всех формул k- целое число

Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

Пример.

Решить уравнения: а) sin(3x)= √3/2

Решение:

А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

Тогда x= ((-1)^n)×π/9+ πn/3

Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

Ещё примеры тригонометрических уравнений.

Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Решение:

А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

Ответ: x=5πk, где k – целое число.

Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Ответ: x=2π/9 + πk/3, где k – целое число.

Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

Решение:

Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

Ответ: x= π/16, x= 9π/16

Два основных метода решения.

Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

Решим уравнение:

Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

В результате замены получим: t 2 + 2t -1 = 0

Найдем корни квадратного уравнения: t=-1 и t=1/3

Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

Пример решения уравнения

Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

Решение:

Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

Введем замену t=cos(x): 2t 2 -3t - 2 = 0

Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

Тогда cos(x)=2 и cos(x)=-1/2.

Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Ответ: x= ±2π/3 + 2πk

Однородные тригонометрические уравнения.

Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

Уравнения вида

однородными тригонометрическими уравнениями второй степени.

Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0

Решение:

Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

Тогда нам надо решить два уравнения:

Cos(x)=0 и cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Ответ: x= π/2 + πk и x= -π/4+πk

Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!

1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


Делаем замену переменной t=tg(x) получаем уравнение:

Решить пример №:3

Решить уравнение:
Решение:

Разделим обе части уравнения на косинус квадрат:

Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

Найдем корни квадратного уравнения: t=-3 и t=1

Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Ответ: x=-arctg(3) + πk и x= π/4+ πk

Решить пример №:4

Решить уравнение:

Решение:
Преобразуем наше выражение:


Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

Решить пример №:5

Решить уравнение:

Решение:
Преобразуем наше выражение:


Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

Задачи для самостоятельного решения.

1) Решить уравнение

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Основными методами решения тригонометрических уравнений являются: сведение уравнений к простейшим (с использованием тригонометрических формул), введение новых переменных, разложение на множители. Рассмотрим их применение на примерах. Обратите внимание на оформление записи решений тригонометрических уравнений.

Необходимым условием успешного решения тригонометрических уравнений является знание тригонометрических формул (тема 13 работы 6).

Примеры.

1. Уравнения, сводящиеся к простейшим.

1) Решить уравнение

Решение:

Ответ:

2) Найти корни уравнения

(sinx + cosx) 2 = 1 – sinxcosx, принадлежащие отрезку .

Решение:

Ответ:

2. Уравнения, сводящиеся к квадратным.

1) Решить уравнение 2 sin 2 x – cosx –1 = 0.

Решение: Используя формулу sin 2 x = 1 – cos 2 x, получаем

Ответ:

2) Решить уравнение cos 2x = 1 + 4 cosx.

Решение: Используя формулу cos 2x = 2 cos 2 x – 1, получаем

Ответ:

3) Решить уравнение tgx – 2ctgx + 1 = 0

Решение:

Ответ:

3. Однородные уравнения

1) Решить уравнение 2sinx – 3cosx = 0

Решение: Пусть cosx = 0, тогда 2sinx = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1. Значит cosx ≠ 0 и можно поделить уравнение на cosx. Получим

Ответ:

2) Решить уравнение 1 + 7 cos 2 x = 3 sin 2x

Решение:

Используем формулы 1 = sin 2 x + cos 2 x и sin 2x = 2 sinxcosx, получим

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Пусть cosx = 0, тогда sin 2 x = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1.
Значит cosx ≠ 0 и можно поделить уравнение на cos 2 x. Получим

tg 2 x – 6 tgx + 8 = 0
Обозначим tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y 2 = 2
а) tgx = 4, x= arctg4 + 2 k , k
б) tgx = 2, x= arctg2 + 2 k , k .

Ответ: arctg4 + 2 k , arctg2 + 2 k, k

4. Уравнения вида a sinx + b cosx = с, с ≠ 0.

1) Решить уравнение .

Решение:

Ответ:

5. Уравнения, решаемые разложением на множители.

1) Решить уравнение sin2x – sinx = 0.

Корнем уравнения f ( х ) = φ ( х ) может служить только число 0. Проверим это:

cos 0 = 0 + 1 – равенство верно.

Число 0 единственный корень данного уравнения.

Ответ: 0.

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.