С чем вступают в реакцию основные оксиды. Взаимодействие оксидов с гидроксидами металлов

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Оксиды – сложные вещества, состоящие из двух элементов, одним из которых является кислород. Оксиды могут быть солеобразующими и несолеобразующими: одним из видов солеобразующих оксидов являются основные оксиды. Чем они отличаются от других видов, и каковы их химические свойства?

Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные оксиды. Если основным оксидам соответствуют основания, то кислотным – кислоты, а амфотерным оксидам соответствуют амфотерные образования. Амфотерными оксидами называют такие соединения, которые в зависимости от условий могут проявлять либо основные, либо кислотные свойства.

Рис. 1. Классификация оксидов.

Физические свойства оксидов очень разнообразны. Они могут быть как газами (CO 2), так и твердыми (Fe 2 O 3) или жидкими веществами (H 2 O).

При этом большинство основных оксидов является твердыми веществами различных цветов.

оксиды, в которых элементы проявляют свою высшую активность называются высшими оксидами. Порядок возрастания кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

Химические свойства основных оксидов

Основными оксидами называются оксиды, которым соответствуют основания. Например, основным оксидам K 2 O, СaO соответствуют основания KOH, Ca(OH) 2 .

Рис. 2. Основные оксиды и соответствующие им основания.

Основные оксиды образуются типичными металлами, а также металлами переменной валентности в низшей степени окисления (например, CaO, FeO), реагируют с кислотами и кислотными оксидами, образуя при этом соли:

CaO (основной оксид)+CO 2 (кислотный оксид)=СaCO 3 (соль)

FeO (основной оксид)+H 2 SO 4 (кислота)=FeSO 4 (соль)+2H 2 O (вода)

Основные оксиды также взаимодействуют с амфотерными оксидами, в результате чего происходит образование соли, например:

С водой реагируют только оксиды щелочных и щелочно-земельных металлов:

BaO (основной оксид)+H 2 O (вода)=Ba(OH) 2 (основание щелочнозем. металла)

Многие основные оксиды имеют характер восстанавливаться до веществ, состоящих из атомов одного химического элемента:

3CuO+2NH 3 =3Cu+3H 2 O+N 2

При нагревании разлагаются только оксиды ртути и благородных металлов:

Рис. 3. Оксид ртути.

Список основных оксидов:

Название оксида Химическая формула Свойства
Оксид кальция CaO негашенная известь, белое кристаллическое вещество
Оксид магния MgO белое вещество, малорастворимое в воде
Оксид бария BaO бесцветные кристаллы с кубической решеткой
Оксид меди II CuO вещество черного цвета практически нерастворимое в воде
HgO твердое вещество красного или желто-оранжевого цвета
Оксид калия K 2 O бесцветное или бледно-желтое вещество
Оксид натрия Na 2 O вещество, состоящее из бесцветных кристаллов
Оксид лития Li 2 O вещество, состоящее из бесцветных кристаллов, которые имеют строение кубической решетки

Если вы в школе не увлекались химией, вы вряд ли с ходу вспомните, что такое оксиды и какова их роль в окружающей среде. На самом деле это довольно распространенный тип соединения, который наиболее часто в окружающей среде встречается в форме воды, ржавчины, углекислого газа и песка. Также к оксидам относятся минералы - вид горных пород, имеющий кристаллическое строение.

Определение

Оксиды - это химические соединения, в формуле которых содержится как минимум один атом кислорода и атомы других химических элементов. Оксиды металлов, как правило, содержат анионы кислорода в степени окисления -2. Значительная часть Земной коры состоит из твердых оксидов, которые возникли в процессе окисления элементов кислородом из воздуха или воды. В процессе сожжения углеводорода образуется два основных оксида углерода: монооксид углерода (угарный газ, СО) и диоксид углерода (углекислый газ, CO 2).

Классификация оксидов

Все оксиды принято делить на две большие группы:

  • солеобразующие оксиды;
  • несолеобразующие оксиды.

Солеобразующие оксиды - химические вещества, в которых помимо кислорода содержатся элементы металлов и неметаллов, которые образуют кислоты при контакте с водой, а соединяясь с основаниями - соли.

Солеобразующие оксиды в свою очередь подразделяются на:

  • основные оксиды, в которых при окислении второй элемент (1, 2 и иногда 3-валентный металл) становится катионом (Li 2 O, Na 2 O, K 2 O, CuO, Ag 2 O, MgO, CaО, SrO, BaO, HgO, MnО, CrO, NiО, Fr 2 O, Cs 2 O, Rb 2 O, FeO);
  • кислотные оксиды, в которых при образовании соли второй элемент присоединяется к отрицательно заряженному атому кислорода (CO 2 , SO 2 , SO 3 , SiO 2 , P 2 O 5 , CrO 3 , Mn 2 O 7 , NO 2 , Cl 2 O 5 , Cl 2 O 3);
  • амфотерные оксиды, в которых второй элемент (3 и 4-валентные металлы или такие исключения, как оксид цинка, оксид бериллия, оксид олова и оксид свинца) может стать как катионом, так и присоединиться к аниону (ZnO, Cr 2 O 3 , Al 2 O 3 , SnO, SnO 2 , PbO, PbO 2 , TiO 2 , MnO 2 , Fe 2 O 3 , BeO).

Несолеобразующие оксиды не проявляют ни кислотных, ни основных, ни амфотерных свойств и, как следует из названия, не образуют солей (CO, NO, NO 2 , (FeFe 2)O 4).

Свойства оксидов

  1. Атомы кислорода в оксидах обладают высокой химической активностью. Благодаря тому, что атом кислорода всегда заряжен отрицательно, он образует устойчивые химические связи практически со всеми элементами, что обуславливает широкое многообразие оксидов.
  2. Благородные металлы, такие как золото и платина, ценятся из-за того, что они не окисляются естественным путем. Коррозия металлов образуется в результате гидролиза или окисления кислородом. Сочетание воды и кислорода лишь ускоряет скорость реакции.
  3. В присутствии воды и кислорода (или просто воздуха) реакция окисления некоторых элементов, к примеру, натрия, происходит стремительно и может быть опасна для человека.
  4. Оксиды создают защитную оксидную пленку на поверхности. В качестве примера можно привести алюминиевую фольгу, которая благодаря покрытию из тонкой пленки оксида алюминия, подвергается коррозии значительно медленнее.
  5. Оксиды большинства металлов имеют полимерную структуру, благодаря чему не разрушаются под действием растворителей.
  6. Оксиды растворяются под действием кислот и оснований. Оксиды, которые могут реагировать как с кислотами, так и с основаниями, называются амфотерными. Металлы, как правило, образуют основные оксиды, неметаллы - кислотные оксиды, а амфотерные оксиды получаются из щелочных металлов (металлоиды).
  7. Количество оксида металла может сократиться под действием некоторых органических соединений. Такие окислительно-восстановительные реакции лежат в основе многих важных химических трансформаций, таких как детоксикация препаратов под воздействием P450 энзимов и производство этиленоксида, из которого потом производят антифриз.

Тем, кто увлекается химией, будут интересны также следующие статьи.

Оксиды - это вещества, в которых молекулы состоят из атома кислорода со степенью окисления - 2 и атомов какого-либо второго элемента.

Оксиды образуются прямым путем при взаимодействии кислорода с другим веществом или косвенным путем - при разложении оснований, солей, кислот. Такой тип соединений очень распространен в природе, и может существовать в виде газа, жидкости или В земной коре также находятся оксиды. Так, песок, ржавчина, и даже привычная вода - это все

Бывают как солеобразующие, так и несолеобразующие оксиды. Солеобразующие в результате химической реакции дают соли. К ним относятся оксиды неметаллов и металлов, которые в реакции с водой образуют кислоту, а в реакции с основанием - соли, нормальные и кислые. К солеобразующим относится, например,

Соответственно, из несолеобразующих получить соль невозможно. В качестве примера можно привести оксид диазота и

Солеобразующие оксиды делятся, в свою очередь, на основные, кислотные и амфотерные. Поговорим подробней об основных.

Итак, основные оксиды - это оксиды некоторых металлов, соответствующие которым гидроксиды относятся к классу оснований. То есть при взаимодействии с кислотой такие вещества образуют воду и соль. Например, это К2О, СаО, MgO и пр. В обычных условиях основные оксиды представляют собой твердые кристаллические образования. Степень оксиления металлов в таких соединениях, как правило, не превышает +2 или редко +3.

Химические свойства основных оксидов

1. Реакция с кислотой

Именно в реакции с кислотой оксид проявляет свои основные свойства, поэтому подобным экспериментом можно доказать тип того или иного оксида. Если образовались соль и вода - значит, это основной оксид. Кислотные оксиды в подобном взаимодействии образуют кислоту. А амфотерные могут проявлять либо кислотные, либо основные свойства - это зависит от условий. Таковы основные отличия несолеобразующих оксидов между собой.

2. Реакция с водой

Во взаимодействие с водой вступают те оксиды, которые образованы металлами из электротехнического ряда напряжения, стоящими перед магнием. При реакции с водой они образуют растворимые основания. Это группа оксидов щелочноземельных и (оксид бария, оксид лития и пр.). Кислотные оксиды в воде образуют кислоту, а амфотерные на воду не реагируют.

3. Реакция с амфотерными и кислотными оксидами

Противоположные по своему химическому вступают в реакцию между собой, образуя при этом соли. Так, например, основные оксиды могут вступать во взаимодействие с кислотными, но не реагируют на других представителей своей группы. Наиболее активными являются оксиды щелочных металлов, щелочноземельных и магния. Даже в обычных условиях они сплавляются с твердыми амфотерными оксидами, с твердыми и газообразными кислотными. При реакции с кислотными оксидами они образуют соответствующие соли.

Но основные оксиды других металлов менее активны и практически не вступают в реакцию с оксидами газообразными (кислотными). Они только могут вступить в реакцию присоединения при сплавлении с твердыми кислотными оксидами.

4. Окислительно-восстановительные свойства

Оксиды активных щелочных металлов не проявляют выраженных восстановительных или окислительных свойств. И, напротив, оксиды не настолько активных металлов могут восстанавливаться углем, водородом, аммиаком или угарным газом.

Получение основных оксидов

1. Разложение гидроксидов: при нагревании нерастворимые основания разлагаются на воду и основной оксид.

2. Окисление металлов: щелочной металл при горении в кислороде образует пероксид, который потом при восстановлении образует основной оксид.