Самые важные открытия в медицине. Научное открытие: научились превращать карие глаза в голубые

Медицинская физика Подколзина Вера Александровна

1. Медицинская физика. Краткая история

Медицинская физика – это наука о системе, которая состоит из физических приборов и излучений, лечебно-диагностических аппаратов и технологий.

Цель медицинской физики – изучение этих систем профилактики и диагностики заболеваний, а также лечение больных с помощью методов и средств физики, математики и техники. Природа заболеваний и механизм выздоровления во многих случаях имеют биофизическое объяснение.

Медицинские физики непосредственно участвуют в лечебно-диагностическом процессе, совмещая физико-медицинские знания, разделяя с врачом ответственность за пациента.

Развитие медицины и физики всегда были тесно переплетены между собой. Еще в глубокой древности медицина использовала в лечебных целях физические факторы, такие как тепло, холод, звук, свет, различные механические воздействия (Гиппократ, Авиценна и др.).

Первым медицинским физиком был Леонардо да Винчи (пять столетий назад), который проводил исследования механики передвижения человеческого тела. Наиболее плодотворно медицина и физика стали взаимодействовать с конца XVIII – начала XIX вв., когда были открыты электричество и электромагнитные волны, т. е. с наступлением эры электричества.

Назовем несколько имен великих ученых, сделавших важнейшие открытия в разные эпохи.

Конец XIX – середина ХХ вв. связаны с открытием рентгеновских лучей, радиоактивности, теорий строения атома, электромагнитных излучений. Эти открытия связаны с именами В. К. Рентгена, А. Беккереля,

М. Складовской-Кюри, Д. Томсона, М. Планка, Н. Бора, А. Эйнштейна, Э. Резерфорда. Медицинская физика по-настоящему стала утверждаться как самостоятельная наука и профессия только во второй половине ХХ в. – с наступлением атомной эры. В медицине стали широко применяться радиодиагностические гамма-аппараты, электронные и протоновые ускорители, радиодиагностические гамма-камеры, рентгеновские компьютерные томографы и другие, гипертермия и магнитотерапия, лазерные, ультразвуковые и другие медико-физические технологии и приборы. Медицинская физика имеет много разделов и названий: медицинская радиационная физика, клиническая физика, онкологическая физика, терапевтическая и диагностическая физика.

Самым важным событием в области медицинского обследования можно считать создание компьютерных томографов, которые расширили исследования практически всех органов и систем человеческого организма. ОКТ были установлены в клиниках всего мира, и большое количество физиков, инженеров и врачей работало в области совершенствования техники и методов доведения ее практически до пределов возможного. Развитие радионуклидной диагностики представляет собой сочетание методов радиофармацевтики и физических методов регистрации ионизирующих излучений. Позитронная эмиссионная томография-визуализация была изобретена в 1951 г. и опубликована в работе Л. Ренна.

Из книги Черные дыры и молодые вселенные автора Хокинг Стивен Уильям

5. Краткая история «Краткой истории»6 Я все еще ошеломлен тем приемом, какой получила моя книга «Краткая история времени». В течение тридцати семи недель она оставалась в списке бестселлеров «Нью-Йорк Таймс» и в течение двадцати семи недель – в списке «Санди Таймс» (в

Из книги Медицинская физика автора Подколзина Вера Александровна

3. Медицинская метрология и ее специфика Технические устройства, используемые в медицине, называют обобщенным термином «медицинская техника». Большая часть медицинской техники относится к медицинской аппаратуре, которая в свою очередь подразделяется на медицинские

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

48. Медицинская электроника Одно из распространенных применений электронных устройств связано с диагностикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а

Из книги История свечи автора Фарадей Майкл

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

ФАРАДЕЙ И ЕГО "ИСТОРИЯ СВЕЧИ" "История свечи" - серия лекций, прочитанных великим английским ученым Майклом Фарадеем для юношеской аудитории. Немного об истории этой книги и ее авторе. Майкл (Михаил) Фарадей родился 22 сентября 1791 года в семье лондонского кузнеца. Его

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

11. Земля: история недр В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью: более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. I.8 представлена Земля в разрезе.Кора

Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

ИСТОРИЯ И ОРГАНИЗАЦИЯ 12.2. Проект реорганизации, имевшей место в начале 1942 г., и последующая постепенная передача дела, находившегося в ведении ОСРД, Манхэттенскому Округу были описаны в главе V. Напомним, что изучение физики атомной бомбы сперва входило в обязанности

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Глава 1 Краткая история относительности О том, как Эйнштейн заложил основы двух фундаментальных теорий ХХ века: общей теории относительности и квантовой механики Альберт Эйнштейн, создатель специальной и общей теорий относительности, родился в 1879 г. в немецком городе

Из книги Достучаться до небес [Научный взгляд на устройство Вселенной] автора Рэндалл Лиза

Из книги Твиты о вселенной автора Чаун Маркус

Физика современная и физика фундаментальная Прежде всего выясним суть новой физики, отличавшую ее от физики предыдущей. Ведь опыты и математика Галилея не выходили за пределы возможностей Архимеда, которого Галилей не зря называл «божественнейшим». В чем Галилей вышел

Из книги Квант. Эйнштейн, Бор и великий спор о природе реальности автора Кумар Манжит

Из книги Быть Хокингом автора Хокинг Джейн

История науки Арнольд В.И. Гюйгенс и Барроу, Ньютон и Гук. М.: Наука, 1989.Белый Ю.А. Иоганн Кеплер. 1571–1630. М.: Наука, 1971.Вавилов С.И. Дневники. 1909–1951: В 2 кн. М.: Наука, 2012.Вернадский В.И. Дневники. М.: Наука, 1999, 2001, 2006, 2008; М.: РОССПЭН, 2010.Визгин В.П. Единые теории поля в первой трети ХХ

Из книги автора

КРАТКАЯ ИСТОРИЯ БАКа Главным архитектором БАКа стал Лин Эванс. Я слышала одно из его выступлений в 2009 г., но встретиться с этим человеком мне довелось лишь на конференции в Калифорнии в начале января 2010 г. Момент был удачным - БАК наконец начал работать, и даже сдержанный

Из книги автора

История астрономии 115. Кто были первые астрономы? Астрономия - самая старая из наук. Или так говорят про астрономов. Первыми астрономами были доисторические люди, задававшиеся вопросом, каковы Солнце, Луна и звезды.Ежедневное движение Солнца установило часы.

Из книги автора

Краткая история квантовой физики 1858 23 апреля. В Киле (Германия) родился Макс Планк.1871 30 августа. В Брайтуотере (Новая Зеландия) родился Эрнест Резерфорд.1879 14 марта. В Ульме (Германия) родился Альберт Эйнштейн.1882 11 декабря. В Бреслау (Германия) родился Макс Борн.1885 7 октября. В

Из книги автора

6. Семейная история Как только главное решение было принято, все остальное постепенно встало на свои места, если не автоматически, то с некоторым усилием с нашей стороны. Следующий год пролетел незаметно в приливе эйфории. Какие бы сомнения по поводу состояния здоровья

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь, она оказалась правой. Наука и медицина аж с 1987 не производили, действительно, новых видов антибиотиков. Однако, болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее, в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы, под воздействием этого лекарства, не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин, к настоящему моменту, доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Медики вырастили новые голосовые связки

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки, фактически, из ничего.
Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно, ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать, почти, как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако, новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако, ученые, в этом случае, были ограничены в своих возможностях.

Относительно недавно, ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако, это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только, исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя, полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно, эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако, их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако, ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого, лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот, список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако, практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и, тем самым, подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время, наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату, можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда, по-прежнему, проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности, для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако, биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому, открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако, метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту, созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка, вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем, ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что, в конечном итоге, удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

ИСТОРИЯ МЕДИЦИНЫ:
ОСНОВНЫЕ ВЕХИ И ВЕЛИКИЕ ОТКРЫТИЯ

По материалам телеканала Дискавери
(«Discovery Channel»)

Открытия в медицине преобразили мир. Они изменили ход истории, сохранив несчётное количество жизней, раздвинув границы наших познаний до рубежей, на которых мы стоим сегодня, готовые к новым великим открытиям.

Анатомия человека

В Древней Греции лечение болезней основывалось скорее на философии, чем на истинном понимании анатомии человека. Хирургическое вмешательство было редкостью, а препарирование трупов ещё не практиковалось. В результате врачи практически не имели сведений о внутреннем устройстве человека. Лишь в эпоху Ренессанса анатомия зародилась как наука.

Бельгийский врач Андреас Везалий шокировал многих, когда решил изучать анатомию, вскрывая трупы. Материал для исследований приходилось добывать под покровом ночи. Учёные типа Везалия должны были прибегать к не совсем легальным методам. Когда Везалий стал профессором в Падуе, он завёл дружбу с распорядителем казней. Везалий решил передать опыт, накопленный за годы искусных вскрытий, написав книгу по анатомии человека. Так появилась книга «О строении человеческого тела». Опубликованная в 1538 году, книга считается одним из величайших трудов в области медицины, а также одним из величайших открытий, так как в ней впервые даётся верное описание строения человеческого тела. Это был первый серьёзный вызов, брошенный авторитету древнегреческих врачей. Книга разошлась огромным тиражом. Её покупали образованные люди, даже далёкие от медицины. Весь текст очень скрупулёзно иллюстрирован. Так сведения об анатомии человека стали гораздо более доступными. Благодаря Везалию, изучение анатомии человека посредством вскрытия, стало неотъемлемой частью подготовки врачей. И это подводит нас к следующему великому открытию.

Кровообращение

Сердце человека – мышца размером с кулак. Оно сокращается более ста тысяч раз в день, за семьдесят лет – это два с лишним миллиарда сердцебиений. Сердце перекачивает 23 литра крови в минуту. Кровь течёт по телу, проходя через сложную систему артерий и вен. Если все кровеносные сосуды в человеческом теле вытянуть в одну линию, то получится 96 тысяч километров, что в два с лишним раза больше окружности Земли. До начала 17 века процесс кровообращения представляли неверно. Преобладала теория, согласно которой кровь приливала к сердцу через поры в мягких тканях тела. Среди приверженцев этой теории был и английский врач Уильям Гарвей. Работа сердца завораживала его, но чем больше он наблюдал биение сердца у животных, тем сильнее понимал, что общепринятая теория кровообращения попросту неверна. Он недвусмысленно пишет: «…Я подумал, не может ли кровь двигаться, словно по кругу?». И первая же фраза в следующем абзаце: «Впоследствии я выяснил, что так оно и есть…». Проводя вскрытия, Гарвей обнаружил, что у сердца есть однонаправленные клапаны, позволяющие крови течь лишь в одном направлении. Одни клапаны впускали кровь, другие - выпускали. И это было великое открытие. Гарвей понял, что сердце качает кровь в артерии, затем она проходит через вены и, замыкая круг, возвращается к сердцу, чтобы затем начать цикл сначала. Сегодня это кажется прописной истиной, но для 17 века открытие Вильяма Гарвея было революционным. Это был сокрушительный удар по установившимся в медицине представлениям. В конце своего трактата Гарвей пишет: «При мысли о бессчетных последствиях, которое это будет иметь для медицины, я вижу поле почти безграничных возможностей».
Открытие Гарвея серьёзно продвинуло вперёд анатомию и хирургию, а многим попросту спасло жизнь. Во всём мире в операционных применяют хирургические зажимы, блокирующие течение крови и сохраняющие систему кровообращения пациента в неприкосновенности. И каждый из них - напоминание о великом открытии Уильяма Гарвея.

Группы крови

Другое великое открытие, связанное с кровью, было сделано в Вене в 1900 году. Всю Европу переполнял энтузиазм по поводу переливания крови. Сначала прошли заявления, что лечебный эффект поразительный, а затем, через несколько месяцев, сообщения о погибших. Почему иногда переливание проходило удачно, а иногда - нет? Австрийский врач Карл Ландштейнер был полон решимости найти ответ. Он смешал образцы крови от разных доноров и изучил результаты.
В некоторых случаях кровь смешалась удачно, зато в других - свернулась и стала вязкой. При ближайшем рассмотрении Ландштейнер обнаружил, что кровь сворачивается, когда особые белки в крови реципиента, так называемые антитела, вступают в реакцию с другими белками в эритроцитах донора – антигенами. Для Ландштейнера это был поворотный момент. Он осознал, что не вся человеческая кровь одинакова. Оказалось, что кровь можно чётко разделить на 4 группы, которым он дал обозначения: А, Б, АБ и нулевая. Выяснилось, что переливание крови проходит успешно лишь в том случае, если человеку переливают кровь той же группы. Открытие Ландштейнера тут же отразилось на медицинской практике. Через несколько лет переливанием крови занимались уже во всём мире, спасая множество жизней. Благодаря точному определению группы крови, к 50-м годам стала возможна пересадка органов. Сегодня в одних только Соединённых Штатах каждые 3 секунды производится переливание крови. Без него ежегодно погибало бы около 4, 5 миллионов американцев.

Анестезия

Хотя первые великие открытия в области анатомии и позволили врачам спасти множество жизней, они никак не могли облегчить боль. Без анестезии операции были кошмаром наяву. Пациентов держали или привязывали к столу, хирурги старались работать как можно быстрее. В 1811 году одна женщина писала: «Когда ужасная сталь вонзилась в меня, рассекая вены, артерии, плоть, нервы, меня уже не нужно было просить не вмешиваться. Я издала вопль и кричала, пока всё не закончилось. Так невыносима была мука». Хирургия была последним средством, многие предпочитали умереть, чем лечь под нож хирурга. На протяжении веков для облегчения боли во время операций использовались подручные средства некоторые из них, например, опиум или экстракт мандрагоры, были наркотиками. К 40-м годам 19 века сразу несколько человек занимались поиском более эффективного анестетика: два бостонских дантиста Вильям Мортон и Хорост Уэлс, знакомые друг с другом, и доктор по имени Крофорд Лонг из Джорджии.
Они экспериментировали с двумя веществами, способными, как считалось, облегчить боль - с закисью азота, она же - веселящий газ, а также - с жидкой смесью спирта и серной кислоты. Вопрос о том, кто именно открыл анестезию, остаётся спорным, на это претендовали все трое. Одна из первых публичных демонстраций анестезии состоялась 16 октября 1846 года. В. Мортон месяцами экспериментировал с эфиром, пытаясь найти дозировку, которая позволила бы пациенту перенести операцию без боли. На суд широкой публики, состоявшей из бостонских хирургов и студентов медицины, он представил устройство своего изобретения.
Пациенту, которому предстояло удалить опухоль на шее, дали эфир. Мортон подождал, хирург произвёл первый надрез. Поразительно, но пациент не закричал. После операции пациент сообщил, что всё это время ничего не чувствовал. Весть об открытии разнеслась по всему миру. Оперировать без боли можно, теперь есть анестезия. Но, несмотря на открытие, многие отказывались воспользоваться анестезией. Согласно некоторым вероучениям, боль надо терпеть, а не облегчать, особенно родовые муки. Но здесь свое слово сказала королева Виктория. В 1853 году она рожала принца Леопольда. По её просьбе ей дали хлороформ. Оказалось, что он облегчает муки деторождения. После этого женщины стали говорить: «Я тоже приму хлороформ, ведь если им не брезгует королева, то и мне не зазорно».

Рентгеновские лучи

Невозможно представить себе жизнь без следующего великого открытия. Вообразите, что мы не знаем, где оперировать больного, или какая именно кость сломана, где застряла пуля и какая может быть патология. Способность заглянуть внутрь человека, не разрезая его, стала поворотным моментом в истории медицины. В конце 19 века люди использовали электричество, толком не понимая, что это такое. В 1895 году немецкий физик Вильгельм Рентген экспериментировал с электронно-лучевой трубкой, стеклянным цилиндром с сильно разреженным воздухом внутри. Рентгена заинтересовало свечение, создаваемое лучами, исходившими из трубки. Для одного из экспериментов Рентген окружил трубку чёрным картоном и затемнил комнату. Затем он включил трубку. И тут, его поразила одна вещь - фотографическая пластина в его лаборатории светилась. Рентген понял, что происходит нечто, весьма необычное. И что луч, исходящий из трубки - вовсе не катодный луч; он также обнаружил, что на магнит он не реагирует. И его нельзя было отклонить магнитом, как катодные лучи. Это было совершенно неизвестное явление, и Рентген назвал его «лучи икс». Совершенно случайно Рентген открыл излучение, неизвестное науке, которое мы зовём рентгеновским. Несколько недель он вёл себя очень загадочно, а потом позвал жену в кабинет и сказал: «Берта, давай я покажу тебе, чем я тут занимаюсь, потому что никто в это не поверит». Он положил её руку под луч и сделал снимок.
Утверждают, что жена сказала: «Я видела свою смерть». Ведь в те времена нельзя было увидеть скелет человека, если он не умер. Сама мысль о том, чтобы заснять внутреннее строение живого человека, просто не укладывалась в голове. Словно распахнулась тайная дверь, а за ней открылась целая вселенная. Рентген открыл новую, мощную технологию, которая произвела переворот в области диагностики. Открытие рентгеновского излучения - это единственное в истории науки открытие, сделанное непреднамеренно, совершенно случайное. Едва оно было сделано, мир тотчас же принял его на вооружение безо всяких дебатов. За неделю-другую наш мир преобразился. На открытие рентгена опираются многие из самых современных и мощных технологий, от компьютерной томографии до рентгенографического телескопа, улавливающего рентгеновские лучи из глубин космоса. И всё это – из-за открытия, сделанного случайно.

Теория микробного происхождения болезней

Одни открытия, например, рентгеновские лучи, совершаются случайно, над другими долго и упорно работают различные учёные. Так было и в 1846 год. Вена. Воплощение красоты и культуры, но в венской городской больнице витает призрак смерти. Многие из находившихся здесь рожениц умирали. Причина – родильная горячка, инфекция матки. Когда доктор Игнац Земмельвейс начал работать в этой больнице, он был встревожен масштабом бедствия и озадачен странной несообразностью: там было два отделения.
В одном роды принимали врачи, а в другом роды у матерей принимали акушерки. Земмельвейс обнаружил, что в том отделении, где роды принимали врачи, 7% рожениц умерло от так называемой родильной горячки. А в отделении, где работали акушерки, от родильной горячки скончались лишь 2%. Это его удивило, ведь у врачей подготовка гораздо лучше. Земмельвейс решил выяснить, в чём же причина. Он заметил, что одним из главных различий в работе врачей и акушерок было то, что врачи проводили вскрытие умерших рожениц. Затем они шли принимать роды или осматривать матерей, даже не вымыв рук. Земмельвейс задумался, не переносят ли врачи на своих руках некие невидимые частички, которые затем передаются пациенткам и влекут за собой смерть. Чтобы выяснить это, он провёл опыт. Он решил проследить, чтобы все студенты медики в обязательном порядке мыли руки в растворе хлорной извести. И количество летальных исходов тут же упало до 1%, ниже, чем у акушерок. Благодаря этому эксперименту, Земмельвейс осознал, что инфекционные заболевания, в данном случае, родильная горячка, имеют лишь одну причину и если ее исключить, болезнь не возникнет. Но в 1846 году никто не усматривал связи между бактериями и инфекцией. Идеи Земмельвейса не приняли всерьёз.

Прошло ещё целых 10 лет, прежде чем на микроорганизмы обратил внимание другой учёный. Его звали Луи Пастер.Трое из пяти детей Пастера умерли от брюшного тифа, что отчасти объясняет, почему он так упорно искал причину инфекционных болезней. На верный след Пастера вывела его работа для винодельческой и пивоваренной промышленности. Пастер пытался выяснить, почему лишь малая часть вина, производимого в его стране, портится. Он обнаружил, что в прокисшем вине есть особые микроорганизмы, микробы, и именно они заставляют вино скисать. Но путём простого нагрева, как показал Пастер, микробы можно убить, и вино будет спасено. Так родилась пастеризация. Поэтому, когда потребовалось найти причину инфекционных заболеваний, Пастер знал, где её искать. Это микробы, сказал он, вызывают определённые болезни, и доказал это, проведя серию экспериментов, из которых родилось великое открытие – теория микробного развития организмов. Её суть состоит в том, что определённые микроорганизмы вызывают определённую болезнь у любого.

Вакцинация

Следующее из великих открытий было сделано в 18 веке, когда от оспы во всём мире умерло около 40 млн. человек. Врачи не могли найти ни причины возникновения болезни, ни средства от неё. Но в одной английской деревушке разговоры о том, что часть местных жителей не восприимчивы к оспе, привлекли внимание местного врача по имени Эдвард Дженнер.

Ходили слухи, что работницы молочных ферм не болеют оспой, потому что уже перенесли коровью оспу, родственную, но более лёгкую болезнь, поражавшую скот. У больных коровьей оспой поднималась температура и на руках возникали язвочки. Дженнер изучил этот феномен и задумался, может быть, гной из этих язвочек каким-то образом защищает организм от оспы? 14 мая 1796 года во время вспышки эпидемии оспы, он решил проверить свою теорию. Дженнер взял жидкость из язвочки на руке доярки, больной коровьей оспой. Затем, он посетил другую семью; там он ввёл здоровому восьмилетнему мальчику вирус коровьей оспы. В последующие дни у мальчика был лёгкий жар, и появилось несколько оспенных пузырьков. Затем он поправился. Через шесть недель Дженнер вернулся. На этот раз он привил мальчику оспу и стал ждать, чем обернётся эксперимент – победой или провалом. Через несколько дней Дженнер получил ответ – мальчик был совершенно здоров и невосприимчив к оспе.
Изобретение вакцинации от оспы произвело революцию в медицине. Это была первая попытка вмешаться в течение болезни, предотвратив её заранее. Впервые средства, изготовленные человеком, активно использовались, чтобы предотвратить болезнь ещё до её появления.
Через 50 лет после открытия Дженнера, Луи Пастер развил идею вакцинации, разработав вакцину от бешенства у людей и от сибирской язвы у овец. А в 20 веке Джонас Солк и Альберт Сейбин, независимо друг от друга, создали вакцину от полиомиелита.

Витамины

Следующее открытие состоялось трудами учёных, многие годы независимо друг от друга бившихся над одной и той же проблемой.
На протяжении всей истории цинга была тяжёлым заболеванием, вызывавшим у моряков поражения кожи и кровотечения. Наконец, в 1747 году корабельный хирург шотландец Джеймс Линд нашёл от неё средство. Он обнаружил, что цингу можно предотвратить, включив в рацион матросов цитрусовые.

Другим частым заболеванием у моряков была бери-бери, болезнь, поражавшая нервы, сердце и пищеварительный тракт. В конце 19 века голландский врач Христиан Эйкман определил, что болезнь обусловлена употреблением в пищу белого шлифованного риса, вместо бурого нешлифованного.

Хотя оба этих открытия указывали на связь заболеваний с питанием и его недостатками, в чём заключалась эта связь смог выяснить лишь английский биохимик Фредерик Хопкинс. Он предположил, что организму необходимы вещества, которые есть только в определённых продуктах. Чтобы доказать свою гипотезу, Хопкинс провёл серию экспериментов. Он давал мышам искусственное питание, состоящее исключительно из чистых белков, жиров, углеводов и солей. Мыши ослабли и перестали расти. Но после небольшого количества молока, мыши снова поправились. Хопкинс открыл, как он выразился, «незаменимый фактор питания», который позже назвали витаминами.
Оказалось, что бери-бери связана с недостатком тиамина, витамина В1, которого нет в шлифованном рисе, но много в натуральном. А цитрусовые предотвращают цингу, потому что содержат аскорбиновую кислоту, витами С.
Открытие Хопкинса стало определяющим шагом в понимании важности правильного питания. От витаминов зависит множество функций организма – от борьбы с инфекциями до регулирования обмена веществ. Без них трудно представить себе жизнь, как и без следующего великого открытия.

Пенициллин

После Первой Мировой войны, унесшей свыше 10 млн. жизней, поиски безопасных методов отражения бактериальной агрессии усилились. Ведь многие умерли не на полях сражений, а от инфицированных ран. В исследованиях участвовал и шотландский врач Александр Флеминг. Изучая бактерии стафилококки, Флеминг заметил, что в центре лабораторной чаши растёт нечто необычное - плесень. Он увидел, что вокруг плесени бактерии погибли. Это заставило его предположить, что она выделяет вещество, губительное для бактерий. Это вещество он назвал пенициллином. Следующие несколько лет Флеминг пытался выделить пенициллин и применить его в лечении инфекций, но неудачно, и, в конце концов, сдался. Однако результаты его трудов оказались неоценимыми.

В 1935 году сотрудники Оксфордского университета Хоуард Флори и Эрнст Чейн наткнулись на отчёт о любопытных, но незаконченных экспериментах Флеминга, и решили попытать счастья. Этим учёным удалось выделить пенициллин в чистом виде. И в 1940-ом году они провели его испытание. Восьми мышам была введена смертельная доза бактерий стрептококков. Затем, четырём из них ввели пенициллин. Через несколько часов результаты были налицо. Все четыре, не получившие пенициллин мыши умерли, но три из четверых получивших его - выжили.

Так, благодаря Флемингу, Флори и Чейну, мир получил первый антибиотик. Это лекарство стало настоящим чудом. Оно лечило от стольких недугов, которые причиняли много боли и страданий: острый фарингит, ревматизм, скарлатина, сифилис и гонорея… Сегодня мы уже совсем забыли, что от этих болезней можно умереть.

Сульфидные препараты

Следующее великое открытие подоспело во время Второй Мировой войны. Оно избавило от дизентерии американских солдат, сражавшихся в тихоокеанском бассейне. А затем привело к революции в химиотерапевтическом лечении бактериальных инфекций.
Случилось всё это благодаря патологу по имени Герхард Домагк. В 1932 году он изучал возможности применения в медицине некоторых новых химических красителей. Работая с недавно синтезированным красителем под названием пронтозил, Домагк ввёл его нескольким лабораторным мышам, заражённым бактериями стрептококками. Как и ожидал Домагк, краситель обволок бактерии, но бактерии выжили. Казалось, краситель недостаточно токсичен. Затем случилось нечто поразительное: хотя краситель и не убил бактерии, он остановил их рост, распространение инфекции прекратилось и мыши выздоровели. Когда Домагк впервые испытал пронтозил на людях - неизвестно. Однако новое лекарство стяжало славу после того, как спасло жизнь мальчику, серьёзно больному стафилококком. Пациентом был Франклин Рузвельт-младший, сын президента Соединённых Штатов. Открытие Домагка мгновенно стало сенсацией. Поскольку пронтозил содержал сульфамидную молекулярную структуру, его назвали сульфамидным препаратом. Он стал первым в этой группе синтетических химических веществ, способных лечить и предотвращать бактериальные инфекции. Домагк открыл новое революционное направление в лечении болезней, использовании химиотерапевтических препаратов. Оно спасёт десятки тысяч человеческих жизней.

Инсулин

Следующее великое открытие помогло спасти жизнь миллионам больных диабетом во всём мире. Диабет - это недуг, нарушающий процесс усвоения организмом сахара, что может привести к слепоте, отказу почек, заболеваниям сердца и даже к смерти. Столетиями медики изучали диабет, безуспешно ища от него средства. Наконец, в конце 19 века, произошёл прорыв. Было установлено, что у больных диабетом есть общая черта - неизменно поражена группа клеток в поджелудочной железе - эти клетки выделяют гормон, контролирующий содержание сахара в крови. Гормон назвали инсулином. А в 1920 году - новый прорыв. Канадский хирург Фредерик Бантинг и студент Чарльз Бест изучали секрецию инсулина поджелудочной железы у собак. Повинуясь интуиции, Бантинг ввёл экстракт из вырабатывающих инсулин клеток здоровой собаки собаке, страдающей диабетом. Результаты были ошеломляющими. Через несколько часов уровень сахара в крови больного животного существенно понизился. Теперь внимание Бантинга и его помощников сосредоточилось на поисках животного, чей инсулин был бы схож с человеческим. Они нашли близкое соответствие в инсулине, взятом у зародышей коров, очистили его для безопасности эксперимента и в январе 1922 года провели первое клиническое испытание. Бантинг ввёл инсулин 14-летнему мальчику, умиравшему от диабета. И тот стремительно пошёл на поправку. На сколько важно открытие Бантинга? Спросите об этом 15 миллионов американцев, которые ежедневно получают инсулин, от которого зависит их жизнь.

Генетическая природа рака

Рак - вторая по летальности болезнь в Америке. Интенсивные исследования его возникновения и развития привели к замечательным научным свершениям, но, пожалуй, самым важным из них стало следующее открытие. Нобелевские лауреаты, исследователи рака Майкл Бишоп и Харольд Вармус, объединили усилия в исследовании рака в 70-х годах 20 века. В то время доминировало несколько теорий о причине этого заболевания. Злокачественная клетка очень непроста. Она способна не только делиться, но и вторгаться. Это клетка с высокоразвитыми возможностями. В одной из теорий рассматривался вирус саркомы Рауса, вызывающий рак у кур. Когда вирус нападает на клетку курицы, он вводит свой генетический материал в ДНК хозяина. Согласно гипотезе, ДНК вируса становится впоследствии агентом, вызывающим заболевание. По другой теории, при вводе вирусом своего генетического материала в клетку хозяина, гены, вызывающие рак, не активируются, а ждут, пока их не запустит внешнее воздействие, например, вредные химикаты, радиация или обычная вирусная инфекция. Эти вызывающие рак гены, так называемые онкогены, и стали объектом исследований Вармуса и Бишопа. Главный вопрос: содержит ли геном человека гены, являющиеся или способные стать онкогенами вроде тех, что содержатся в вирусе, вызывающем опухоли? Есть ли такой ген у кур, у других птиц, у млекопитающих, у человека? Бишоп и Вармус взяли меченную радиоактивную молекулу и использовали её в качестве зонда, чтобы выяснить, похож ли онкоген вируса саркомы Рауса на какой-нибудь нормальный ген в хромосомах курицы. Ответ утвердительный. Это было настоящее откровение. Вармус и Бишоп установили, что вызывающий рак ген уже содержится в ДНК здоровых клеток курицы и, что ещё важнее, они обнаружили его и в ДНК человека, доказав, что зародыш рака может явиться в любом из нас на клеточном уровне и ждать активации.

Как может наш собственный ген, с которым мы прожили всю жизнь, вызвать рак? При делении клеток случаются ошибки и они чаще, если клетка угнетена космическим излучением, табачным дымом. Важно также помнить, что, когда клетка делится, ей надо скопировать 3 млрд. комплементарных пар ДНК. Всякий, кто хоть раз пытался печатать, знает, как это трудно. У нас есть механизмы, позволяющие замечать и исправлять ошибки, и всё же, при больших объёмах, пальцы промахиваются.
В чём же важность открытия? Раньше рак пытались осмыслить, исходя из различий между геном вируса и геном клетки, а теперь мы знаем, что совсем небольшое изменение в определённых генах наших клеток может превратить здоровую клетку, которая нормально растёт, делится и т.д., в злокачественную. И это стало первой ясной иллюстрацией истинного положения вещей.

Поиски данного гена - определяющий момент в современной диагностике и предсказании дальнейшего поведения раковой опухоли. Открытие дало чёткие цели специфическим видам терапии, которых раньше попросту не было.
Население Чикаго около 3 млн. человек.

ВИЧ

Столько же ежегодно умирают от СПИДа, одной из самых страшных эпидемий в новой истории. Первые признаки этого заболевания появились в начале 80-х годов прошлого века. В Америке стало расти число пациентов, умиравших от редких видов инфекций и рака. Анализ крови у жертв выявил крайне низкий уровень лейкоцитов - белых кровяных клеток, жизненно важных для иммунной системы человека. В 1982 году Центр контроля и предотвращения заболеваний дал болезни название СПИД - синдром приобретённого иммунодефицита. За дело взялись двое исследователей, Люк Монтанье из института Пастера в Париже и Роберт Галло из Национального института онкологии в Вашингтоне. Им обоим удалось сделать важнейшее открытие, которое выявило возбудителя СПИДа - ВИЧ, вирус иммунодефицита человека. В чём отличие вируса иммунодефицита человека от других вирусов, например, гриппа? Во-первых, этот вирус годами не выдаёт наличие болезни, в среднем, 7 лет. Вторая проблема весьма уникальна: например, СПИД наконец проявился, люди понимают, что больны и идут в клинику, а у них, мириад других инфекций, что именно стало причиной заболевания. Как это определить? В большинстве случаев вирус существует ради единственной цели: проникнуть в клетку-акцептор и размножиться. Обычно, он прикрепляется к клетке и выпускает в неё свою генетическую информацию. Это позволяет вирусу подчинить себе функции клетки, перенаправив их на производство новых особей вирусов. Затем эти особи нападают на другие клетки. Но ВИЧ - это не рядовой вирус. Он принадлежит к той категории вирусов, которых учёные называют ретровирусами. Что же в них необычного? Подобно тем классам вирусов, куда входят полиомиелит или грипп, ретровирусы - особые категории. Они уникальны тем, что их генетическая информация в виде рибонуклеиновой кислоты конвертируется в дезоксирибонуклеиновую кислоту (ДНК) и как раз то, что происходит с ДНК, и составляет нашу проблему: ДНК встраивается в наши гены, ДНК вируса становится частью нас, и тогда клетки, призванные защищать нас, начинают воспроизводить ДНК вируса. Имеются клетки, содержащие вирус, иногда они воспроизводят его, иногда - нет. Молчат. Затаиваются…Но лишь для того, чтобы потом снова воспроизводить вирус. Т.е. когда инфекция становится очевидной, она, скорее всего, укоренилась на всю жизнь. В этом заключается главная проблема. Лекарство от СПИДа до сих пор не найдено. Но открытие, что ВИЧ - ретровирус, и что он является возбудителем СПИДа, привело к значительным достижениям в борьбе с этим недугом. Что изменилось в медицине после открытия ретровирусов, в особенности ВИЧ? Например, из СПИДа мы убедились, что медикаментозная терапия возможна. Раньше считалось, что поскольку для размножения вирус узурпирует наши клетки, воздействовать на него без тяжёлого отравления самого пациента практически невозможно. Никто не инвестировал антивирусных программ. СПИД открыл дверь антивирусным исследованиям в фармацевтических кампаниях и университетах всего мира. К тому же, СПИД дал положительный социальный эффект. По иронии судьбы, этот ужасный недуг сплачивает людей.

И так день за днем, столетие за столетием, крохотными шажками или грандиозными прорывами, совершались великие и малые открытия в медицине. Они дают надежду, что человечество победит рак и СПИД, аутоиммунные и генетические заболевания, достигнет совершенства в профилактике, диагностике и лечении, облегчая страдания больных людей и предотвращая прогрессирование заболеваний.


Сегодняшний мир стал очень технологичным. И медицина старается держать марку. Новые достижения все плотнее связаны с генной инженерией, клиники и врачи уже во всю применяют «облачные технологии», а пересадка 3D-органов в скором времени обещает стать обычной практикой.

Борьба с онкологией на генетическом уровне

На первом месте рейтинга – медицинский проект от компании Google . Дочерний фонд компании под названием Google Ventures инвестировал $130 млн в «облачный» проект «Flatiron», направленный на борьбу с онкологией в медицине. Проект ежедневно собирает и анализирует сотни тысяч данных о случаях раковых заболеваний, передавая выводы врачам.

По словам директора Google Ventures Билла Мариса в скором времени лечение раковых заболеваний будет проходить на генетическом уровне, а химиотерапия через 20 лет станет примитивной , как сегодня дискета или телеграф.

Беспроводные технологии в медицине

Браслеты здоровья или «умные часы» – хороший пример того, как современные технологии в медицине помогают людям быть здоровыми. Посредством привычных устройств каждый из нас может контролировать сердечные ритмы, артериальное давление, измерять шаги и количество сброшенных калорий.

В некоторых моделях браслетов предусмотрена передача данных «в облако» для дальнейшего анализа врачами. В сети интернет можно загрузить десятки программ для контроля здоровья, например, Google Fit или HealthKit.

Компания AliveCor пошла еще дальше и предложила устройство, которое синхронизируется со смартфоном и позволяет делать снимок ЭКГ в домашних условиях . Прибор представляет собой чехол со специальными датчиками. Данные снимка через интернет поступают к лечащему врачу.

Восстановление слуха и зрения

Кохлеарный имплант для восстановления слуха

В 2014 году австралийские ученые предложили способ лечения слуха на генетическом уровне. Медицинский метод основан на том, чтобы безболезненно внедрить в организм человека ДНК-содержащий препарат , внутри которого «вшит» кохлеарный имплант. Имплант взаимодействует с клетками слухового нерва и к пациенту постепенно возвращается слух.

Бионический глаз для восстановления зрения

С помощью импланта «бионический глаз» ученые научились восстанавливать зрение. Первая медицинская операция прошла в США еще в 2008 году. Помимо пересаженной искусственной сетчатки, пациентам выдаются специальные очки со встроенной камерой. Система позволяет воспринимать полноценную картинку, различать цвета и очертания предметов. Сегодня в очереди на проведение подобной операции стоит свыше 8 000 человек

Медицина шагнула ближе к лечению СПИДа

Ученые из Рокфеллеровского университета (Нью Йорк, США) совместно с фармацевтической компании GlaxoSmithKline провели клинические испытания медицинского препарат а GSK744 , который способен снизить вероятность заражения ВИЧ более чем на 90% . Вещество способно подавлять работу фермента, с помощью которого ВИЧ модифицирует ДНК клетки и затем размножается в организме. Работа значительно приблизила ученых к созданию нового лекарства против ВИЧ.

Органы и ткани с помощью 3D-принтеров

3D-биопринтинг: органы и ткани печатают с помощью принтера

За последние 2 года ученые на практике смогли добиться создания органов и тканей с помощью 3D-принтеров и успешно вживлять их в организм пациента.

Современные медицинские технологии позволяют создавать протезы рук и ног, части позвоночника, уши, нос, внутренние органы и даже клетки тканей.

Весной 2014 года врачи Университетского медицинского центра Утрехта (Голландия) успешно провели первую в истории медицины пересадку черепной кости, созданную с помощью 3D-принтера.


Великие научные открытия в медицине, изменившие мир В XXI веке трудно угнаться за научным прогрессом. В последние годы мы научились выращивать в лабораториях органы, искусственно управлять активностью нервов, изобрели хирургических роботов, которые могут делать сложные операции.

Анатомия тела

В 1538 году итальянский естествоиспытатель, «отец» современной анатомии, Везалий представил миру научное описание строения тела и определения всех органов человека. Трупы для анатомических исследований ему приходилось выкапывать на кладбище, так как Церковь запрещала подобные медицинские опыты. Везалий первым описал строение тела человека Сейчас великий ученый считается основоположником научной анатомии, в честь него называют кратеры на луне, с его изображением печатают марки в...

0 0

В ХХ столетии медицина начала шагать вперед большими шагами. Например, диабет перестал быть смертельной болезнью только в 1922 году, когда двумя канадскими учеными был открыт инсулин. Им удалось получить этот гормон из поджелудочной железы животных.

А в 1928 году жизнь миллионов больных была спасена благодаря неряшливости британского ученого Александра Флеминга. Он просто не вымыл пробирки с болезнетворными микробами. По возвращении домой он обнаружил плесень(пенициллин) в пробирке. Но прошло еще 12 лет, прежде чем удалось получить чистый пенициллин. Благодаря этому открытию такие опасные болезни, как гангрена и пневмония, перестали быть смертельными, а сейчас мы имеем великое разнообразие антибиотиков.

Сейчас каждый школьник знает, что такое ДНК. Но структура ДНК была открыта всего лишь чуть больше 50 лет назад, в 1953 году. С тех пор интенсивно начала развиваться такая наука какгенетика. Структуру ДНК открыли двое ученых: Джеймс Уотсон и Фрэнсис Крик. Из картона и...

0 0

За 15 лет с начала нового тысячелетия люди и не заметили, что попали в иной мир: мы живем в другой Солнечной системе, умеем ремонтировать гены и управлять протезами силой мысли. Ничего этого в XX столетии не было. Источник

ГЕНЕТИКА

В последние годы был разработан революционный метод манипуляции ДНК при помощи так называемого CRISP-механизма. Эта...

0 0

Невероятные факты

Человеческое здоровье напрямую касается каждого из нас.

Средства массовой информации изобилуют рассказами о нашем здоровье и теле, начиная созданием новых лекарственных препаратов и заканчивая открытиями уникальных методов хирургии, которые дают надежду инвалидам.

Ниже мы расскажем о самых свежих достижениях современной медицины.

Последние достижения медицины

10. Учёные идентифицировали новую часть тела

Ещё в 1879 году французский хирург по имени Пол Сегон (Paul Segond) описал в одном из своих исследований "жемчужную, устойчивую волокнистую ткань", проходящую вдоль связок в колене человека.

Об этом исследовании благополучно забыли до 2013 года, когда учёные обнаружили переднебоковую связку, коленную связку, которая часто повреждается при возникновении травм и других проблем.

Учитывая, как часто сканируется колено человека, открытие было сделано очень поздно. Оно описано в журнале "Анатомия" и...

0 0

Двадцатый век преобразил жизни людей. Безусловно, развитие человечества никогда не прекращалось, и в каждом веке бывали важные научные изобретения, но по-настоящему революционные перемены, да еще и в серьезных масштабах, произошли не так уж давно. Какие открытия двадцатого века оказались наиболее значимыми?

Авиация

Братья Орвил и Уилбур Райт вошли в историю человечества как первые пилоты. Не в последнюю очередь великие открытия 20 века - это и новые виды транспорта. Орвилу Райту удалось совершить управляемый полет в 1903 году. Самолет, разработанный им вместе с братом, продержался в воздухе лишь 12 секунд, но это был настоящий прорыв для авиации тех времен. Дата полета считается днем рождения этого вида транспорта. Братья Райт первыми спроектировали систему, которая скручивала бы консоли крыла тросами, позволяя управлять машиной. В 1901 году была создана и аэродинамическая труба. Они же изобрели и пропеллер. Уже к 1904 году свет увидела новая модель самолета, более...

0 0

Самые значимые открытия в истории медицины

Самые важные открытия в истории медицины

1. Анатомия человека (1538)

Андреас Везалий

Андреас Везалий анализирует человеческие тела на основе вскрытий, излагает подробные сведения о человеческой анатомии и опровергает различные толкования по этой теме. Везалий считает, что понимание анатомии имеет решающее значение для проведения операций, поэтому он анализирует человеческие трупы (что необычно для того времени).

Его анатомические схемы кровеносной и нервной систем, написанные в качестве эталона для помощи своим ученикам, копируются так часто, что он вынужден опубликовать их, чтобы защитить их подлинность. В 1543 году он публикует работу De Humani Corporis Fabrica , которая послужила началом рождения науки - анатомии.

2. Кровообращение (1628)

Уильям Харви

Уильям Харви обнаруживает, что кровь циркулирует по организму и называет сердце как орган, ответственный за кровообращение...

0 0

Роль медицины в жизни каждого человека довольно непросто переоценить. Существует даже шутка, что люди не падают с круглой Земли так как прикреплены к поликлиникам.

Несомненно, только благодаря развитию медицины средняя продолжительность жизни человека превышает восемьдесят лет, а молодость может продолжаться и после достижения сорокалетия. Для сравнения, буквально несколько столетий тому грипп часто приводил к летальному исходу, а люди, которым исполнялось пятьдесят лет считались глубокими стариками.

Медицина, как и другие науки никогда не стоит на месте и постоянно развивается. Давайте вспомним, какие открытия в медицине стали самыми значительными и чем может похвастаться современная медицинская наука.

Великие открытия в медицине

Если обратиться к общепринятому топ-10 гениальных открытий в медицине, то на первом месте мы увидим работу бельгийского учёного Андреаса Везалия De Humani Corporis Fabrica, в которой он описал анатомическое строение...

0 0

Благодаря человеческим открытиям последних столетий, у нас есть возможность мгновенного доступа к любой информации со всего мира. Достижения в медицине помогли человечеству побороть опасные заболевания. Технические, научные, изобретения в корабле- и машиностроении дают нам возможность достичь любой точки земного шара за несколько часов и даже полететь в космос.

Изобретения 19 и 20 веков изменили человечество, перевернули его мир. Конечно, развитие происходило беспрестанно и каждый век дал нам какие-то величайшие открытия, но глобальные революционные изобретения пришлись именно на этот период. Расскажем о тех самых значимых, которые изменили привычный взгляд на жизнь и сделали прорыв в цивилизации.

Рентгеновские лучи

В 1885 году немецкий физик Вильгельм Рентген в процессе своих научных экспериментов обнаружил, что катодная трубка излучает некие лучи, которые он назвал икс-лучами. Ученый продолжил их исследовать и выяснил, что это излучение проникает...

0 0

10

19-й век заложил основы для развития науки 20-го столетия и создал предпосылки для многих будущих изобретений и технологических нововведений, которыми мы пользуемся в настоящее время. Научные открытия 19 века были сделаны во многих областях и оказали большое влияние на дальнейшее развитие. Технический прогресс неудержимо продвигался. Кому же мы благодарны за те комфортные условия, в которых сейчас живет современное человечество?

Научные открытия 19 века: Физика и электротехника

Ключевой особенностью в развитии науки этого периода времени является широкое применение электричества во всех отраслях производства. И люди уже не могли отказаться от использования электричества, ощутив его существенные преимущества. Много научных открытий 19 века было совершено в этой области физики. В то время ученые начали плотно изучать электромагнитные волны и их влияние на различные материалы. Началось внедрение электричества в медицину.

В 19-м веке в сфере электротехники...

0 0

12

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и понять, как устроен мир вокруг нас. Оценить всю важность этих открытий очень сложно, если не сказать, что почти невозможно. Но одно ясно наверняка – некоторые из них буквально изменили нашу жизнь раз и навсегда. От пенициллина и винтового насоса до рентгена и электричества, перед вами список из 25 величайших открытий и изобретений человечества.

25. Пенициллин

Если бы в 1928 году шотландский ученый Александр Флеминг (Alexander Fleming) не открыл пенициллин, первый антибиотик, мы до сих пор бы умирали от таких болезней, как язва желудка, от абсцессов, стрептококковых инфекций, скарлатины, лептоспироза, болезни Лайма и многих других.

24. Механические часы

Существуют противоречивые теории о том, как же на самом деле выглядели первые механические часы, но чаще всего...

0 0

13

Практически каждый, кто интересуется историей развития науки, техники и технологий - хоть раз в своей жизни задумывался над тем, каким путем могло бы пойти развитие человечества без знания математики или, например, не будь у нас такого необходимого предмета как колесо, ставшего чуть ли не основой развития человечества. Однако зачастую рассматриваются и удостаиваются внимания лишь ключевые открытия, в то время как открытия менее известные и распространенные порой попросту не упоминаются, что, впрочем, не делает их незначительными, ведь каждое новое знание дает человечеству возможность забраться на ступеньку выше в своем развитии.

XX век и его научные открытия превратился в настоящий Рубикон, перейдя который, прогресс ускорил свой шаг в несколько раз, отождествляя себя со спортивным болидом за которым невозможно угнаться. Для того, что бы сейчас удержаться на гребне научной и технологической волны, необходимы не дюжие навыки. Конечно, можно читать научные журналы, различного...

0 0

14

20 век был богат на всякого рода открытия и изобретения, в чем-то улучшившие, а в чем-то усложнившие нашу жизнь. Однако если задуматься, изобретений, по-настоящему изменивших этот мир, было не так много. Мы собрали несколько самых-самых изобретений, после которых жизнь уже никогда не будет прежней.

Изобретения 20 века, изменившие мир

Самолеты

Первые полеты на аппаратах легче воздуха (воздухоплавание) люди совершили еще в XVIII веке, именно тогда появились первые шары, наполненные горячим воздухом, с помощью которых можно было исполнить давнюю мечту человечества – подняться в воздух и парить в нем. Однако ввиду невозможности управления направлением полета, зависимости от погоды и низкой скорости воздушный шар во многом не устраивал человечество в качестве транспорта.

Первые управляемые полеты на аппаратах тяжелее воздуха произошли в самом начале XX века, когда независимо друг от друга братья Райт и Альберто Сантос-Дюмон экспериментировали с...

0 0

15

Медицина в XX веке

Решительные шаги по превращению искусства в науку были сделаны медициной на рубеже 19 и 20 вв. под влиянием достижений естественных наук и технического прогресса.

Открытие рентгеновских лучей (В. К. Рентген, 1895-1897) положило начало рентгенодиагностике, без которой теперь нельзя представить углубленное обследование больного. Открытие естественной радиоактивности и последовавшие за этим исследования в области ядерной физики обусловили развитие радиобиологии, изучающей действие ионизирующих излучений на живые организмы, привели к возникновению радиационной гигиены, применению радиоактивных изотопов, что, в свою очередь, позволило разработать метод исследования при помощи, так называемых, меченых атомов; радий и радиоактивные препараты стали успешно применяться не только в диагностических, но и в лечебных целях.

Другим методом исследования, принципиально обогатившим возможности распознавания аритмий сердца, инфаркта миокарда и ряда других...

0 0

16

За 15 лет с начала нового тысячелетия люди и не заметили, что попали в иной мир: мы живем в другой Солнечной системе, умеем ремонтировать гены и управлять протезами силой мысли. Ничего этого в XX столетии не было

ГЕНЕТИКА

Геном человека полностью секвенирован

Робот сортирует ДНК человека в чашках Петри для проекта The Human Genome

Проект «Человеческий геном» (The Human Genome Project) начался в 1990 году, в 2000-м был выпущен рабочий черновик структуры генома, полный геном - в 2003 году. Однако и сегодня дополнительный анализ некоторых участков еще не закончен. В основном он был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Секвенирование генома имеет решающее значение для разработки лекарств и понимания того, как устроено человеческое тело.

Генная инженерия вышла на новый уровень

В последние годы был разработан революционный метод манипуляции ДНК при помощи так...

0 0

17

Начало 21 века ознаменовалось многими открытиями в области медицины, о которых еще 10-20 лет назад писали в фантастических романах, а сами пациенты о них могли лишь мечтать. И хотя многие из этих открытий ждет длинная дорога внедрения в клиническую практику, они уже относятся не к разряду концептуальных разработок, а являются реально работающими устройствами, пусть пока и не массово применяющимися в медицинской практике.

1. Искусственное сердце AbioCor

В июле 2001 года группа хирургов из Луисвилля (Кентукки) сумела имплантировать пациенту искусственное сердце нового поколения. Устройство, получившее название AbioCor, было имплантировано человеку, который страдал от сердечной недостаточности. Искусственное сердце разработано компанией Abiomed, Inc.. Хотя подобные устройства использовались и раньше, AbioCor является наиболее совершенным в своём роде.

В предыдущих версиях пациент должен был быть присоединён к огромной консоли через трубки и проводки, которые...

0 0

19

В XXI веке трудно угнаться за научным прогрессом. В последние годы мы научились выращивать в лабораториях органы, искусственно управлять активностью нервов, изобрели хирургических роботов, которые могут делать сложные операции.

Как известно, для того, чтобы зреть в будущее, необходимо помнить прошлое. Представляем семь великих научных открытий в медицине, благодаря которым удалось спасти миллионы человеческих жизней.

Анатомия тела

В 1538 году итальянский естествоиспытатель, «отец» современной анатомии, Везалий представил миру научное описание строения тела и определения всех органов человека. Трупы для анатомических исследований ему приходилось выкапывать на кладбище, так как Церковь запрещала подобные медицинские опыты.
Везалий первым описал строение тела человека Сейчас великий ученый считается основоположником научной анатомии, в честь него называют кратеры на луне, с его изображением печатают марки в Венгрии, Бельгии, а при жизни за результаты...

0 0

20

Важнейшие открытия в медицине 20 века

В 20 в. медицина претерпела значительные изменения. Во-первых, в центре внимания медиков оказались уже не инфекционные, а хронические и дегенеративные заболеваниям. Во-вторых, гораздо большее значение приобрели научные исследования, особенно фундаментальные, позволяющие глубже понять, как функционирует организм и что приводит к болезни.

Большой размах лабораторных и клинических исследований повлиял и на характер деятельности врачей. Благодаря долгосрочным грантам многие из них целиком посвятили себя научной работе. Изменились также программы медицинского образования: введено изучение химии, физики, электроники, ядерной физики и генетики, и это неудивительно, поскольку, например, в физиологических исследованиях стали широко использоваться радиоактивные вещества.

Развитие коммуникаций ускорило обмен новейшими научными данными. Такому прогрессу значительно способствовали фармацевтические компании, многие из которых выросли в крупные...

0 0

21

Достижения медицины как науки всегда были на первом месте в развитии. В течение последнего времени разработано огромное количество различных фармацевтических препаратов. Использование антибиотиков для лечения инфекционных заболеваний известно со второй мировой войны.

После войны множество новых антибактериальных веществ были обнаружены и систематически улучшились.

Оральные контрацептивы для женщин начали широко распространяться в 1960 году, способствуя резкому снижению показателей рождаемости в промышленно развитых странах.

В начале 1950-х были выполнены первые систематические испытания добавления фторидов в питьевую воду для того, чтобы предотвратить кариес. Многие страны в мире стали добавлять фториды в питьевую воду, которая привела к огромным улучшениям в здоровье зубов.

Хирургические операции с середины прошлого века стали регулярно выполняться. Например, в 1960 году полностью отделенная от плеча рука была успешно пришита к телу. Операции такого...

0 0

22

Стоит ненадолго отвлечься, а нанороботы уже лечат рак, и насекомые-киборги теперь не фантастика. Давай поудивляемся вместе свежим научным открытиям, пока они не превратились в банальщину вроде телевизора.

Лечение рака

Главный антигерой современности – рак – кажется, все-таки попался в сети ученых. Израильские специалисты из Бар-Иланского университета рассказали о своем научном открытии: они создали нанороботов, способных убивать раковые клетки. Киллеры состоят из ДНК, натурального биосовместимого и биоразлагаемого материала, и могут нести в себе биоактивные молекулы и лекарства. Роботы способны перемещаться с током крови и распознавать злокачественные клетки, тут же уничтожая их. Этот механизм схож с работой нашего иммунитета, но более точен.

Ученые провели уже 2 стадии эксперимента.

Вначале они подсадили нанороботов в пробирку со здоровыми и раковыми клетками. Уже через 3 дня половина злокачественных была уничтожена, а ни одна здоровая не...

0 0

23

научное издание МГТУ им. Н.Э. Баумана

НАУКА и ОБРАЗОВАНИЕ

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211. ISSN 1994-0408

ПРОРЫВ В МЕДИЦИНЕ ХХ ВЕКА

Пичугина Олеся Юрьевна

школа № 651, 10 класс

Научные руководители: Чудинова Елена Юрьевна, учитель биологии, Моргачева Ольга Александровна, учитель биологии

Историческая ситуация в начале XX века

До XX века медицина находилась на очень низком уровне. Человек мог умереть от любой даже незначительной царапины. Но уже в начале XX века медицинский уровень начал очень быстро расти. Открытие условных и безусловных рефлексов, сделанное Павловым и открытия в области психики, сделанные З.Фрейдом и К.Юнгом – расширили наше представление о возможностях человека. Эти и многие другие открытия удостоились Нобелевских премий. Но я в своей работе расскажу вам более подробно о двух глобальных медицинских открытиях: об открытии групп крови, начале переливания крови и об открытии...

0 0

24

Последняя четверть 19 - первая половина 20 в. ознаменованы бурным развитием естественных наук. Во всех областях естествознания были совершены фундаментальные открытия, коренным образом изменившие сложившиеся ранее представления о сущности процессов, происходящих в живой и неживой природе. На основе новых категорий и понятий, применения принципиально новых подходов и методов были выполнены важные исследования, раскрывающие сущность отдельных физических, химических и биологических процессов и механизмы их осуществления. Результаты этих исследований, сыгравших определяющую роль для М., отражены и будут отражаться в соответствующих статьях БМЭ. В настоящий же очерк включены лишь наиболее крупные открытия и достижения в области естественных наук, а также теоретической, клинической и профилактической М. Причем основное внимание уделено развитию науки за рубежом, поскольку ниже публикуются специальные очерки, посвященные развитию и состоянию М. в России и СССР.

Развитие физики,...

0 0

25

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь она оказалась правой. Наука и медицина аж с 1987 не производили действительно новых видов антибиотиков. Однако болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее в 2015 году ученые совершили открытие, которое, по их мнению,...

0 0