Виды черных дыр. Кандидат в черные дыры средней массы

В июле прошлого года в Nature была опубликована статья группы ученых во главе с сотрудниками Тулузского университета, группа занималась поиском ультрамощных рентгеновских источников — объектов, светимость которых превышает максимально возможную светимость для объектов звездной массы. Используя наблюдения космического рентгеновского телескопа Newton Европейского космического агентства (ESA), ученые обнаружили в галактике ESO 243-29, которая удалена от нас на 300 млн световых лет (в то время как свет до Земли от Солнца идет 8 с небольшим минут, а от ближайшей к нам звезды, не являющейся Солнцем, — более четырех лет), очень яркий рентгеновский источник. Максимальная светимость этого объекта составляет 1,1.10 42 эрг/с, что, к примеру, в 260 млн раз превышает светимость Солнца в рентгеновском диапазоне. Источник получил название HLX-1 (Hyper-Luminous X-ray source 1), что переводится как «гипермощный рентгеновский источник номер один».

Оценка яркости позволила ученым предположить, что данный объект является черной дырой массой не менее 500 солнечных масс.

До сих пор у астрономов были наблюдаемые свидетельства существования только двух типов черных дыр — одни сверхмассивные, а другие с массами как у звезд.

Один вид — это черные дыры, массы которых сравнимы с массами звезд (3—20 масс Солнца). Эти дыры возникают в конце жизни массивных звезд, и на данный момент астрономам известно несколько десятков таких объектов. Зато сверхмассивных черных дыр (с массой порядка 10 9 масс Солнца и более) известно гораздо больше — их количество уже превысило тысячу. Это легко объясняется тем, что астрономы знают, где искать такие дыры: они находятся в ядрах галактик.

Согласно довольно распространенной теории, сверхмассивные черные дыры образуются в результате слияния черных дыр меньшей массы. Однако черные дыры средней массы никак не удавалось обнаружить, и ученым, работающим в этом направлении, пока похвастаться было нечем, кроме нескольких невыдающихся кандидатов.

За прошедший год ученые провели новые наблюдения и подтвердили свои предположения о том, что HLX-1 является черной дырой средней массы.

В ходе исследований ученые наблюдали HLX-1 на VLT — телескопе Южной европейской обсерватории (ESO) в Чили. По наблюдениям в оптическом диапазоне им удалось определить точное расстояние до объекта и подтвердить, что он «действительно находится в этой галактике и не является ни звездой, ни фоновым источником».

«После нашей предыдущей работы мы очень хотели выяснить, насколько предложенная нами модель соответствует действительности, — рассказал Клаас Вирсема, ведущий автор статьи. — На изображениях с больших телескопов мы видели небольшой оптический источник на месте нашего рентгеновского объекта. Наблюдения на VLT подтвердили, что это оптическое излучение связано с HLX-1. Мы определили точное расстояние до объекта, подтвердили, что там есть черная дыра. Теперь мы хотим узнать, почему этот источник так ярко светит в рентгене и как он попал в большую галактику».

Ранее считалось, что столь яркие рентгеновские источники, как HLX-1, не могут быть такими яркими, так как черная дыра должна поглощать большую часть света, который проходит мимо нее.

«Очень трудно объяснить физику этого объекта без наличия черной дыры промежуточной массой от 500 до 10 000 масс Солнца, — говорит один из авторов статьи, Шон Фаррелл. — Таким образом, но это только пока, источник HLX-1 находится вне контроля со стороны международного астрономического сообщества».

В дальнейших планах ученых — наблюдения на космическом телескопе имени Хаббла и попытка найти другие источники, подобные HLX-1.


Американские и австралийские астрофизики обнаружили кандидата в черные дыры средней массы. Такое название они получили потому, что тяжелее обычных - то есть формирующихся в результате гравитационного коллапса звезд - объектов, но легче сверхмассивных черных дыр, как правило расположенных в активных ядрах крупных галактик. Происхождение необычных объектов до сих пор остается неясным. Ниже мы рассказыжем о черных дырах промежуточных масс и об открытии ученых.

Большинство известных ученым черных дыр - то есть объектов, покинуть пределы которых не способна (в пренебрежение квантовыми эффектами) никакая материя, - являются либо черными дырами звездной массы, либо сверхмассивными черными дырами.

Происхождение этих гравитационных объектов астрономам примерно ясно. Первые, как ясно из их названия, представляют собой конечный этап эволюции тяжелых светил, когда в их недрах прекращаются термоядерные реакции. Они настолько тяжелы, что не превращаются ни в белых карликов, ни в нейтронные звезды.

Небольшие звезды, подобные Солнцу, превращаются в белых карликов. У них сила гравитационного сжатия уравновешивается электромагнитным отталкиванием электронно-ядерной плазмы. У более тяжелых звезд гравитация сдерживается давлением ядерной материи, в результате чего возникают нейтронные звезды. Сердцевина таких объектов сформирована нейтронной жидкостью, которую покрывает тонкий плазменный слой электронов и тяжелых ядер. Наконец, самые тяжелые светила превращаются в черные дыры, что прекрасно описывается общей теорией относительности и статистической физикой.

Предельное значение массы белого карлика, не дающее ему превратиться в нейтронную звезду, в 1932 году оценил индийский астрофизик Субраманьян Чандрасекар. Этот параметр вычисляется из условия равновесия вырожденного электронного газа и сил гравитации. Современное значение предела Чандрасекара оценивается примерно в 1,4 солнечной массы. Верхнее ограничение на массу нейтронной звезды, при которой она не превращается в черную дыру, получило название предела Оппенгеймера-Волкова. Оно определяется из условия равновесия давления вырожденного нейтронного газа и сил гравитации. В 1939 году ученые получили его значение в 0,7 солнечной массы, современные его оценки варьируются от 1,5 до 3,0.

Самые массивные звезды в 200-300 раз тяжелее Солнца. Как правило, масса черной дыры, произошедшей из звезды, не превышает этот порядок. На другом конце шкалы находятся сверхмассивные черные дыры - они тяжелее Солнца в сотни тысяч или даже десятки миллиардов раз. Обычно такие монстры расположены в активных центрах крупных галактик и оказывают определяющее на них влияние. Несмотря на то что происхождение сверхмассивных черных дыр также вызывает много вопросов, к настоящему времени обнаружено достаточно много таких объектов (более строго - кандидатов в них), чтобы не сомневаться в их существовании.

Например, в центре Млечного Пути, на расстоянии 7,86 килопарсека от Земли, находится самый тяжелый объект в Галактике - сверхмассивная черная дыра Стрелец A*, которая более чем в четыре миллиона раз тяжелее Солнца. В соседней крупной звездной системе - Туманности Андромеды -находится еще более тяжелый объект: сверхмассивная черная дыра, которая, вероятно, в 140 миллионов раз тяжелее Солнца. По оценкам астрономов, примерно через четыре миллиарда лет сверхмассивная черная дыра из Туманности Андромеды поглотит таковую из Млечного Пути.

Данный механизм указывает на наиболее вероятный способ формирования гигантских черных дыр - они просто поглощают всю окружающую их материю. Однако остается вопрос: существуют ли в природе черные дыры промежуточных масс - между звездными и сверхтяжелыми? Наблюдения последних лет, в том числе и опубликованное в недавнем выпуске журнала Nature, подтверждают это. В публикации авторы сообщили об обнаружении в центре шарового звездного скопления 47 Тукана (NGC 104) вероятного кандидата в черные дыры средней массы. Как показывают оценки, она тяжелее Солнца примерно в 2,2 тысячи раз.

Скопление 47 Тукана расположено на расстоянии 13 тысяч световых лет от Земли в созвездии Тукан. Эту совокупность гравитационно связанных светил отличает большой возраст (12 миллиардов лет) и крайне высокая среди подобных объектов яркость (уступает лишь Омеги Центавра). NGC 104 содержит тысячи звезд, ограниченных условной сферой диаметром 120 световых лет (это на три порядка меньше диаметра диска Млечного Пути). Также в 47 Тукана присутствует около двадцати пульсаров - именно они и стали главным объектом исследования ученых.

Прежние поиски в центре NGC 104 черной дыры не увенчались успехом. Такие объекты обнаруживают себя косвенным путем, по характерному рентгеновскому излучению, исходящему от аккреционного диска вокруг них, сформированного разогретым газом. Между тем, центр NGC 104 почти не содержит газа. С другой стороны, черную дыру можно обнаружить по оказываемому ею влиянию на вращающиеся в ее окрестностях звезды - примерно так удается исследовать Стрелец A*. Однако и тут ученых подстерегала проблема - центр NGC 104 содержит слишком много звезд, чтобы можно было разобраться в их отдельных перемещениях.

Ученые попробовали обойти обе трудности, одновременно с этим не отказавшись от привычных методов обнаружения черных дыр. Сперва астрономы проанализировали динамику светил всего шарового скопления в целом, а не только тех звезд, которые близки к его центру. Для этого авторы взяли данные о динамике светил 47 Тукана, собранные в ходе наблюдений австралийской радиобсерваторией Паркса. Полученную информацию ученые использовали для компьютерного моделирования в рамках гравитационной задачи N тел. Оно показало, что в центре NGC 104 есть нечто, по своим характеристикам напоминающее черную дыру средней массы. Однако этого было недостаточно.

Проверить свои выводы исследователи решили на пульсарах - компактных остатках мертвых звезд, радиосигналы которых астрономы научились достаточно хорошо отслеживать. Если в NGC 104 есть черная дыра средней массы, то пульсары не могут быть расположены слишком близко к центру 47 Тукана - и наоборот. Как и ожидали авторы, подтвердился первый сценарий: расположение пульсаров в NGC 104 хорошо соотносится с тем, что в центре скопления есть черная дыра средней массы.

Авторы полагают, что подобного рода гравитационные объекты могут находиться и в центрах других шаровых скоплений - вероятно, там, где их уже или еще не ищут. Для этого потребуется тщательное рассмотрение каждого из таких скоплений. Какую роль играют черные дыры промежуточных масс и как они возникли? Пока это неизвестно наверняка. Несмотря на множество вариантов их дальнейшей эволюции, соавтор исследования Бюлент Кизилтан полагает, что «они могут быть изначальными семенами, выросшими в монстров, которые мы сегодня видим в центрах галактик».

Черная дыра – это астрономическая область в пространстве и времени, внутри которой гравитационное притяжение стремится к бесконечности. Чтобы покинуть черную дыру, объекты должны достичь скорости, намного превышающей скорость света. А так как это невозможно, то даже кванты самого света не излучаются из области черной дыры. Из всего этого следует, что область черной дыры абсолютно невидима для наблюдателя независимо от того, насколько удаленно от него она находится. Поэтому обнаружить и определить размеры и массу черных дыр можно только анализируя обстановку и поведение объектов, находящихся рядом с ними.

На 20 симпозиуме по релятивистской астрофизике в Техасе, прошедшем в 2001 года, астрономы Карл Гебхардт и Джон Корменди метод практических измерений масс близлежащих черных дыр, дающие астрономам возможность получения информации о росте черных дыр. С помощью этого метода было и 19 новых черных дыр в дополнение к уже известным в то время 19. Все они являются сверхмассивными и имеют вес от одного до миллиарда солнечных масс. Располагаются они в центрах галактик.

Метод измерений масс основан на наблюдении за перемещением звезд и газа около центров их галактик. Такие измерения могут проводиться только при высоком пространственном разрешении, которое могут обеспечивать космические телескопы типа Hubble или NuSTAR. Суть метода заключается в анализе изменчивости квазаров и обращения огромных газовых вокруг дыры. Яркость излучения вращающихся газовых облаков напрямую зависит от энергии рентгеновского излучения черной дыры. Так как свет имеет строго определенную скорость, изменения яркости газовых облаков для наблюдателя видны позже, чем изменение яркости центрального источника излучения. По разнице во времени вычисляется расстояние от облаков газа до центра черной дыры. Вместе со скоростью вращения газовых облаков вычисляется и масса черной дыры. Однако данный способ включает неопределенность, так как не существует способа проверить правильность конечного результата. С другой стороны, данные, получаемые этим методом, соответствуют зависимости между массами черных дыр и массами галактик.

Классический способ измерения массы черной дыры, предложенный современником Эйнштейна Шварцшильдом, описывается формулой M=r*c^2/2G, где r – гравитационный радиус черной дыры, с – скорость света, G – гравитационная постоянная. Однако эта точно описывает массу изолированной, невращающейся, незаряженной и не испаряющейся черной дыры.

Совсем новый способ определения масс черных дыр, давший возможность открывать и изучать черные дыры «среднего ». Он основан на радиоинтерференционном анализе джетов – выбросов материи, образующихся во время поглощения черной дырой массы из окружающего ее диска. Скорость джетов может быть выше половины скорости света. А так как разогнанная до таких скоростей масса излучает рентгеновское излучение, она может быть зарегистрирована радиоинтерферометром. Метод математического моделирования таких джетов позволяет получить более точные значения средних масс черных дыр.

Каждый человек, знакомящийся с астрономией, рано или поздно испытывает сильное любопытство по поводу самых загадочных объектов Вселенной - черных дыр. Это настоящие властелины мрака, способные «проглотить» любой проходящий поблизости атом и не дать ускользнуть даже свету, - настолько мощно их притяжение. Эти объекты представляют настоящую проблему для физиков и астрономов. Первые пока еще не могут понять, что же происходит с упавшим внутрь черной дыры веществом, а вторые хоть и объясняют самые энергозатратные явления космоса существованием черных дыр, никогда не имели возможности наблюдать ни одну из них непосредственно. Мы расскажем об этих интереснейших небесных объектах, выясним, что уже было открыто и что еще предстоит узнать, чтобы приподнять завесу тайны.

Что такое черная дыра?

Название «черная дыра» (по-английски - black hole) было предложено в 1967 году американским физиком-теоретиком Джоном Арчибальдом Уилером (см. фото слева). Оно служило для обозначения небесного тела, притяжение которого настолько сильно, что не отпускает от себя даже свет. Потому она и «черная», что не испускает света.

Косвенные наблюдения

В этом кроется причина такой таинственности: поскольку черные дыры не светятся, мы не можем увидеть их непосредственно и вынуждены искать и изучать их, используя лишь косвенные свидетельства, которые их существование оставляет в окружающем пространстве. Иными словами, если черная дыра поглощает звезду, мы не видим черную дыру, но можем наблюдать разрушительные последствия воздействия ее мощного гравитационного поля.

Интуиция Лапласа

Несмотря на то, что выражение «черная дыра» для обозначения гипотетической финальной стадии эволюции звезды, сколлапсировавшей в себя под воздействием силы тяжести, появилось сравнительно недавно, идея о возможности существования таких тел возникла более двух веков назад. Англичанин Джон Мичелл и француз Пьер-Симон де Лаплас независимо друг от друга выдвинули гипотезу о существовании «невидимых звезд»; при этом они основывались на обычных законах динамики и законе всемирного тяготения Ньютона. Сегодня черные дыры получили свое правильное описание на основе общей теории относительности Эйнштейна.

В своем труде «Изложение системы мира» (1796) Лаплас писал: «Яркая звезда той же плотности, что и Земля, диаметром, в 250 раз превосходящим диаметр Солнца, благодаря своему гравитационному притяжению не позволила бы световым лучам добраться до нас. Следовательно, возможно, что самые крупные и самые яркие небесные тела по этой причине являются невидимыми».

Непобедимое тяготение

В основе идеи Лапласа лежало понятие скорости убегания (второй космической скорости). Черная дыра является настолько плотным объектом, что ее притяжение способно задержать даже свет, развивающий наибольшую в природе скорость (почти 300000 км/с). На практике, для того чтобы убежать из черной дыры, требуется скорость выше скорости света, но это невозможно!

Это означает, что звезда такого рода будет невидимой, поскольку даже свету не удастся преодолеть ее мощную гравитацию. Эйнштейн объяснял этот факт через явление отклонения света под воздействием гравитационного поля. В реальности вблизи черной дыры пространство-время настолько искривлено, что траектории световых лучей также замыкаются на самих себе. Для того чтобы превратить Солнце в черную дыру, мы должны будем сосредоточить всю его массу в шаре радиусом 3 км, а Земля должна будет превратиться в шарик радиусом 9 мм!

Виды черных дыр

Еще около десяти лет назад наблюдения позволяли предположить существование двух видов черных дыр: звездных, масса которых сравнима с массой Солнца или ненамного превышает ее, и сверхмассивных, масса которых - от нескольких сотен тысяч до многих миллионов масс Солнца. Однако относительно недавно рентгеновские изображения и спектры высокого разрешения, полученные с искусственных спутников типа «Чандра» и «ХММ-Ньютон», вывели на авансцену третий тип черной дыры -с массой средней величины, превосходящей массу Солнца в тысячи раз.

Звездные черные дыры

Звездные черные дыры стали известны раньше других. Они формируются тогда, когда звезда большой массы в конце своего эволюционного пути исчерпывает запасы ядерного горючего и коллапсирует сама в себя из-за собственной гравитации. Потрясающий звезду взрыв (это явление известно под названием «взрыва сверхновой») имеет катастрофические последствия: если ядро звезды превосходит массу Солнца более чем в 10 раз, никакая ядерная сила не способна противостоять гравитационному коллапсу, результатом которого будет появление черной дыры.

Сверхмассивные черные дыры

Иное происхождение имеют сверхмассивные черные дыры, впервые отмеченные в ядрах некоторых активных галактик. Относительно их рождения есть несколько гипотез: звездная черная дыра, которая в течение миллионов лет пожирает все окружающие ее звезды; слившееся воедино скопление черных дыр; колоссальное газовое облако, коллапсирующее непосредственно в черную дыру. Эти черные дыры являются одними из самых насыщенных энергией объектов космоса. Они расположены в центрах очень многих галактик, если не всех. Наша Галактика тоже имеет такую черную дыру. Иногда благодаря наличию такой черной дыры ядра этих галактик становятся очень яркими. Галактики с черными дырами в центре, окруженными большим количеством падающего вещества и, следовательно, способными произвести колоссальное количество энергии, называются «активными», а их ядра -«активными ядрами галактик» (AGN). Например, квазары (самые удаленные от нас космические объекты, доступные нашему наблюдению) являются активными галактиками, у которых мы видим только очень яркое ядро.

Средние и «мини»

Еще одной тайной остаются черные дыры средней массы, которые, согласно недавним исследованиям, могут оказаться в центре некоторых шаровых скоплений, таких, например, как М13 и NCC 6388. Многие астрономы высказываются об этих объектах скептически, но некоторые новейшие исследования позволяют предположить наличие черных дыр средних размеров даже недалеко от центра нашей Галактики. Английский физик Стивен Хокинг выдвинул также теоретическое предположение о существовании четвертого вида черной дыры - «мини-дыры» с массой лишь в миллиард тонн (что примерно равно массе большой горы). Речь идет о первичных объектах, то есть появившихся в первые мгновения жизни Вселенной, когда давление было еще очень высоким. Впрочем, пока не обнаружено ни одного следа их существования.

Как найти черную дыру

Всего несколько лет назад над черными дырами «зажегся свет». Благодаря постоянно совершенствуемым приборам и технологиям (как наземным, так и космическим) эти объекты становятся все менее загадочными; точнее, менее загадочным становится окружающее их пространство. В самом деле, коль скоро сама черная дыра невидима, мы можем распознать ее только в том случае, если она окружена достаточным количеством вещества (звезд и горячего газа), обращающегося вокруг нее на небольшом удалении.

Наблюдая за двойными системами

Некоторые звездные черные дыры были обнаружены в процессе наблюдения орбитального движения звезды вокруг невидимого компаньона по двойной системе. Тесные двойные системы (то есть состоящие из двух очень близких друг к другу звезд), один из компаньонов в которых невидим, - излюбленный объект наблюдений астрофизиков, ищущих черные дыры.

Указанием на наличие черной дыры (или нейтронной звезды) служит сильная эмиссия рентгеновских лучей, вызванная сложным механизмом, который можно схематически описать следующим образом. Благодаря своей мощной гравитации черная дыра может вырывать вещество из звезды-компаньона; этот газ распределяется в форме плоского диска и падает по спирали в черную дыру. Трение, возникающее в результате столкновений частичек падающего газа, нагревает внутренние слои диска до нескольких миллионов градусов, что вызывает мощное излучение рентгеновских лучей.

Наблюдения в рентгеновских лучах

Проводящиеся уже несколько десятилетий наблюдения в рентгеновских лучах объектов нашей Галактики и соседних галактик позволили обнаружить компактные двойные источники, примерно десяток из которых представляет собой системы, содержащие кандидатов в черные дыры. Основной проблемой является определение массы невидимого небесного тела. Значение массы (пусть и не очень точное) можно найти, изучая движение компаньона или, что намного труднее, измеряя интенсивность рентгеновского излучения падающего вещества. Эта интенсивность связана уравнением с массой тела, на которое падает это вещество.

Нобелевский лауреат

Нечто подобное можно сказать и в отношении сверхмассивных черных дыр, наблюдаемых в ядрах многих галактик, массы которых оцениваются через измерение орбитальных скоростей газа, проваливающегося в черную дыру. В этом случае вызванный мощным гравитационным полем очень крупного объекта быстрый рост скорости газовых облаков, обращающихся по орбите в центре галактик, выявляется наблюдениями в радиодиапазоне, а также в оптических лучах. Наблюдения в рентгеновском диапазоне могут подтвердить повышенное выделение энергии, вызванное падением вещества внутрь черной дыры. Исследования в рентгеновских лучах в начале 1960-х годов начал работавший в США итальянец Риккардо Джаккони. Присужденная ему в 2002 году Нобелевская премия стала признанием его «новаторского вклада в астрофизику, что привело к открытию в космосе источников рентгеновского излучения».

Лебедь X-1: первый кандидат

Наша Галактика не застрахована от наличия объектов-кандидатов в черные дыры. К счастью, ни один из этих объектов не находится настолько близко к нам, чтобы представлять опасность для существования Земли или Солнечной системы. Несмотря на большое количество отмеченных компактных источников рентгеновского излучения (а это наиболее вероятные кандидаты для нахождения там черных дыр), у нас нет уверенности в том, что они на самом деле содержат черные дыры. Единственным среди этих источников, не имеющим альтернативной версии, является тесная двойная система Лебедь X-1, то есть наиболее яркий источник рентгеновского излучения, в созвездии Лебедь.

Массивные звезды

Эта система, орбитальный период которой составляет 5,6 суток, состоит из очень яркой голубой звезды большого размера (ее диаметре 20 раз превосходит солнечный, а масса - примерно в 30 раз), легко различимой даже в ваш телескоп, и невидимой второй звезды, масса которой оценивается в несколько солнечных масс (до 10). Расположенная на расстоянии 6500 световых лет от нас вторая звезда была бы отлично видна, если бы она была обычной звездой. Ее невидимость, производимое системой мощное рентгеновское излучение и, наконец, оценка массы заставляют большинство астрономов думать о том, что это - первый подтвержденный случай обнаружения звездной черной дыры.

Сомнения

Впрочем,есть и скептики. Среди них один из крупнейших исследователей черных дыр физик Стивен Хокинг. Он даже заключил пари с американским коллегой Килом Торном - ярым сторонником классификации объекта Лебедь X-1 как черной дыры.

Спор о сущности объекта Лебедь X-1 - не единственное пари Хокинга. Посвятив несколько девятилетий теоретическим исследованиям черных дыр, он убедился в ошибочности своих прежних представлений об этих загадочных объектах.. В частности, Хокинг предполагал, что вещество после падения в черную дыру исчезает навсегда, а с ним исчезает и весь его информационный багаж. Он был настолько в этом уверен, что заключил на эту тему в 1997 году пари с американским коллегой Джоном Прескйллом.

Признание ошибки

21 июля 2004 года в своем выступлении на конгрессе по теории относительности в Дублине Хокинг признал правоту Прескилла. Черные дыры не приводят к полному исчезновению вещества. Более того, они обладают определенного рода «памятью». Внутри них вполне могут храниться следы того, что они поглотили. Таким образом, «испаряясь» (то есть медленно испуская излучение вследствие квантового эффекта), они могут возвращать эту информацию нашей Вселенной.

Черные дыры в Галактике

Астрономы еще питают множество сомнений относительно наличия в нашей Галактике звездных черных дыр (подобных той, что принадлежит двойной системе Лебедь X-1); но в отношении сверхмассивных черных дыр сомнений гораздо меньше.

В центре

В нашей Галактике имеется минимум одна сверхмассивная черная дыра. Ее источник, известный под именем Стрелец А*, точно локализован в центре плоскости Млечного Пути. Его название объясняется тем, что это самый мощный радиоисточник в созвездии Стрелец. Именно в этом направлении расположены как геометрический, так и физический центры нашей галактической системы. Находящаяся на расстоянии около 26000 световых лет от нас сверхмассивная черная дыра, связанная с источником радиоволн Стрелец А*, обладает массой, которая оценивается примерно в 4 млн солнечных масс, заключенных в пространстве, объем которого сравним с объемом Солнечной системы. Ее относительная близость к нам (эта сверхмассивная черная дыра, без сомнения, ближайшая к Земле) стала причиной того, что в последние годы объект подвергся особенно глубокому исследованию при помощи космической обсерватории «Чандра». Выяснилось, в частности, что он также представляет собой мощный источник рентгеновского излучения (но не столь мощный, как источники в активных ядрах галактик). Стрелец А*, возможно, является «спящим» остатком того, что миллионы или миллиарды лет назад было активным ядром нашей Галактики.

Вторая черная дыра?

Впрочем, некоторые астрономы считают, что в нашей Галактике имеется еще один сюрприз. Речь идет а второй черной дыре средней массы, удерживающей вместе скопление молодых звезд и не позволяющей им упасть в сверхмассивную черную дыру, расположенную в центре самой Галактики. Как же может быть, чтобы на расстоянии меньше одного светового года от нее могло находиться звездное скопление возраста, едва достигшего 10 млн лет, то есть, по астрономическим меркам, очень молодое? По мнению исследователей, ответ заключается в том, что скопление родилось не там (среда вокруг центральной черной дыры слишком враждебна для звездообразования), но было «притянуто» туда благодаря существованию внутри него второй черной дыры, которая и обладает массой средних значений.

На орбите

Отдельные звезды скопления, притянутое сверхмассивной черной дырой, начали смещаться в сторону галактического центра. Однако вместо того чтобы рассеяться в космосе, они остаются собранными вместе благодаря притяжению второй черной дыры, расположенной в центре скопления. Масса этой.черной дыры может быть оценена на основании ее способности держать «на поводке» целое звездное скопление. Черная дыра средних размеров, видимо, совершает оборот вокруг центральной черной дыры примерно за 100 лет. Это означает, что продолжительные наблюдения в течение многих лет позволят нам ее «увидеть».

Черные дыры - это области в пространстве-времени, обладающие настолько мощным гравитационным притяжением, что покинуть пределы черной дыры не могут даже объекты, движущиеся со скоростью света (в том числе кванты самого света). Граница черной дыры называется горизонтом событий, а её размер - гравитационным радиусом. Чёрные дыры располагаются в центре практически каждой галактики и отличаются друг от друга размерами – от малых до сверхмассивных.

Какие размеры черных дыр известны науке?

Так как наиболее плотные скопления звезд можно наблюдать по центрам галактик, то в каждой галактике можно доказать присутствие массивной черной дыры. Описываются характеристики черных дыр по трем критериям: массе, моменту импульса, электрическому заряду.

При этом способов определения размеров черных дыр было выявлено два. Это методы, продемонстрированные американскими астрономами в 2001 году, применяют для измерения массы близко расположенных черных дыр и более отдаленных квазаров. Кроме того, при помощи новых методов можно получать максимум информации о формировании галактик и развитии черных дыр.

Сверхмассивная черная дыра своей массой превышает размеры Солнца в пределах от миллиона до миллиарда раз. Черные дыры подобных глобальных размеров располагаются по центрам галактик, а так как их невозможно увидеть, обнаруживают и изучают их, наблюдая за перемещающимися вокруг них звездами.

Особенности черных дыр в зависимости от их массы и размера

Астрономами было доказано, что черные дыры не рождаются в своих громадных размерах, а медленно растут за счет звезд галактик и газа. Если верить теории, то многие черные дыры могут меняться в размерах в достаточно широком диапазоне. Некоторые из них могут быть меньше элементарных частиц, а некоторые – просто огромных размеров. При этом научно доказано, что дыры поменьше – вследствие квантовых эффектов должны разрушаться, а самые миниатюрные из них взрываются, едва образовавшись.

В ходе последних исследований британских и австралийских ученых было выявлено, что многие черные дыры имеют тенденции к быстрому увеличению, постепенно превосходя массу Солнца в миллиарды раз. Увеличиваются эти космические области, благодаря всасыванию ими газов, после чего происходит образование вокруг спирали и отверстия диска.

Проведение практических опытов доказало, что если два таких диска впоследствии разойдутся в разные стороны, а потом столкнутся – подобная ситуация будет способствовать росту черной дыры в тысячи раз быстрее обычного.