Законы электромагнетизма.

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Новый репетитор по физике для подготовки к ЕГЭ. Электромагнетизм. Колебания и волны. Оптика. Элементы теории относительности. Физика атома и атомного ядра. Касаткина И.Л.

    Р.на Д.: 2018 , - 845 с. Р.на Д.: 2006 , - 848 с.

    Учебное пособие предназначено для абитуриентов, готовящихся к сдаче одного из самых трудных выпускных и вступительных экзаменов - ЕГЭ по физике. В данном пособии абитуриент найдет все, что необходимо при подготовке к этому экзамену: необходимую теорию в сжатом виде, ценные указания к решению задач, большое количество уже решенных задач разной трудности, подобных задачам Открытого банка заданий, и множество задач с ответами для проверки умений их решать. Кроме того, "Репетитор" очень полезен старшеклассникам 9-10 классов в самом процессе учебы, а также при подготовке к Всероссийским проверочным работам (ВПР). Большая ценность этого пособия и в том, что здесь имеется краткая теория и показаны способы решения задач и вузовского уровня, что окажет неоценимую помощь студентам младших курсов технических вузов и колледжей. Оно может быть полезно репетиторам и преподавателям.

    Формат: pdf (2018 , 84 5с.)

    Размер: 21,5 Мб

    Смотреть, скачать: drive.google

    Формат: djvu (2006 , 6-е изд., 848с.) Репетитор по физике. Электромагнетизм. Колебания и волны. Оптика. Теория относительности. Физика атома и атомного ядра. Касаткина И.Л.

    Размер: 36 Мб

    Скачать: yandex.disk

    СОДЕРЖАНИЕ
    Электростатика 3
    1. Взаимодействие зарядов. Закон Кулона 3
    2. Электрическое поле. Напряженность электрического поля 44
    3. Работа перемещения заряда в электрическом поле. Потенциал. Разность потенциалов 78
    4. Электроемкость. Энергия электрического поля 125
    Законы постоянного тока 181
    5. Закон Ома для участка цепи. Соединение проводников 181
    6. Закон Ома для всей цепи. Расчет электрических цепей 239
    7. Работа и мощность тока. Закон Джоуля-Ленца. КПД электрической цепи 285
    8. Электропроводность веществ 328
    Магнетизм 351
    9. Магнитное поле тока. Действие магнитного поля на заряды и токи 351
    10. Электромагнитная индукция. Энергия магнитного поля 394
    Колебания и волны 418
    11. Механические колебания 418
    12. Механические волны 482
    13. Электромагнитные колебания в колебательном контуре 502
    14. Переменный ток 529
    15. Электромагнитные волны 567
    16. Волновые свойства света 578
    Геометрическая оптика 601
    17. Законы отражения 601
    18. Законы преломления 624
    19. Линзы 657
    20. Фотометрия 713
    21. Элементы теории относительности 727
    22. Тепловое излучение. Фотоэффект. Квантовые свойства света 756
    23. Физика атома 775
    24. Физика атомного ядра 794
    Дополнение 815
    Приложение 827

    Курс «Электромагнетизм» является разделом курса общей физики, в котором излагаются систематизированные знания об основных понятиях и законах электромагнетизма как обобщений опытных фактов, выраженных в математической форме. Изучаются и демонстрируются основополагающие эксперименты, лежащие в основе фундаментальных законов электричества, магнетизма и электродинамики. Разбираются теоретические модели взаимодействия электрических и магнитных полей с веществом и анализируются области их применимости. Разъясняются современные технологии, в основе которых лежат законы электромагнетизма. Дисциплина вырабатывает у студентов основы естественнонаучного мировоззрения и является базой для дальнейшего изучения общепрофессиональных и специальных дисциплин.

    Формат

    Форма обучения заочная (дистанционная). Еженедельные занятия будут включать просмотр тематических видеолекций, снабженных видеозаписями лекционных экспериментов, и выполнение тестовых заданий с автоматизированной проверкой результатов. Важным элементом изучения дисциплины является самостоятельное решение физических задач. Решение должно будет содержать строгие и логически верные рассуждения, приводящие к верному ответу.

    Требования

    Курс рассчитан на бакалавров 1 года обучения. Требуется знание физики и математики в объёме средней школы (11 классов).

    Программа курса

    Лекция 1. Электромагнитное взаимодействие и его место среди других взаимодействий в природе. Развитие физики электричества в работах М.В.Ломоносова. Электрический заряд. Микроскопические носители заряда. Опыт Милликена. Закон сохранения электрического заряда. Электростатика. Закон Кулона и его полевая трактовка. Вектор напряженности электрического поля. Принцип суперпозиции электрических полей.

    Лекция 1. Поток вектора напряженности электрического поля. Электростатическая теорема Остроградского–Гаусса, ее представление в дифференциальной форме. Потенциальность электростатического поля. Потенциал. Нормировка потенциала. Связь вектора напряженности электростатического поля и потенциала. Работа сил электростатического поля. Потенциал системы зарядов.

    Лекция 3. Циркуляция вектора напряженности электрического поля. Теорема о циркуляции, ее представление в дифференциальной форме. Уравнения Пуассона и Лапласа. Электрический диполь. Потенциал и напряженность поля диполя.

    Лекция 4. Проводники в электростатическом поле. Электростатическая индукция. Напряженность поля у поверхности и внутри проводника. Распределение заряда по поверхности проводника. Электростатическая защита. Связь между зарядом и потенциалом проводника. Электроемкость. Конденсаторы. Емкость плоского, сферического и цилиндрического конденсаторов. Проводящий шар в однородном электростатическом поле.

    Лекция 5. Диэлектрики. Свободные и связанные заряды. Вектор поляризации. Связь вектора поляризации со связанными зарядами. Вектор электрической индукции в диэлектрике. Диэлектрическая восприимчивость и диэлектрическая проницаемость и вещества. Материальное уравнение для векторов электрического поля. Теорема Остроградского – Гаусса для диэлектриков. Ее дифференциальная форма. Граничные условия для векторов напряженности и электрической индукции. Диэлектрический шар в однородном электрическом поле.

    Лекция 6. Энергия системы электрических зарядов. Энергия взаимодействия и собственная энергия. Энергия электростатического поля и ее объемная плотность. Энергия электрического диполя во внешнем поле. Пондеромоторные силы в электрическом поле и методы их вычислений. Связь пондеромоторных сил с энергией системы зарядов.

    Лекция 7. Электронная теория поляризации диэлектриков. Локальное поле. Неполярные диэлектрики. Формула Клаузиуса – Моссотти. Полярные диэлектрики. Функция Ланжевена. Поляризация ионных кристаллов. Электрические свойства кристаллов. Пироэлектрики. Пьезоэлектрики. Прямой и обратный пьезоэлектрический эффект и их применение. Сегнетоэлектрики. Доменная структура сегнетоэлектриков. Гистерезис. Точка Кюри. Применение сегнетоэлектриков.

    Лекция 8. Постоянный электрический ток. Сила и плотность тока. Линии тока. Электрическое поле в проводнике с током и его источники. Уравнение непрерывности. Условие стационарности тока. Электрическое напряжение. Закон Ома для участка цепи. Электросопротивление. Закон Ома в дифференциальной форме. Удельная электропроводность вещества.

    Лекция 9. Токи в сплошных средах. Заземление. Работа и мощность постоянного тока. Закон Джоуля – Ленца и его дифференциальная форма. Сторонние силы. Электродвижущая сила. Закон Ома для замкнутой цепи. Разветвленные цепи. Правила Кирхгофа. Примеры их применения.

    Лекция 10. Магнитостатика. Взаимодействие токов. Элемент тока. Закон Био – Савара – Лапласа и его полевая трактовка. Вектор индукции магнитного поля. Действие магнитного поля на ток. Закон Ампера. Теорема о циркуляции вектора индукции магнитного поля. Дифференциальная форма теоремы о циркуляции. Вихревой характер магнитного поля. Уравнение div B = 0. Понятие о векторном потенциале. Релятивистская природа магнитных взаимодействий.

    Лекция 11. Элементарный ток и его магнитный момент. Магнитное поле элементарного тока. Элементарный ток в магнитном поле. Магнитное поле движущегося заряда. Взаимодействие движущихся зарядов. Сила Лоренца. Эффект Холла.

    Лекция 12. Поток вектора магнитной индукции (магнитный поток). Коэффициент самоиндукции (индуктивность). Коэффициент взаимной индукции двух контуров. Потенциальная функция тока. Силы, действующие на контур с током. Взаимодействие двух контуров с током.

    Лекция 13. Электромагнитная индукция. Закон электромагнитной индукции Фарадея и его дифференциальная форма. Правило Ленца.

    Лекция 14. Магнетики. Понятие о молекулярных токах. Вектор намагниченности вещества и его связь с молекулярными токами. Вектор напряженности магнитного поля.

    Лекция 15. Классификация магнетиков. Диамагнетики, парамагнетики и ферромагнетики. Классическое описание диамагнетизма. Ларморова прецессия.

    Лекция 16. Ферромагнетики. Спонтанная намагниченность и температура Кюри. Доменная структура. Гистерезис намагничивания, кривая Столетова.

    Лекция 17. Квазистационарные токи. Условия квазистационарности. Переходные процессы в RC- и LC-цепях.

    Лекция 18. Вынужденные колебания в контуре. Процесс установления вынужденных колебаний.

    Лекция 19. Резонанс напряжений. Напряжения и токи при резонансе.

    Лекция 20. Техническое применение переменных токов. Генераторы и электродвигатели. Трехфазный ток.

    Лекция 21. Высокочастотные токи. Скин-эффект. Толщина скин-слоя.

    Лекция 22. Классическая теория электронной проводимости Друде – Лоренца.

    Лекция 23. Полупроводники.

    Результаты обучения

    В результате освоения дисциплины студент должен знать основные явления электричества и магнетизма, методы их теоретического описания и способы их использования в физических приборах, уметь решать задачи из раздела «Электромагнетизм» раздела курса общей физики.

    Формируемые компетенции

    Компетенции, необходимые для освоения дисциплины: ОНК-1, ПК-1; Компетенции, формируемые в результате освоения дисциплины: ПК-2; ОНК-5.

    Сертификат

    Сертификат участника обычно выдается при достижении 60% от общего рейтинга при условии сдачи работ до жесткого дедлайна. Сертификат с отличием, как правило, выдается при достижении 90% от общего рейтинга при условии сдачи работ до мягкого дедлайна.

    Первый закон электромагнетизма описывает поток электрического поля:

    где ε 0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы докажем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сферически симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значению Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутреннему заряду, значит, поле должно убывать, как квадрат расстояния; так получается поле «обратных квадратов».

    Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то окажется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив второй закон, утверждающий, что

    И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:

    А дляповерхности S , ограниченной кривой С:

    Появившаяся в уравнении (1.9) постоянная с 2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа ε 0 поставлена для того, чтобы возникли привычные единицы силы электрического тока.

    Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики. Как вы помните, законы Ньютона написать было очень просто, но из них зато вытекало множество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.

    Мы можем проиллюстрировать некоторые законы электродинамики серией несложных опытов, которые смогут нам показать хотя бы качественно взаимоотношения электрического и магнитного полей. С первым членом в уравнении (1.1) вы знакомитесь, расчесывая себе волосы, так что о нем мы говорить не будем. Второй член в уравнении (1.1) можно продемонстрировать, пропустив ток по проволоке, висящей над магнитным бруском, как показано на фиг. 1.6. При включении тока проволока сдвигается из-за того, что на нее действует сила F = qvXB . Когда по проводу идет ток, заряды внутри него движутся, т. е. имеют скорость v, и на них действует магнитное поле магнита, в результате чего провод отходит в сторону.

    Когда провод сдвигается влево, можно ожидать, что сам магнит испытает толчок вправо. (Иначе все это устройство можно было бы водрузить на платформу и получить реактивную систему, в которой импульс не сохранялся бы!) Хотя сила чересчур мала, чтобы можно было заметить движение магнитной палочки, однако движение более чувствительного устройства, скажем стрелки компаса, вполне заметно.

    Каким же образом ток в проводе толкает магнит? Ток, текущий по проводу, создает вокруг него свое собственное магнитное поле, которое и действует на магнит. В соответствии с последним членом в уравнении (1.9) ток должен приводить к цир куляции вектора В; в нашем случае линии поля В замкнуты вокруг провода, как показано на фиг. 1.7. Именно это поле В и ответственно за силу, действующую на магнит.

    Уравнение (1.9) сообщает нам, что при данной величине тока, текущего по проводу, циркуляция поля В одинакова для любой кривой, окружающей провод. У тех кривых (окружностей, например), которые лежат далеко от провода, длина оказывается больше, так что касательная компонента В должна убывать. Вы видите, что следует ожидать линейного убывания В с удалением от длинного прямого провода.

    Мы сказали, что ток, текущий по проводу, образует вокруг него магнитное поле и что если имеется магнитное поле, то оно действует с некоторой силой на провод, по которому идет ток. Значит, следует думать, что если магнитное поле будет создано током, текущим в одном проводе, то оно будет действовать с некоторой силой и на другой провод, по которому тоже идет ток. Это можно показать, применив два свободно подвешенных провода (фиг. 1.8). Когда направление токов одинаково, провода притягиваются, а когда направления противоположны — отталкиваются.

    Короче говоря, электрические токи, как и магниты, создают магнитные поля. Но тогда что же такое магнит? Раз магнитные поля создаются движущимися зарядами, то не может ли оказаться, что магнитное поле, созданное куском железа, на самом деле есть результат действия токов? Видимо, так оно и есть. В наших опытах можно заменить магнитную палочку катушкой с навитой проволокой, как показано на фиг. 1.9. Когда ток проходит по катушке (как и по прямому проводу над нею), наблюдается точно такое же движение проводника, как и прежде, когда вместо катушки стоял магнит. Все выглядит так, как если бы внутри куска железа непрерывно циркулировал ток. Действительно, свойства магнитов можно понять как непрерывный ток внутри атомов железа. Сила, действующая на магнит на фиг. 1.7, объясняется вторым членом в уравнении (1.1).

    Откуда же берутся эти токи? Один источник — это движение электронов по атомным орбитам. У железа это не так, но у некоторых материалов происхождение магнетизма именно таково. Кроме вращения вокруг ядра атома, электрон вращается еще вокруг своей собственной оси (что-то похожее на вращение Земли); вот от этого-то вращения и возникает ток, создающий магнитное поле железа. (Мы сказали «что-то похожее на вращение Земли», потому что на самом деле в квантовой механике вопрос столь глубок, что не укладывается достаточно хорошо в классические представления.) В большинстве веществ часть электронов вертится в одну сторону, другая — в другую, так что магнетизм исчезает, а в железе (по таинственной причине, о которой мы поговорим позже) многие электроны вращаются так, что их оси смотрят в одну сторону и это служит источником магнетизма.

    Поскольку поля магнитов порождаются токами, то в уравнения (1.8) и (1.9) нет нужды вставлять добавочные члены, учитывающие существование магнитов. В этих уравнениях речь идет о всех токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отметить, что, согласно уравнению (1.8), магнитных зарядов, подобных электрическим зарядам, стоящим в правой части уравнения (1.6), не существует. Они никогда не были обнаружены.

    Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий пример. Представьте конденсатор, составленный из двух плоских пластин. Он заряжается током, притекающим к одной из пластин и оттекающим от другой, как показано на фиг. 1.10. Проведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S 1), которая пересечет провод. В соответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с 2). Но что будет, если мы натянем на кривую другую поверхность S 2 в форме чашки, донышко которой расположено между пластинами конденсатора и не касается провода? Через такую поверхность никакой ток, конечно, не проходит. Но ведь простое изменение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в правой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S 1 и S 2 возникает одинаковый эффект. Для S 2 циркуляция вектора В выражается через степень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное уравнение.

    С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсоединим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохождение тока по проводу. Стоит лишь в поле магнита качнуть проволоку, как по ней сразу пойдет ток. Это новое следствие уравнения (1.1): электроны в проводе почувствуют действие силы F=qv X B. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вертикально направленным полем В магнита приводит к силе, действующей на электроны вдоль провода, и электроны отправляются к гальванометру.

    Положим, однако, что мы оставили проволочку в покое и принялись перемещать магнит. Мы чувствуем, что никакой разницы быть не должно, ведь относительное движение то же самое, и впрямь ток по гальванометру идет. Но как же магнитное поле действует на покоящиеся заряды? В соответствии с уравнением (1.1) должно возникнуть электрическое поле. Движущийся магнит должен создавать электрическое поле. На вопрос — как это происходит, отвечает количественно уравнение (1.7). Это уравнение описывает множество практически очень важных явлений, происходящих в электрических генераторах и трансформаторах.

    Наиболее замечательное следствие наших уравнений — это то, что, сочетая уравнения (1.7) и (1.9), можно понять, отчего электромагнитные явления распространяются на дальние расстояния. Причина этого, грубо говоря, примерно такова: предположим, что где-то имеется магнитное поле, которое возрастает по величине, скажем, оттого, что внезапно пустили ток по проводу. Тогда из уравнения (1.7) следует, что должна возникнуть циркуляция электрического поля. Когда электрическое поле начинает постепенно возрастать для возникновения циркуляции, тогда, согласно уравнению (1.9), должна возникать и магнитная циркуляция. Но возрастание этого магнитного поля создаст новую циркуляцию электрического поля и т. д. Таким способом поля распространяются сквозь пространство, не нуждаясь ни в зарядах, ни в токах нигде, кроме источника полей. Именно таким способом мы видим друг друга! Все это спрятано в уравнениях электромагнитного поля.

    Министерство образования и науки Российской Федерации Федеральное агентство по образованию

    Пермский государственный технический университет

    В.В. Бурдин

    ФИЗИКА Часть II

    ОСНОВЫ ЭЛЕКТРОМАГНЕТИЗМА

    Под общей редакцией доктора технических наук профессора А.И. Цаплина

    Утверждено Редакционно-издательским Советом университета в качестве учебного пособия для студентов заочного отделения всех специальностей

    Пермь 2007

    УДК 53(0758) ББК 22.3

    Рецензенты:

    кандидат физико-математических наук, доцентА.В. Перминов , (Пермский государственный технический университет); доктор физико-математических наук, профессорЕ.Л. Тарунин

    (Пермский государственный университет).

    Бурдин В.В.

    В 25 Физика: Учеб. пособие. Часть II. Основы электромагнетизма / Под общ. ред. профессора А.И. Цаплина; Перм. гос. техн. ун-т. – Пермь, 2007. – 188 с.

    Приведен теоретический материал для самостоятельного изучения физики, включающий в себя основные сведения из теории и вопросы для самоконтроля. Предназначено для студентов заочного отделения всех специальностей.

    УДК 53(0758) ББК 22.3

    © Пермский государственный технический университет, 2007

    Введение………………………………………………………………….. 5

    1. Электростатика……….…………………………………………………… 7

    1.1. Закон Кулона………………………………………...……………….. 7

    1.2. Электрическое поле и его характеристики …………….................... 8

    1.3. Связь напряженности электрического поля и потенциала………... 11

    1.4. Электрическое поле точечного заряда. Принцип суперпозиции… 13

    1.5. Графическое изображение электрических полей. Силовые линии

    и эквипотенциальные поверхности………………………………. 16

    1.6. Теорема Гаусса для электрического поля в вакууме……………… 18

    1.7. Проводники в электрическом поле…………………………………. 27

    1.8. Электрическое поле в диэлектриках………………………………... 31

    1.9. Теорема Гаусса для электрического поля в диэлектриках………... 34

    1.10. Конденсаторы……………………………………………………….. 38

    1.11. Энергия электрического поля……………………………………… 41

    1.12. Потенциальность электрического поля. Теорема о циркуляции... 44 Вопросы для самоконтроля……………………………………….. 45

    2. Постоянный электрический ток…………………………………………. 47

    2.1. Закон Ома для однородного участка цепи…………………………. 47

    2.2. Работа и мощность электрического тока. Закон Джоуля-Ленца….. 49

    2.3. Последовательное и параллельное соединение проводников…….. 51

    2.4. Источники тока. Закон Ома для полной цепи……………………… 58

    2.5. Химические источники тока. Элемент Вольта…………………….. 62

    2.6. Закон Ома для неоднородного участка цепи………………………. 65

    2.7. Правила Кирхгофа…………………………………………………… 67

    2.8. Закон Ома в дифференциальной форме. Электронная теория проводимости………………………………………………………... 72

    Вопросы для самоконтроля……………………………………….. 77

    3. Магнетизм…………………………………………………………………. 79

    3.1. Магнитное поле. Сила Лоренца……………………………………... 79

    3.2. Движение заряженных частиц в электрических и магнитных полях…………………………………………………………………. 81

    3.3. Сила Ампера………………………………………………………….. 85

    3.4. Рамка с током в магнитном поле……………………………………. 87

    3.5. Эффект Холла………………………………………………………… 90

    3.6. Вычисление магнитной индукции. Закон Био-Савара-Лапласа…... 92

    3.7. Циркуляция и поток вектора магнитной индукции……………….. 99

    3.8. Работа по перемещению контура с током в магнитном поле.

    Работа электродвигателя…………………………………………….. 104

    3.9. Индуктивность………………………………………………………. 107

    3.10. Закон электромагнитной индукции………………………………. 108

    3.11. Правило Ленца……………………………………………………... 110

    3.12. Явления при замыкании и размыкании тока. Энергия магнитного поля…………………………………………………. 115

    3.13. Генераторы и электродвигатели………………………………….. 118

    3.14. Трансформаторы…………………………………………………... 121

    3.15. Природа электромагнитной индукции…………………………… 124

    3.16. Магнитное поле в веществе………………………………………. 128

    3.17. Теорема о циркуляции магнитного поля в веществе.

    3.20. Природа магнетизма………………………………………………. 148

    Вопросы для самоконтроля……………………………………….. 152

    4. Электромагнитные колебания и волны…………………………………. 154

    4.1. Колебательный контур……………………………………………… 154

    4.4. Переменный ток в электрических цепях…………………………... 165

    4.4.1. Активное, индуктивное и емкостное сопротивления…...…. 165

    4.4.2. Закон Ома для переменного тока. Активное и реактивное сопротивления………………………………………………… 168

    4.4.3. Метод векторных диаграмм………………………………….. 169

    4.4.4. Эффективные напряжение и ток……………………………. 174

    4.5.3. Энергия электромагнитных волн. Вектор Умова-Пойнтинга…………………………………………….. 185

    Вопросы для самоконтроля……………………………………….. 186

    Список литературы……………………………………………………… 188

    ВВЕДЕНИЕ

    Основной физической величиной, с которой мы будем иметь дело, изучая электричество и магнетизм, является электрический заряд. Попробуем ответить на вопросы – что значит зарядить тело, и что такое его заряд?

    В настоящее время известно, что в основе всего разнообразия явлений природы лежат четыре фундаментальных взаимодействия между элементарными частицами - гравитационное, электромагнитное, слабое и сильное. Каждый вид взаимодействия обусловлен определенной характеристикой частицы. Например, гравитационное взаимодействие зависит от масс частиц, электромагнитное – от электрических зарядов. Таким образом, электрический заряд, так же как и масса, является важнейшей характеристикой частиц. Заряду присущи следующие фундаментальные свойства.

    1. Электрический заряд может быть двух типов: положительный и отрицательный. Тела, имеющие электрические заряды одного знака, отталкиваются друг от друга, тела с зарядами противоположных знаков – притягиваются.

    2. Носителями электрического заряда являются заряженные элементарные частицы – протон и электрон (а также их античастицы –

    антипротон и позитрон – и некоторые нестабильные частицы: π -мезоны, μ - мезоны и т. д.). Все заряженные элементарные частицы обладают одним и тем же по величине зарядом, который называют элементарным и обозначают

    буквой e . Элементарный электрический заряд равен1 . 602 × 10 − 19 Кл (Кулон – единица электрического заряда в СИ). За положительный заряд принят заряд протона (+e ), за отрицательный – заряд электрона (–e ).

    3. В любой электрически изолированной системе алгебраическая сумма зарядов не изменяется. Это утверждение отражает закон сохранения электрического заряда. Это утверждение очевидно, если в системе не происходит превращений элементарных частиц. Но закон сохранения заряда имеет и более фундаментальный характер – он выполняется в любых процессах рождения и уничтожения элементарных частиц.

    4. Электрический заряд является релятивистки инвариантным: его величина не зависит от системы отсчета, а значит, не зависит от того, движется он или покоится.

    В настоящее время известно, что все тела состоят из мельчайших заряженных частиц – положительно заряженных ядер (заряд которых обусловлен наличием в них протонов) и отрицательно заряженных электронов. Причем положительный суммарный заряд тела с высокой степенью точности равен его отрицательному суммарному заряду. Другими словами, число протонов в теле равно числу электронов. Ученые предполагают, что это равенство имеет место не только в масштабах одного тела, но и в масштабах всей Вселенной. Теперь мы можем ответить на вопрос о заряде тела. Заряжая

    тело, мы, конечно, не создаем никаких новых заряженных частиц (об этом за

    электронами, т.е. нейтральность тела. Положительно заряженный протон очень прочно связан с ядром, поэтому зарядить тело, меняя число протонов в нем, – сложная задача. Электроны же сравнительно легко можно вырвать из вещества, например, облучив его, или даже просто при помощи трения. Итак, зарядить тело положительно – значить отнять у него определенное число электронов, а зарядить отрицательно – сообщить телу определенное число лишних электронов. Отметим, что заряды тел порядка 1 нКл = 10-9 Кл можно считать уже весьма значительными. Для того чтобы тело имело такой заряд, число электронов в нем должно отличаться от числа протонов на

    10 − 9 (1, 6 10− 19 ) = 6. 25× 109 ! штук.

    Другими важнейшими ключевыми объектами, о которых пойдет речь в настоящем пособии, являются электрическое и магнитное поля. Фактически, нашей задачей будет изучение характеристик и свойств этих полей. В настоящее время известно, что электрическое поле – это особая форма материи, которая окружает любой электрический заряд и действует только на электрические заряды, а магнитное поле – это особая форма материи, окружающая движущиеся электрические заряды, и действующая только на движущиеся электрические заряды. Эти формы материи обладают энергией. Изучение характеристик и свойств электрического и магнитного полей и будет нашей основной задачей. Отметим, однако, что «внутренняя структура» полей до сих пор еще точно не установлена.

    Необходимо отметить, что все разделы «Электромагнетизма» в настоящее время имеют развитый математический аппарат. И для лучшего усвоения курса необходимо хорошее знание математики. Материал содержит примеры с решениями и контрольные вопросы. Они поясняют законы физики и показывают их применения. Примеры могут быть не просто полезными при решении практического задания. Их следует рассматривать и как неотъемлемую часть теории, обязательную для изучения.

    Рис. 1.1. Схема взаимодействия точечных зарядов

    1. ЭЛЕКТРОСТАТИКА

    Сначала рассмотрим поля, создаваемые неподвижными заряженными телами, т.е. только поля электрические. Раздел электромагнетизма, изучающий электрические поля неподвижных зарядов, называется электростатикой.

    1.1. Закон Кулона

    Электрические заряды посредством своих электрических полей взаимодействуют друг с другом. Это явление описывается законом Кулона –

    законом о взаимодействии точечных зарядов: сила взаимодействия F двух неподвижных точечных зарядов q 1 и q 2 в вакууме направлена вдоль линии,

    соединяющей оба заряда, прямо пропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния между ними:

    F = k

    где k – коэффициент пропорциональности, зависящий от выбора единиц

    измерения. В системе СИ k = 1 (4 πε 0 ) = 9 10 9 Н м 2 Кл 2 ,ε 0 = 8 , 85 10 − 12 Ф/м – электрическая постоянная. СилаF является силой притяжения, если заряды имеют разные знаки (рис.1.1), и силой отталкивания, если заряды одного знака.

    При пользовании законом Кулона необходимо помнить, что он справедлив лишь для точечных зарядов. Точечный заряд – это заряд, не имеющий размеров. В природе таких зарядов не существует, так как не существует точечных тел. Все тела имеют конечные размеры и могут считаться точечными лишь

    приближенно, когда их размеры очень малы по сравнению с расстоянием между ними или с размерами каких-то других тел. Попытка применить закон Кулона к заряженным телам конечных размеров может привести к недоразумению. Например, если величина одного из зарядов равна нулю, то по закону кулонаF =0. Однако тела конечных размеров, заряженное и незаряженное, всегда притягиваются (вследствие явлений электростатической индукции для металлических тел и поляризации для диэлектриков).

    Если электрические заряды поместить внутрь диэлектрика, то сила электрического взаимодействия уменьшается в соответствии с выражением:

    F = k

    ε r 2

    где ε - диэлектрическая проницаемость среды, показывающая, во сколько раз сила взаимодействия точечных зарядов в диэлектрике меньше силы их взаимодействия в вакууме. Одно из самых больших значенийε имеет вода:

    ε Н 2 О = 81. Примером взаимодействия зарядов в диэлектрике может служить

    взаимодействие положительных и отрицательных ионов в водных растворах солей. К вопросу об электрическом поле в среде мы еще вернемся в разделе 1.8.

    1.2. Электрическое поле и его характеристики

    О природе взаимодействия электрических зарядов существовало две точки зрения. Одна из них исходила из представления о непосредственном действии тел на расстоянии, без участия каких-либо промежуточных материальных объектов (теория дальнодействия). Другая точка зрения, принятая в настоящее время, исходит из представления, что взаимодействия зарядов передаются с помощью особого материального посредника,

    называемого электрическим полем. Взаимодействие двух зарядов q 1 иq 2 можно объяснить так: в пространстве вокруг зарядаq 1 существует особая форма материи – электрическое поле, которое и действует непосредственно на заряд

    q2 . Действие электрического поля на помещенный в него заряд является основным его свойством.

    Как уже говорилось выше, сначала речь пойдет об электрических полях, созданных неподвижными зарядами. Такие поля называются электростатическими. Для простоты изложения условимся в дальнейшем в этой главе под словом «поле», «электрическое поле» понимать электростатическое поле, т.е. поле, созданное неподвижными зарядами.

    Для описания каждой точки электрического поля вводятся две характеристики – напряженносG ть и потенциал.

    Е – векторная характеристика электрическогоНапряженность поля

    поляG . Напряженность поля в некоторой точке определяется отношением силы

    F , действующей со стороны поля на заряд q, помещенный в данную точку поля, к величине этого заряда:

    Из данного определения следует, что напряженность численно равна силе, действующей на единичный положительный точечный заряд, помещенный в данную точку. Единица измерения напряженности в системе СИ[ E ] = 1 Н/Кл.

    Например, значение напряженности поля в некоторой точке 50 Н/Кл говорит о том, что если заряд 1 Кл поместить в данную точку поля, то со стороны поля на него будет действовать сила 50 Н.

    Векторное уравнение (1.3) показывает, что если заряд q , помещенный в электрическое поле, положительный, то сила, действующая на него со стороны поля, направлена так же,G как и напряженность поля. Если же зарядq

    отрицательный, то вектора Е иF антипараллельны. Из уравнения (1.3) следует:

    величина Е G получила названиесиловой характеристики электрического поля.

    При перемещении электрического заряда в поле кулоновская сила (1.4), действующая со стороны поля на заряд, совершает работу. Говорят, что работу по перемещению заряда совершает электрическое поле. Термин «работа поля» мы будем использовать чаще, чем «работа кулоновских сил». Электростатическое поле обладает очень важным свойством –

    потенциальностью. Это означает, что

    работа поля по перемещению заряда из

    одной точки поля в другую не зависит от

    траектории движения заряда, а

    только от начального и конечного

    положений заряда. Так, работа поля при

    движении заряда по траектории 1a 2 равна

    работе поля

    при движении заряда по

    Схема перемещения заряда

    траектории 1b 2 (рис. 1.2). Потенциальность

    электрического

    поля позволяет

    физическую величину, называемую напряжением, или разностью потенциалов.

    Напряжением U, или разностью потенциалов (ϕ 1 −ϕ 2 ) между двумя

    точками поля 1 и2 называется величина, равная отношению работы А электрического поля по перемещению заряда q из точки1 в точку2 , к величине этого заряда:

    U = ϕ −ϕ

    А 1→ 2

    Из данного определения следует, что напряжение между двумя точками поля численно равно работе по перемещению единичного положительного заряда из первой точки во вторую. Единица измерения напряжения в СИ[ U ] = 1 В (1 вольт). Например, напряжение между двумя точками 20 В означает, что если

    единичный заряд перенести из одной точки в другую, то поле совершит при этом работу 20 Дж.

    Разность потенциалов между двумя данными точками поля – величина строго определенная. Само же значение потенциала в какой-то данной точке поля не определено однозначно, так же как, например, не определена высота какого-либо тела, пока не указано относительно какого уровня эта высота откладывается, т.е. пока не указан нулевой уровень высоты.

    Если какой-либо точке поля приписать нулевой потенциал, то потенциалы остальных точек поля будут иметь уже вполне определенные значения. Чаще всего нулевой потенциал приписывают точке, бесконечно удаленной от зарядов, создающих поле, или любой точке, соединенной проводником с Землей (заземленной точке).

    Земля представляет собой проводящее тело огромных размеров. Она обладает значительным отрицательным электрическим зарядом. Равный ему положительный объемный заряд содержится в атмосфере, в слое высотой порядка десятков километров. У поверхности Земли напряженность поля приблизительно равна 130 Н/Кл. Считая Землю проводящим шаром и зная напряженность поля у поверхности, можно оценить величину заряда Земли:

    q ЗЕМЛИ = 6 × 10 5 Кл . Термин «тело заземлено» означает, что оно соединено проводником с Землей. При таком соединении, хотя какой-то заряд и может перейти с тела на Землю или наоборот, потенциал Земли практически не меняется. Поскольку Земля по сравнению с любым земным телом простираетсядо бесконечности и потенциал ее постоянен в любой точке (т.к. Земля – проводник, см. п. 1.7), условились этот потенциал принимать за нуль. Заземлить проводник – значит, сообщить ему потенциалбесконечно удаленных точек, т.е. нулевой потенциал.

    Перенесем заряд q из некоторой точки в бесконечность или точку, потенциал которой условно принят за нуль. Тогда по уравнению (1.5) получим

    ϕ − 0 = A1 →∞ qϕ = A1 →∞ q. Таким образом, потенциал некоторой точки

    – это работа, которую совершает поле при перемещении единичного заряда из данной точки в бесконечность.

    Работа, совершаемая при перемещении заряда q из данной точки в точку

    нулевого потенциала A 1 →∞ = q ϕ , называется потенциальной энергией заряда в данной точке, т.е.

    Wp = qϕ

    И можно сказать, что потенциал некоторой точки численно равен потенциальной энергии положительного единичного заряда, помещенного в

    данную точку (ϕ = W р q ). Из уравнения (1.5) следует, что работа электрического поля по перемещению зарядаq из одной точки в другую.