Большая энциклопедия нефти и газа.

Cтраница 1


Функциональный анализ близок к причинному анализу, который связан с большими трудностями. Перефразируя Бэкона, можно сказать, что бывают случаи, когда А предшествует В и все модификации А сопровождаются модификациями В, а остальные переменные постоянны.  

Функциональный анализ в нормированных пространствах прошло двадцать лет.  

Функциональный анализ - сравнительно недавно возникшая научная дисциплина. Как самостоятельная ветвь математического анализа он оформился лишь за последние двадцать - тридцать лет, что не помешало ему, однако, занять одно из центральных мест в современной математике.  

Функциональный анализ рассматривает подходящим образом выбранные классы функций как множества точек в топологических пространствах (гл. Изящные и богатые геометрическими аналогиями выводы теории линейных преобразований, введенной в гл. Решения линейных дифференциальных уравнений, обыкновенных и с частными производными, и линейных интегральных уравнений находятся путем более или менее простого обобщения решения систем линейных уравнений, в частности, сюда могут быть включены задачи о собственных значениях (пп.  

Функциональный анализ заключается в том, что для каждой выходной функции изделия анализируют возможные причины ее нарушения, постепенно доходя до заданного уровня разукрупнения. При этом удается выявить отказы, имеющие одинаковые внешние проявления.  

Функциональный анализ - совокупность физических и химических методов анализа, применяя которые можно качественно и количественно определять в органических соединениях реакционноспособные группы атомов (или отдельные атомы), так называемые функциональные группы.  

Функциональный анализ - подчинен основной задаче - предварительному определению параметров по заданным показателям качества исходя из рассмотрения физического принципа работы изделия и рационального технического решения. В построение математических моделей функционирования главное внимание обращается на методологию применения методов функционального анализа. Стараются применять методы функционального анализа в их наиболее чистом, простом и фундаментальном виде.  

Функциональный анализ имеет большое значение для идентификации, так как он позволяет установить тип неизвестного соединения, его молекулярную массу или некоторую часть ее, а также соотношение функциональных групп.  

Функциональный анализ не всегда завершается полным строгим решением, так как основным назначением может быть разработка базовой математической модели функционирования. Разработка базовой модели позволяет более глубоко вникнуть в задачу, более полно понять физические законы и принимаемые допущения. Она особенно предпочтительна при решении новых задач, при этом во многих случаях удовлетворяются приближенной оценкой значения величин, существенных для задачи, и не ищут путей точного их определения. Иногда найти такие пути очень трудно или вовсе невозможно. Сопоставление приближенных значений величин различных параметров в базовой модели нередко создает основу для построения правильной картины развития процесса, для выделения в ней основного и отбрасывания второстепенных частностей. Большинство реальных задач функционального анализа при построении базовой математической модели функционирования лучше всего решать, используя обобщенный подход, и особенно, когда формальный подход совсем неприемлем. В обобщенном подходе из-за наличия нескольких функциональных свойств используют метод теории подобия и метод размерностей.  

Функциональный анализ предполагает определение типа функциональной группы (например, альдегидная, карбонатная или гидроксильная), входящей в исследуемую пробу, без уточнения того, какое конкретное соединение содержит данную функциональную группу. Иногда и эти сведения недостаточны для точного идентифицирования соединения, если, например, оно может существовать в виде нескольких изомеров. Так, комплекс [ Р МНзЬСЬ ], как - уже было показано (гл. IV), может быть представлен в виде транс - или г ис-изомера. Точная идентификация изомера, который присутствует в системе, является очень сложной задачей, требующей использования более специальных химических и физических методов. Проблемы этого рода очень часто встречаются при анализе комплексных и особенно органических соединений.  

Функциональный анализ изучает множества, снабженные согласованными между собой алгебраическими и топологическими структурами, и их отображения, а также методы, с помощью которых сведения об этих структурах применяются к конкретным задачам.  

Функциональный анализ и вычислительная мате - (атика.  

Функциональный анализ изучает некоторые тополого-алгебраи веские структуры, а также методы, с помощью которых сведения юб этих структурах могут применяться к аналитическим задачам.  

Функциональный анализ играет важную роль в современном математическом образовании инженера-исследователя, которому предстоит применять математические методы в конкретной области науки. На языке функционального анализа получают явное выражение основные проблемы прикладной и вычислительной математики.  

и линейные отображения. Для характерно сочетание методов классического анализа, топологии и алгебры. Абстрагируясь от конкретных ситуаций, удаётся выделить аксиомы и на их основе построить теории, включающие в себя классические задачи как частный случай и дающие возможность решать новые задачи. Сам процесс абстрагирования имеет самостоятельное значение, проясняя ситуацию, отбрасывая лишнее и открывая неожиданные связи. В результате удаётся глубже проникнуть в сущность математических понятий и проложить новые пути исследования.

Развитие Функциональный анализ (математ.) происходило параллельно с развитием современной теоретической физики, при этом выяснилось, что язык Функциональный анализ (математ.) наиболее адекватно отражает закономерности квантовой механики, квантовой теории поля и т.п. В свою очередь эти физические теории оказали существенное влияние на проблематику и методы Функциональный анализ (математ.)

1. Возникновение функционального анализа. Функциональный анализ (математ.) как самостоятельный раздел математики сложился на рубеже 19 и 20 вв. Большую роль в формировании общих понятий Функциональный анализ (математ.) сыграла созданная Г. Кантором теория множеств. Развитие этой теории, а также аксиоматической геометрии привело к возникновению в работах М. Фреше и Ф. Хаусдорфа метрической и более общей т. н. теоретико-множественной топологии, изучающей абстрактные пространства, т. е. множества произвольных элементов, для которых установлено тем или иным способом понятие близости.

Среди абстрактных пространств для математического анализа и Функциональный анализ (математ.) оказались важными функциональные пространства (т. е. пространства, элементами которых являются функции - откуда и название «Функциональный анализ (математ.) »). В работах Д. Гильберта по углублению теории интегральных уравнений возникли пространства l 2 и L 2 (a , b ) (см. ниже). Обобщая эти пространства, Ф. Рис изучил пространства l p и L p (a , b ), а С. Банах в 1922 выделил полные линейные нормированные пространства (банаховы пространства). В 1930-40-х гг. в работах Т. Карлемана , Ф. Риса, американских математиков М. Стоуна и Дж. Неймана была построена абстрактная теория самосопряжённых операторов в гильбертовом пространстве.

В СССР первые исследования по Функциональный анализ (математ.) появились в 30-х гг.: работы

А. Н. Колмогорова (1934) по теории линейных топологических пространств;

Н. Н. Боголюбова (1936) по инвариантным мерам в динамических системах;

Л. В. Канторовича (1937) и его учеников по теории полуупорядоченных пространств, применениям Функциональный анализ (математ.) к вычислительной математике и др.; М. Г. Крейна и его учеников (1938) по углублённому изучению геометрии банаховых пространств, выпуклых множеств и конусов в них, теории операторов и связей с различными проблемами классического математического анализа и др.; И. М. Гельфанда и его учеников (1940) по теории нормированных колец (банаховых алгебр) и др.

Для современного этапа развития Функциональный анализ (математ.) характерно усиление связей с теоретической физикой, а также с различными разделами классического анализа и алгебры, например теорией функций многих комплексных переменных, теорией дифференциальных уравнений с частными производными и т.п.

2. Понятие пространства. Наиболее общими пространствами, фигурирующими в Функциональный анализ (математ.) , являются линейные (векторные) топологические пространства, т. е. линейные пространства Х над полем комплексных чисел (или действительных чисел ), которые одновременно и топологические, причём линейные операции непрерывны в рассматриваемой топологии. Более частная, но очень важная ситуация возникает, когда в линейном пространстве Х можно ввести норму (длину) векторов, свойства которой являются обобщением свойств длины векторов в обычном евклидовом пространстве. Именно, нормой элемента x Î Х называется действительное число ||x || такое, что всегда ||x || ³ 0 и ||x || = 0 тогда и только тогда, когда x = 0;

||lx || = |l| ||x ||, l Î x , если ||x n - x || 0.

В большом числе задач возникает ещё более частная ситуация, когда в линейном пространстве Х можно ввести скалярное произведение - обобщение обычного скалярного произведения в евклидовом пространстве. Именно, скалярным произведением элементов x , у Î Х называется комплексное число (x , у ) такое, что всегда (x , x ) ³ 0 и (x , x ) = 0 тогда и только тогда, когда x = 0;

, l, m Î является нормой элемента x . Такое пространство называется предгильбертовым. Для конструкций Функциональный анализ (математ.) важно, чтобы рассматриваемые пространства были полными (т. е. из того, что для x m , x n Î X, следует существование предела , также являющегося элементом Х ). Полное линейное нормированное и полное предгильбертово пространства называются, соответственно, банаховым и гильбертовым. При этом известная процедура пополнения метрического пространства (аналогичная переходу от рациональных чисел к действительным) в случае линейного нормированного (предгильбертова) пространства приводит к банахову (гильбертову) пространству.

Обычное евклидово пространство является одним из простейших примеров (действительного) гильбертова пространства . Однако в Функциональный анализ (математ.) играют основную роль бесконечномерные пространства, т. е. такие, в которых существует бесконечное число линейно независимых векторов. Вот примеры таких пространств, элементами которых являются классы комплекснозначных (т. е. со значениями в , норма ||x || = ; банахово пространство L p (T ) всех суммируемых с р -й (p ³ 1) степенью функций на Т , норма ; банахово пространство l p всех последовательностей таких, что , здесь (множеству целых чисел), норма ||x || =(å|x j | p ) 1/ p ; в случае p = 2 пространства l 2 и L 2 (T ) гильбертовы, при этом, например, в L 2 (T ) скалярное произведение ; линейное топологическое пространство D (), состоящее из бесконечно дифференцируемых функций на , каждая из которых финитна [т. е. равна нулю вне некоторого интервала (а , b )]; при этом x n x, если x n (t ) равномерно финитны [т. е. (а , b ) не зависит от n ] и сходятся равномерно со всеми своими производными к соответствующим производным x (t ).

Все эти пространства бесконечномерны, проще всего это видно для l 2 : векторы e j = {0,..., 0, 1, 0,...} линейно независимы.

С геометрической точки зрения наиболее простыми являются гильбертовы пространства Н , свойства которых больше всего напоминают свойства конечномерных евклидовых пространств. В частности, два вектора x , у Î Н называются ортогональными (x ^ y ), если (x , у ) = 0. Для любого x Î Н существует его проекция на произвольное подпространство - линейное замкнутое подмножество Н , т. е. такой вектор x , что x -x ^f для любого f Î . Благодаря этому факту большое количество геометрических конструкций, имеющих место в евклидовом пространстве, переносится на Н , где они часто приобретают аналитический характер. Так, например, обычная процедура ортогонализации приводит к существованию в Н ортонормированного базиса - последовательности векторов e j , j Î , из Н таких, что ||e j || = 1, e j ^ e k при j ¹ k , и для любого x Î справедливо «покоординатное» разложение

x = åx j e j (1)

где x j = (x , e j ), ||x || = å|x j | 2 (для простоты Н предполагается сепарабельным, т. е. в нём существует счётное всюду плотное множество). Если в качестве Н взять L 2 (0, 2p) и положить , j =...,-1, 0, 1..., то (1) даст разложение функции x (t ) Î L 2 (0, 2p) в ряд Фурье, сходящийся в среднем квадратичном. Кроме того, соотношение (1) показывает, что соответствие между Н и l 2 " {xj} , j Î гильбертовых пространств H j - конструкция, подобная образованию Н одномерными подпространствами, описываемому формулой (1); факторизация и пополнение: на исходном линейном пространстве Х задаётся квазискалярное произведение [т. е. возможно равенство (x , x ) = 0 для x ¹ 0], часто весьма экзотического характера, и Н строится процедурой пополнения Х относительно (.,.) после предварительного отождествления с 0 векторов x , для которых (x , x ) = 0; тензорное произведение - образование его аналогично переходу от функций одной переменной f (x 1 ) к функциям многих переменных f (x 1 ,..., x q ); проективный предел банаховых пространств - здесь (грубо говоря), если для каждого a; индуктивный предел банаховых пространств X 1 Ì X 2 Ì..., здесь , если все x j , начиная с некоторого j 0 , лежат в одном X j0 , и в нём . Две последние процедуры обычно применяются для построения линейных топологических пространств. Таковы, например, ядерные пространства - проективный предел гильбертовых пространств Н a , обладающих тем свойством, что для каждого a найдётся b такое, что h b Ì Н a , и это - т. н. вложение Гильберта - Шмидта .

Разработан важный раздел Ф, а., в котором изучаются пространства с конической структурой «x 0» (полуупорядоченностью). Пример такого пространства - действительное С (Т ), в нём считается x 0, если x (t ³)0 для всех t ÎT .

3. Операторы (общие понятия). Функционалы. Пусть X , - линейные пространства; отображение A : X ® называется линейным, если для x , у Î X , l, m Î ,

где x 1 ,..., x n и (Ax ) 1 ,..., (Ax ) n - координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L 2 (а , b ) в него же оператор

(2)

(где (t , s ) - ограниченная функция - ядро А ) - непрерывен, в то время как определённый на подпространстве 1 (a , b ) Ì L 2 (a , b ) оператор дифференцирования

(3)

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

Непрерывный оператор A : X ® , где X , - банаховы пространства, характеризуется тем, что

,

поэтому его называют также ограниченным. Совокупность всех ограниченных операторов (X , ) относительно обычных алгебраических операций образует банахово пространство с нормой ||A ||. Свойства , если для каждого x Î X ], относительно которой шар, т. е. множество точек x Î Х таких, что ||x || £ r , уже будет компактным (такого эффекта никогда не будет в бесконечномерном пространстве относительно топологии, порождаемой нормой). Это позволяет более детально изучить ряд геометрических вопросов для множеств из X" , например установить структуру произвольного компактного выпуклого множества как замкнутой оболочки своих крайних точек (теорема Крейна - Мильмана).

Важной задачей Функциональный анализ (математ.) является отыскание общего вида функционалов для конкретных пространств. В ряде случаев (помимо гильбертова пространства) это удаётся сделать, например (l p )¢, p > 1, состоит из функций вида åx j e j , где , . Однако для большинства банаховых (и в особенности линейных топологических) пространств функционалы будут элементами новой природы, не конструирующимися просто средствами классического анализа. Так, например, при фиксированных t 0 и m на пространстве D () определён функционал . В случае m = 0 его ещё можно записать «классическим» образом - при помощи интеграла, однако при m ³ 1 это уже невозможно. Элементы из (D ())¢ называются обобщёнными функциями (распределениями). Обобщённые функции как элементы сопряжённого пространства можно строить и тогда, когда D () заменено другим пространством Ф, состоящим как из бесконечно, так и конечное число раз дифференцируемых функций; при этом существенную роль играют тройки пространств Ф" É Н É Ф, где Н - исходное гильбертово пространство, а Ф - линейное топологическое (в частности, гильбертово с др. скалярным произведением) пространство, например

Ф = l 2 (T ).

Дифференциальный оператор D , фигурирующий в (3), будет непрерывным, если его понимать действующим в L 2 [a , b ] из пространства 1 [a , b ], снабженного нормой , Однако для многих задач, и прежде всего для спектральной теории, такие дифференциальные операторы необходимо интерпретировать как действующие в одном и том же пространстве. Эти и другие близкие задачи привели к построению общей теории неограниченных, в частности неограниченных самосопряжённых, и эрмитовых операторов.

4. Специальные классы операторов. Спектральная теория. Многие задачи приводят к необходимости изучать разрешимость уравнения вида Cx = y , где С - некоторый оператор, у Î - заданный, а x Î Х - искомый векторы. Например, если Х = = L 2 (а , b ), С = Е - А , где А - оператор из (2), а Е - тождественный оператор, то получается интегральное уравнение Фредгольма 2-го рода; если С - дифференциальный оператор, то получается дифференциальное уравнение, и т.п. Однако здесь нельзя рассчитывать на достаточно полную аналогию с линейной алгеброй, не ограничивая класс рассматриваемых операторов. Одним из важнейших классов операторов, наиболее близких к конечномерному случаю, являются компактные (вполне непрерывные) операторы, характеризующиеся тем, что переводят каждое ограниченное множество из Х в множество из , замыкание которого компактно [таков, например, оператор А из (2)]. Для компактных операторов построена теория разрешимости уравнения x - Ax = у , вполне аналогичная конечномерному случаю (и содержащая, в частности, теорию упомянутых интегральных уравнений) (Ф. Рис).

В разнообразных задачах математической физики возникает т. н. задача на собственные значения : для некоторого оператора А : Х ® Х требуется выяснить возможность нахождения решения j ¹ 0 (собственного вектора ) уравнения А j = lj при некотором l Î l j x j e j , (4)

где l j , - собственное значение, отвечающее e j . Для конечномерного Х вопрос о таком представлении полностью выяснен, при этом в случае кратных собственных значений для получения базиса в Х нужно, вообще говоря, добавить к собственным т. н. присоединённые векторы. Набор SpA собственных значений в этом случае называется спектром А .

Первое перенесение этой картины на бесконечномерный случай было дано для интегральных операторов типа А из (2) с симметричным ядром [т. е. K (t , s ) = K (s , t ) и действительно] (Д. Гильберт). Затем подобная теория была развита для общих компактных самосопряжённых операторов в гильбертовом пространстве. Однако при переходе к простейшим некомпактным операторам возникли трудности, связанные с. самим определением спектра. Так, ограниченный оператор в L 2 [a , b ]

(Tx )(t ) = tx (t ) (5)

не имеет собственных значений. Поэтому определение спектра было пересмотрено, обобщено и выглядит сейчас следующим образом.

Пусть Х - банахово пространство, А Î - многочлен, то f (A ) = (степень оператора понимается как последовательное его применение). Однако если f (z ) - аналитическая функция, то так прямо понимать f (A ) уже не всегда возможно; в этом случае f (A ) определяется следующей формулой, если f (z ) аналитична в окрестности SpA, а Г - контур, охватывающий SpA и лежащий в области аналитичности f (z ):

. (6)

При этом алгебраические операции над функциями переходят в аналогичные операции над операторами [т. е. отображение f (z ) ® f (A ) - гомоморфизм]. Эти конструкции не дают возможности выяснить, например, вопросы полноты собственных и присоединённых векторов для общих операторов, однако для самосопряжённых операторов, представляющих основной интерес, например, для квантовой механики, подобная теория полностью разработана.

Пусть Н - гильбертово пространство. Ограниченный оператор А : Н ® Н называется самосопряжённым, если (Ax , у ) = (x , Ау ) (в случае неограниченного А определение более сложно). Если Н n -мерно, то в нём существует ортонормированный базис собственных векторов самосопряжённого оператора А ; другими словами, имеют место разложения:

, , (7)

где (l j ) - оператор проектирования (проектор) на подпространство, натянутое на все собственные векторы оператора А , отвечающие одному и тому же собственному значению l j .

Оказывается, что эти формулы могут быть обобщены на произвольный самосопряжённый оператор из Н , только сами проекторы (l j ) могут не существовать, поскольку могут отсутствовать и собственные векторы [таков, например, оператор Т в (5)]. В формулах (7) суммы заменяются теперь интегралами Стилтьеса по неубывающей операторнозначной функции Е (l) [которая в конечномерном случае равна ], называется разложением единицы, или спектральной (проекторной) мерой, точки роста которой совпадают со спектром Sp А . Если привлечь обобщённые функции, то формулы типа (7) сохраняются. Именно, если имеется тройка Ф" É Н É Ф , где Ф, например, ядерно, причём А переводит Ф в Ф¢ и непрерывно, то соотношения (7) имеют место, только суммы переходят в интегралы по некоторой скалярной мере, а Е (l) теперь «проектирует» Ф в Ф¢, давая векторы из Ф¢, которые будут собственными в обобщённом смысле для А с собственным значением l. Аналогичные результаты справедливы для т. н. нормальных операторов (т. е. коммутирующих со своими сопряжёнными). Например, они верны для унитарных операторов - таких ограниченных операторов, которые отображают всё Н на всё Н и сохраняют при этом скалярное произведение. Для них спектр Sp расположен на окружности |z | = 1, вдоль которой и производится интегрирование в аналогах формул (6). См. также Спектральный анализ линейных операторов.

5. Нелинейный функциональный анализ. Одновременно с развитием и углублением понятия пространства шло развитие и обобщение понятия функции. В конечном счёте оказалось необходимым рассматривать отображения (не обязательно линейные) одного пространства в другое (часто - в исходное). Одной из центральных задач нелинейного Функциональный анализ (математ.) является изучение таких отображений. Как и в линейном случае, отображение пространства в ) называется функционалом. Для нелинейных отображений (в частности, нелинейных функционалов) можно различными способами определить дифференциал, производную по направлению и т.д. аналогично соответствующим понятиям классического анализа. Выделение из отображения квадратичного и т.д. членов приводит к формуле, аналогичной формуле Тейлора.

Важной задачей нелинейного Функциональный анализ (математ.) является задача отыскания неподвижных точек отображения (точка x называется неподвижной для отображения , если Fx = x ). К отысканию неподвижных точек сводятся многие задачи о разрешимости операторных уравнений, а также задачи отыскания собственных значений и собственных векторов нелинейных операторов. При решении уравнений с нелинейными операторами, содержащими параметр, возникает существенное для нелинейного Функциональный анализ (математ.) явление - т. н. точки ветвления (решений).

При исследовании неподвижных точек и точек ветвления используются топологические методы: обобщения на бесконечномерные пространства теоремы Брауэра о существовании неподвижных точек отображений конечномерных пространств, степени отображений и т.п. Топологические методы Функциональный анализ (математ.) развивались польским математиком Ю. Шаудером, французским математиком Ж. Лере, советскими математиками М. А. Красносельским, Л. А. Люстерником и др.

6. Банаховы алгебры. Теория представлений. На ранних этапах развития Функциональный анализ (математ.) изучались задачи, для постановки и решения которых необходимы были лишь линейные операции над элементами пространства. Исключение составляют, пожалуй, только теория колец операторов (факторов) (Дж. Нейман, 1929) и теория абсолютно сходящихся рядов Фурье (Н. Винер , 1936). В конце 30-x гг. в работах японского математика М. Нагумо, советских математиков И. М, Гельфанда, Г. Е. Шилова, М. А. Наймарка и др. стала развиваться теория т. н. нормированных колец (современное название - банаховы алгебры), в которой, кроме операций линейного пространства, аксиоматизируется операция умножения (причём ||xy || £ ||x || ||y ||). Типичными представителями банаховых алгебр являются кольца ограниченных операторов, действующих в банаховом пространстве Х (умножение в нём - последовательное применение операторов - необходимо с учётом порядка), различного рода функциональные пространства, например c - мера Хаара на группе характеров , а

,

Обобщённое преобразование Фурье функций f (g ) и k (g ), которое продолжается до изоморфизма L 2 (G , dg ) в L 2 (, dc). Для некоммутативных групп ситуация во многом усложняется. Если G компактна, то представление группы операторов сдвига (или, короче, группы сдвигов) удаётся хорошо описать; в этом случае L 2 (G , dg ) распадается в прямую сумму конечномерных инвариантных относительно сдвигов подпространств. Если G некомпактна, то также получается разложение L 2 (G , dg ) на более простые инвариантные части, но уже не в прямую сумму, а в прямой интеграл.

Если G = , то теория унитарных представлений может быть сведена к теории самосопряжённых операторов. Именно, однопараметрическая группа унитарных операторов Т l , l Î в гильбертовом пространстве Н допускает представление Т l = exp i lA , где А - самосопряжённый оператор (теорема Стоун а); оператор А называется инфинитезимальным оператором (генератором) группы {Т" l }. Этот результат находит важные применения в изучении преобразований фазового пространства классической механики. Эта связь, а также приложения в статистической физике лежат в основе обширной ветви Функциональный анализ (математ.) - эргодической теории . Связь между однопараметрическими группами преобразований и их генераторами допускает значительные обобщения: операторы T l не обязаны быть унитарными, могут действовать в банаховых и более общих пространствах и даже быть определёнными лишь для l ³ 0 (т. н. теория полугрупп операторов). Этот раздел Функциональный анализ (математ.) имеет приложения в теории дифференциальных уравнений с частными производными и теории случайных (именно марковских) процессов.

Лит.: Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа 4 изд., М., 1976; Ахиезер Н. И., Глазман И. М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Вулих Б. З., Введение в теорию полуупорядоченных пространств, М., 1961; Банах С. С., Курс функцioнального аналiзу Киïв, 1948; Рисс Ф., Секефальви-Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Соболев С. Л., Некоторые применения функционального анализа в математической физике, Л., 1950; Канторович Л. В., Акилов Г. П., Функциональный анализ в нормированных пространствах, М., 1959; Красносельский М. А., Забрейко П. П., Геометрические методы нелинейного анализа, М., 1975; Наймарк М. А., Нормированные кольца, 2 изд., М., 1968; Рудин У., Функциональный анализ, пер. с англ., М., 1975; Иосида К., Функциональный анализ, пер, с англ., М., 1967; Данфорд Н., Шварц Дж., Линейные операторы, пер. с англ., ч. 1-3, М., 1962-74; Хилле Э., Филлипс Р., Функциональный анализ и полугруппы, пер. с англ., 2 изд., М., 1962; Эдвардс Р. Э., Функциональный анализ. Теория и приложения пер с англ., М., 1969.

Ю. М. Березанский, Б. М. Левитан.

Статья про слово "Функциональный анализ (математ.) " в Большой Советской Энциклопедии была прочитана 6485 раз

Функциональный анализ

Функциональный анализ - раздел высшей математики , в котором изучаются бесконечномерные топологические векторные пространства (в основном пространства функций ) и их отображения.

Основные разделы классического функционального анализа - это теория меры и интеграла, теория функций, теория операторов, дифференциальное исчисление на бесконечномерных пространствах. Во второй половине 20 века функциональный анализ пополнился целым рядом более специальных разделов, построенных на базе классических.

Функциональный анализ находит применение во многих точных науках; многие важнейшие теоретические конструкции описаны языком функционального анализа. В частности, в начале 21 века функциональный анализ широко применяется в теории дифференциальных уравнений , математической физике, теоретической физике (см. квантовая механика , теория струн), теории управления и оптимизации , теории вероятностей , математической статистике , теории случайных процессов и других областях. Теория преобразования Фурье , используемая во многих областях науки и техники (например, в теории обработки изображений), также является частью функционального анализа.

Образно функциональный анализ естественно рассматривать как обобщение соединённых вместе линейной алгебры и математического анализа.

Некоторые понятия функционального анализа

История

Развитие функционального анализа связано с изучением преобразования Фурье, дифференциальных и интегральных уравнений . Большой вклад в развитие и становление функционального анализа внёс польский математик Стефан Банах .

Изучение представления функций с помощью преобразования Фурье было привлекательно, к примеру, потому, что для определённых классов функций можно континуальный набор точек (значения функции) охарактеризовать счётным набором значений (набором коэффициентов).

Методы функционального анализа быстро приобрели популярность в различных областях математики и физики в качестве мощного инструмента. Значительную роль при этом сыграла теория линейных операторов :

Функциональный анализ за последние два десятилетия настолько разросся, настолько широко и глубоко проник почти во все области математики, что сейчас даже трудно определить самый предмет этой дисциплины. Однако в функциональном анализе есть несколько больших «традиционных» направлений, которые и поныне в значительной степени определяют его лицо. К их числу принадлежит и теория линейных операторов, которую иногда называют становым хребтом функционального анализа.

Именно через теорию операторов функциональный анализ столкнулся с квантовой механикой , дифференциальными уравнениями, теорией вероятности, а также рядом прикладных дисциплин.

В конце 90-x годов XX в. в копилку функционального анализа добавилась тема, посвящённая вейвлет -преобразованиям. Эта тема пришла из практики как попытка построений новых базисов функциональных пространств, обладающих дополнительными свойствами, к примеру, хорошей скоростью сходимости приближений. Вклад в развитие внесла И. Добеши .

Числовые функции на пространствах функций называют функционалами. Возможно, с этим обстоятельством связано возникновение термина «функциональный анализ». Так, в классической механике для нахождения траектории движения частицы требуется исследовать на минимум функционал действия, для чего его приходится дифференцировать; а поскольку под термином «анализ» в математике понимается интегральное и дифференциальное исчисление, то естественно предположить, что нахождение экстремали функционала действия - одна из первейших задач, давших функциональному анализу его имя.

Ключевые результаты

  • Принцип равномерной ограниченности (также известный как теорема Банаха - Штейнгауза) применимый к набору операторов с точной границей.
  • Принцип oткрытости отображения. Как её следствия - теорема Банаха об ограниченности линейного оператора, обратного биективному линейному ограниченному оператору, теорема о замкнутом графике .
  • Теорема Хана - Банаха о расширении функционала с подпространства на полное пространство, расширенное с сохранением нормы. Суть нетривиальный смысл в сопряжённых пространствах.
  • Одна из спектральных теорем (которых в действительности больше чем одна), дающая интегральную формулу для нормального оператора в Гильбертовом пространстве . Это теорема центральной важности для математического обоснования квантовой механики .

Направление исследований

Функциональный анализ в его современном состоянии включает следующие тенденции:

  • Мягкий анализ . Аппроксимация для анализа, основанного на топологических группах, топологических кольцах и топологических векторных пространствах.
  • Геометрия Банаховых пространств .
  • Некоммутативная геометрия . Разработанная Аленом Конном , частично построенная на более ранних представлениях, таких как аппроксимация Джоржа Макки (George Mackey) в эргодической теории.
  • Связь с квантовой механикой . Также более узко определённая как в математической физике, или истолкованное более обще, например Гельфандом , включается в более типичную теорию изображений.
  • Квантовый функциональный анализ Исследование пространств операторов, вместо пространств функций.
  • Нелинейный функциональный анализ . Исследование нелинейных задач, бифуркаций, устойчивости гладких отображений, деформаций особенностей, и др. в рамках функционального анализа.

Примечания

См. также

Литература

  • Банах С. Теория линейных операций. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. ISBN 5-93972-031-5 .
  • Березанский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ. Курс лекций. Киев. Высшая школа. 1990. 600 с.
  • Богачев В. И., Смолянов О. Г. Действительный и функциональный анализ. Университетский курс. НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2009 г. 724 стр. ISBN 978-5-93972-742-6 .
  • Данфорд Н., Шварц Дж. Т. Линейные операторы. Т. I: Общая теория. – М.: ИЛ,1962.
  • Данфорд Н., Шварц Дж. Т. Линейные операторы. Т. II: Спектральная теория. – М.: Мир,1966.
  • Данфорд Н., Шварц Дж.Т. Линейные операторы. Т. III: Спектральные операторы. – М.: Мир,1974.
  • Иосида К. Функциональный анализ. Пер. с англ. М.: Мир, 1967. 624 с.
  • Канторович Л. В. , Акилов Г. П. Функциональный анализ. М.: Наука, 1984.
  • Колмогоров А. Н. , Фомин С. В. Элементы теории функций и функционального анализа. - изд. четвёртое, переработанное. - М .: Наука , . - 544 с.
  • Люстерник Л. А. , В. И. Соболев. Элементы функционального анализа, 2-ое изд. М.: Наука, 1965. 520 c.
  • Ниренберг Л. Лекции по нелинейному функциональному анализу. М.: Мир, 1977. - 232с.
  • О возникновении и развитии функционального анализа. Сб. статей. // Историко-математические исследования . - М .: Наука , 1973. - № 18. - С. 13-103.
  • Пугачев В. С. Лекции по функциональному анализу. М.: Изд-во МАИ, 1996. - 744с.
  • Рид М., Саймон Б. Методы современной математической физики. Том 1. Функциональный анализ. М.: Мир, 1977. 358 c.
  • Рудин У. Функциональный анализ. М.: Мир, 1975.
  • Треногин В. А. Функциональный анализ. - М .: Наука , . - 496 с.
  • Функциональный анализ / редактор Крейн С. Г.. - 2-е, переработанное и дополненное. - М .: Наука , . - 544 с. - (Справочная математическая библиотека).
  • Хелемский A. Я. Лекции по функциональному анализу. М.: МЦНМО, 2009. - 304с.
  • Хелемский A. Я. Квантовый функциональный анализ в бескоординатном изложении. М.: МЦНМО, 2004. - 552с.
  • Хилле Э., Филлипс Р. Функциональный анализ и полугруппы. М.: ИЛ, 1962. 830 с.

Wikimedia Foundation . 2010 .

  • Мозг
  • Хаусдорфово пространство

Смотреть что такое "Функциональный анализ" в других словарях:

    ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ - один из основных разделов современной математики. Возник в результате взаимного влияния, объединения и обобщения идей и методов многих разделов классического математического анализа, алгебры, геометрии. Характеризуется использованием понятий,… … Большой Энциклопедический словарь

    функциональный анализ - сущ., кол во синонимов: 1 функан (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    функциональный анализ - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN function analysis … Справочник технического переводчика

    Функциональный анализ - I Функциональный анализ часть современной математики, главной задачей которой является изучение бесконечномерных пространств и их отображений. Наиболее изучены линейные пространства и линейные отображения. Для Ф. а. характерно сочетание… … Большая советская энциклопедия

    Функциональный анализ - разновидность анализа, характеризующегося как метод выявления функций рассматриваемого объекта и изучение их влияний на другие объекты. Функциональный анализ применим лишь к тем явлениям, которым приписываются функции, например, общественные… … Основы духовной культуры (энциклопедический словарь педагога)

    ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ - 1. Вообще – анализ сложной системы, при котором основное значение уделяется функциям различных аспектов системы и способу интеграционного оперирования. Такой анализ обычно преуменьшает значение фактической формы или структуры. Анализируемой… … Толковый словарь по психологии

Объекты управления, которые выражают характер, и содержание управляемых процессов являются весомыми признаками классификации видов анализа, применяемого к деятельности хозяйственного типа. Примечательным видом является функциональный анализ, который следует рассмотреть более подробно.

Понятие

Функциональный анализ представляет собой разновидность анализа, которая предполагает рассмотрение объекта, с точки зрения комплекса его функций, не учитывая его как материально-вещественную структуру. То есть его принимают не как совокупность конструктивных деталей, а как носитель определенной функции.

Предметом анализа этого типа являются причинно-следственные связи, структура функций и содержание конкретного продукта. Проведение исследований данного типа требует наличия специальных знаний.

Особенности функционального анализа

В объекте, подвергающемуся анализу, присутствуют полезные функции, которым сопутствуют нейтральные и негативные функции. Чтобы понять, что это означает, можно рассмотреть конкретный пример. Нож мясорубки выполняет три функции одновременно: нейтральную - нагрев продукта, полезную - его измельчение, а также негативную - сминает его. Из данной предпосылки исходит функциональный анализ. Стоит также понимать, что функции одного объекта могут быть для него полезными, а для других вредными или нейтральными.

Анализ данного типа позволяет сосредоточить все внимание на функциях рассматриваемого объекта, абстрагируясь от его исполнения. Дабы повысить степень выполнения и уменьшить затраты функций, производится поиск альтернативных вариантов для их реализации. Анализ этого вида может использоваться с целью совершенствования технических процессов и объектов.

Основные цели функционального анализа

Функциональный анализ применяется для достижения таких целей:

  • Устранение лишних функций. Зачастую некоторые применяемые функции не соответствуют условиям нынешней экономической системы. По этой причине выполняется их обоснованное сокращение. Это можно делать с целью экономии средств, а также усовершенствования организационной структуры учреждения.
  • Добавление необходимых недостающих функций. Например, для перехода к рыночной экономике может быть недостаточно административных функций. Вместе с тем некоторые из тех, которые имеются, уже давно устарели. Если заменить нейтральные функции полезными, это позволит улучшить деятельность предприятия.
  • Рационализация в распределении. Дабы избежать снижения эффективности, следует обеспечить эффективное одновременное выполнение разных функций. Для этого необходимо выполнить их распределение рационально.

Функциональный анализ должен разрабатываться с предельной внимательностью, что позволит достичь поставленных целей.

Функциональные подходы

Структурно функциональный анализ представляет собой один из главнейших подходов к изучению социальных явлений. Он получил наибольше значение в теории организаций. В некоторых случаях социальный объект рассматривается как адаптивная система, составляющие которой удовлетворяют потребности системы в целом.

Функциональный стоимостной анализ представляет собой один из способов проведения системного исследования функций объекта. Благодаря ему можно найти баланс между полезностью объекта и его себестоимостью. Его применяют для совершенствования продукции и услуг.

Рассмотрев данное понятие, можно начать более углубленное изучение функционального анализа, которое позволит подробно изучить тему.