Чем измеряется сопротивление воздуха. Коэффициент сопротивления

Инструкция

Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.

Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.

Рассчитайте силу сопротивления движению тела, движущегося по . Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость к горизонту Fтр=μ∙m∙g∙сos(α).

При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.

Источники:

  • 1 Общая формула для силы сопротивления воздуха На рисунке

Для определения силы сопротивления воздуха создайте условия, при которых тело начнет под действием силы тяжести двигаться равномерно и прямолинейно. Рассчитайте значение силы тяжести, оно будет равно силе сопротивления воздуха. Если тело движется в воздухе, набирая скорость, сила его сопротивления находится при помощи законов Ньютона, также силу сопротивления воздуха можно найти из закона сохранения механической энергии и специальных аэродинамических формул.

Вам понадобится

  • дальномер, весы, спидометр или радар, линейка, секундомер.

Инструкция

Перед измерением сопротивления б/у резистора обязательно выпаяйте его из старой платы или блока. Иначе он может быть шунтирован другими деталями схемы, и вы получите неправильные показания его сопротивления .

Видео по теме

Чтобы найти электрическое сопротивление проводника, воспользуйтесь соответствующими формулами. Сопротивление участка цепи находится по закону Ома. Если же известен материал и геометрические размеры проводника, его сопротивление можно рассчитать при помощи специальной формулы.

Вам понадобится

  • - тестер;
  • - штангенциркуль;
  • - линейка.

Инструкция

Вспомните, что подразумевает собой понятие резистора. В данном случае под резистором надо понимать любой проводник или элемент электрической цепи, имеющий активное резистивное сопротивление. Теперь важно задаться вопросом о том, как действует изменение значения сопротивления на значение силы тока и от чего оно зависит. Суть явления сопротивления заключается в том, что резистора формируют своего рода барьер для прохождения электрических зарядов. Чем выше сопротивление вещества, тем более плотно расположены атомы в решетке резистивного вещества. Данную закономерность и объясняет закон Ома для участка цепи. Как известно, закон Ома для участка цепи звучит следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на участке и обратно пропорциональна сопротивлению самого участка цепи.

Изобразите на листе бумаги график зависимости силы тока от напряжения на резисторе, а также от его сопротивления, исходя из закона Ома. Вы получите график гиперболы в первом случае и график прямой во втором случае. Таким образом, сила тока будет тем больше, чем больше напряжение на резисторе и чем меньше сопротивление. Причем зависимость от сопротивления здесь более яркая, ибо она имеет вид гиперболы.

Обратите внимание, что сопротивление резистора также изменяется при изменении его температуры. Если нагревать резистивный элемент и наблюдать при этом за изменением силы тока, то можно заметить, как при увеличении температуры уменьшается сила тока. Данная закономерность объясняется тем, что при увеличении температуры увеличиваются колебания атомов в узлах кристаллической решетки резистора, уменьшая таким образом свободное пространство для прохождения заряженных частиц. Другой причиной, уменьшающей силу тока в данном случае, является тот факт, что при увеличении температуры вещества увеличивается хаотичное движение частиц, в том числе заряженных. Таким образом, движение свободных частиц в резисторе становится в большей степени хаотичным, чем направленным, что и сказывается на уменьшении силы тока.

Видео по теме

Формирование силы сопротивления воздуха. На рис. 78 и 81 показаны потоки воздуха, образуемые при движении легкового и грузового автомобилей. Сила сопротивления воздуха P w состоит из нескольких составляющих, основной из которых является сила лобового сопротивления. Последняя возникает вследствие того, что при движении автомобиля (см. рис. 78) впереди него создается избыточное давление +АР воздуха, а сзади - пониженное -АР (в сравнении с атмосферным давлением). Подпор воздуха впереди автомобиля создает сопротивление движению вперед, а разрежение воздуха сзади автомобиля образует силу, которая стремится переместить автомобиль назад. Поэтому чем больше разница давлений впереди и сзади автомобиля, тем больше сила лобового сопротивления, а разница давлений, в свою очередь, зависит от размеров, формы автомобиля и скорости его движения.

Рис. 78.

Рис. 79.

На рис. 79 приведены значения (в условных единицах) лобового сопротивления в зависимости от формы тела. Из рисунка видно, что при обтекаемой передней части лобовое сопротивление воздуха снижается на 60%, а при придании обтекаемости задней части - только на 15%. Это свидетельствует о том, что создаваемый впереди автомобиля подпор воздуха оказывает большее влияние на формирование силы лобового сопротивления воздуха, чем разряжение сзади автомобиля. Об обтекаемости задней части автомобиля можно судить по заднему стеклу - при хорошей аэродинамической форме оно не бы-

вает грязным, а при плохой обтекаемости заднее стекло присасывает к себе пыль.

В общем балансе сил сопротивления воздуха на силу лобового сопротивления приходится приблизительно 60%. Среди других составляющих следует выделить: сопротивление, возникающее от прохождения воздуха через радиатор и подкапотное пространство; сопротивление, создаваемое выступающими поверхностями; сопротивление трения воздуха о поверхность и другие дополнительные сопротивления. Значения всех этих составляющих одного порядка.

Суммарная сила сопротивления воздуха P w сосредоточена в центре парусности, представляющем собой центр наибольшей площади сечения тела в плоскости, перпендикулярной к направлению движения. В общем случае центр парусности не совпадает с центром масс автомобиля.

Сила лобового сопротивления воздуха - это произведение площади поперечного сечения тела на скоростной напор воздуха с учетом обтекаемости формы:

где с х - безразмерный коэффициент лобового (аэродинамического ) сопротивления, учитывающий обтекаемость; /’-лобовая площадь или площадь фронтальной проекции, м 2 ; q = 0,5p B v a 2 - скоростной напор воздуха, Н/м 2 . Как видно из размерности, скоростной напор воздуха представляет собой удельную силу, действующую на единицу площади.

Подставив выражение скоростного напора в формулу (114), получим

где v a - скорость автомобиля; р в - плотность воздуха, кг/м 3 .

Лобовая площадь

где а - коэффициент заполнения площади; а = 0,78...0,80 для легковых автомобилей и а = 0,75...0,90 - для грузовых; H a , В а - наибольшие значения соответственно ширины и высоты автомобиля.

Силу лобового сопротивления воздуха рассчитывают также по формуле

где k w = 0,5с х р в - коэффициент сопротивления воздуха, имеющий размерность плотности воздуха - кг/м 3 или Н с 2 /м 4 . На уровне моря, где плотность воздуха р в = 1,225 кг/м 3 , k w = 0,61 с х, кг/м 3 .

Физический смысл коэффициентов k w и с х состоит в том, что они характеризуют свойства обтекаемости автомобиля.

Аэродинамические испытания автомобиля. Аэродинамические характеристики автомобиля исследуют в аэродинамической трубе, одна из которых построена в Российском научно-исследовательском центре по испытаниям и доводке автомототехники. Рассмотрим разработанную в этом центре методику испытаний автомобиля в аэродинамической трубе.

На рис. 80 изображена система осей координат и направления действия составляющих полной аэродинамической силы. При испытаниях определяют следующие силы и моменты: силу лобового аэродинамического сопротивления Р х, боковую силу Р, подъемную силу P v момент крена М х, опрокидывающий момент М у, поворачивающий момент M v

Рис. 80.

В процессе испытаний автомобиль устанавливают на шестикомпонентных аэродинамических весах и закрепляют на платформе (см. рис. 80). Автомобиль должен быть заправлен, укомплектован и загружен в соответствии с технической документацией. Давление воздуха в шинах должно соответствовать заводской инструкции по эксплуатации. Испытаниями управляет ЭВМ в соответствии с программой автоматизированного проведения типовых весовых испытаний. В процессе испытаний специальным вентилятором создаются потоки воздуха, движущиеся со скоростью от 10 до 50 м/с с интервалом 5 м/с. Могут создаваться различные углы натекания воздуха на автомобиль относительно продольной оси. Значения сил и моментов, показанных на рис. 80 и 81, регистрирует и обрабатывает ЭВМ.

При испытаниях измеряют также скоростной (динамический) напор воздуха q. По результатам измерений ЭВМ рассчитывает коэффициенты перечисленных выше сил и моментов, из которых приведем формулу для расчета коэффициента лобового сопротивления:

где q - динамический напор; F - лобовая площадь.

Остальные коэффициенты (с у, c v с тх, с ту, c mz) рассчитываются аналогично с подстановкой в числитель соответствующей величины.

Произведение ^называют фактором аэродинамического сопротивления или фактором обтекаемости.

Значения коэффициента сопротивления воздуха k w и с х для автомобилей разных типов приведены ниже.

Способы снижения силы сопротивления воздуха. Чтобы снизить лобовое сопротивление, улучшают аэродинамические свойства автомобиля или автопоезда: в легковых автомобилях изменяют форму кузова (в основном), а в грузовых - используют обтекатели, тент, лобовое стекло с наклоном.

Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

Сила сопротивления воздуха автопоезда зависит не только от формы отдельных звеньев, но и от взаимодействия воздушных потоков, обтекающих звенья (рис. 81). В промежутках между ними образуются дополнительные завихрения, увеличивающие суммарное сопротивление воздуха передвижению автопоезда. У магистральных автопоездов, перемещающихся по автотрассам с высокой скоростью, расход энергии на преодоление сопротивления воздуха может достигать 50% мощности автомобильного двигателя. Чтобы снизить ее, на автопоездах устанавливают дефлекторы, стабилизаторы, обтекатели и другие приспособления (рис. 82). По данным проф. А.Н. Евграфова, применение комплекта навесных аэродинамических элементов снижает коэффициент с х седельного автопоезда на 41%, прицепного - на 45%.

Рис. 81.

Рис. 82.

При скорости до 40 км/ч сила P w меньше силы сопротивления качению на асфальтированной дороге, вследствие чего ее не учитывают. Свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую потерь тягового баланса.

Величина силы сопротивления воздуха зависит от формы снаряда, состояния поверхности его корпуса, площади его наибольшего поперечного сечения, плотности воздуха, скорости снаряда относительно воздуха, скорости распространения звука и положения продольной оси снаряда относительно вектора скорости снаряда.

Рассмотрим кратко, как перечисленные выше факторы влияют на величину силы сопротивления воздуха.

Форма и состояние поверхности снаряда. О влиянии формы снаряда и состояния его поверхности на величину силы сопротивления воздуха указывалось при рассмотрении факторов, обусловливающих возникновение силы сопротивления воздуха.

Рис. 12. Влияние формы снаряда на ооразование головной и хвостовой

волн и завихрений позади снаряда:

а - цилиндрический снаряд; б -шаровой снаряд (ядро); в - продолговатый снаряд с цилиндрической запоясковой частью (старая фугасная граната);

г -продолговатый снаряд с конической запоясковой частью

Зависимость величины волнового и вихревого сопротивлений от формы снаряда наглядно видна на рис. 12, на котором приведены моментальные фотографии снарядов, выпущенных с примерно одинаковой начальной скоростью.

Наименьшие волны и завихрения получаются у снаряда, имеющего наиболее заостренную головную часть и скошенную донную часть, наибольшие волны и завихрения - у цилиндрического снаряда.

Но следует иметь в виду, что при выборе оптимальной формы снаряда необходимо наряду с уменьшением сопротивления воздуха обеспечить устойчивость полета снаряда, рациональное использование металла, снаряжения и эффективное действие снаряда у цели; поэтому снаряды различных типов имеют неодинаковую форму.

Зависимость величины силы сопротивления воздуха от формы снаряда выражается коэффициентом формы i.

Для снаряда данного типа, форма которого принята за эталон, коэффициент формы принимают равным единице. При изменении формы снаряда относительно эталонной коэффициент формы определяется опытным путем.

Площадь наибольшего поперечного сечения. Если угол нутации δ = 0, то количество элементарных частиц воздуха, которые снаряд будет встречать на своем пути, при прочих равных условиях будет зависеть от площади его наибольшего поперечного сечения. Чем больше площадь поперечного сечения снаряда, тем больше элементарных частиц воздуха будет воздействовать на снаряд, тем больше будет и сила сопротивления воздуха. Экспериментальные данные показывают, что сила сопротивления воздуха изменяется пропорционально изменению площади поперечного сечения снаряда.

Плотность воздуха. Под плотностью воздуха понимают массу воздуха, приходящуюся на единицу его объема. Изменение массы воздуха в единице объема может произойти за счет изменения количества элементарных частиц (молекул), приходящихся на единицу объема, или за счет изменения массы каждой частицы. Если, например, плотность воздуха увеличилась, то это значит, что или увеличилось количество элементарных частиц в каждой единице объема воздуха, или увеличилась масса частиц (или то и другое вместе), а раз так, то и сила воздействия воздуха на каждую единицу поверхностной площади снаряда возрастет, следовательно, возрастет и полное сопротивление воздуха.



Установлено, что сила сопротивления воздуха изменяется пропорционально изменению плотности воздуха.

Скорость снаряда. Исследования показывают, что сила сопротивления воздуха прямо пропорциональна квадрату скорости снаряда относительно воздуха. Если, например, скорость снаряда относительно воздуха увеличится в два раза, то сила сопротивления воздуха возрастет в четыре раза.

Это объясняется тем, что, во-первых, с увеличением скорости снаряда он будет в каждую единицу времени встречать на своем пути больше элементарных частиц воздуха и, во-вторых, инерция частиц воздуха при большей скорости "должна быть преодолена снарядом в более короткий момент времени, что вызовет большее противодействие со стороны частиц воздуха.

Скорость распространения звука в воздухе. Образование волнового сопротивления, как показано выше, происходит в момент, когда скорость снаряда становится равной скорости звука, т. е. в момент, когда ,

где v - скорость снаряда и а - скорость звука в воздухе.

Скорость звука в воздухе непостоянна (зависит от температуры и влажности воздуха). Следовательно, при одной и той же скорости снаряда из-за изменения скорости звука в воздухе величина волнового сопротивления и силы сопротивления воздуха в целом могут быть различными. Зависимость величины силы сопротивления воздуха от скорости распространения звука учитывается специальным коэффициентом . Величина , зависит от величины и от формы снаряда. График этой зависимости приводится на рис. 13.

Рис. 13 . График функции :

а. - снаряд с цилиндрической запоясковой частью (старая фугасная граната);

б - продолговатый снаряд с конической запоясковой частью

Положение продольной оси снаряда относительно касательной к траектории (вектора скорости). Полет снаряда в воздухе сопровождается сложными колебательными движениями вокруг центра тяжести, в результате чего продольная ось снаряда оказывается не совмещенной с направлением полета (с вектором скорости), т. е. появляются углы нутации.

При возникновении угла нутации снаряд летит уже не головной частью вперед, а подставляет встречному потоку воздуха и часть боковой поверхности. Условия обтекания снаряда воздухом из-за этого также резко ухудшаются.

Все это резко увеличивает силу сопротивления воздуха. Для уменьшения влияния этого фактора принимают меры к стабилизации полета снаряда, т. е. к уменьшению углов нутации.

Итак, влияние различных факторов на величину силы сопротивления воздуха сложно и многогранно. Поэтому обычно силу сопротивления воздуха определяют опытным путем для условий, что сила сопротивления воздуха во все время дви жения приложена к его центру тяжести и направлена по касательной к траектории, т. е, углы нутации отсутствуют.

Величину силы сопротивления воздуха выражают различными эмпирическими формулами. Одна из наиболее распро страненных имеет вид

(1.7)

где R - величина силы сопротивления воздуха, кг;

i- коэффициент формы;

S -площадь поперечного сечения снаряда, м 2 ;

ρ - плотность воздуха (масса 1 м 3 данного воздуха она равна ,

где П - вес 1 м 3 воздуха, или весовая плотность воздуха);

v - скорость снаряда относительно воздуха, м/с;

Эмпирический коэффициент, учитывающий влияние величины

отношения скорости снаряда к скорости звука в зависимости от формы снаряда.

В формуле 1.7 величина имеет самостоятельный смысл, ибо это есть ни что иное, как кинетическая энергия, или живая сила 1 м 3 воздуха. Эту величину называют скоростным напором.

Лекція 10

Тема 4. Заняття 2. Рух снаряда в повітрі

1. Прискорення сили опору повітря. Поперечн навантаження і балістичний коефіцієнт.

2. Необхідність прийняття мір для забезпечення стійкості снаряда в польоті.

3. Рух швидко обертаючогося снаряда в польоті. Деривація.

Мы настолько привыкли к тому, что окружены воздухом, что зачастую не обращаем на это внимания. Речь здесь идет, прежде всего, о прикладных технических задачах, при решении которых на первых порах забывается, что существует сила сопротивления воздуха.

Она напоминает о себе практически при любом действии. Хоть мы поедем на автомобиле, хоть полетим на самолете, даже если будем просто кидать камень. Вот и попробуем понять, что собой представляет сила сопротивления воздуха на примере простых случаев.

Вы не задумывались, почему автомобили имеют такую обтекаемую форму и ровную поверхность? А ведь все на самом деле очень понятно. Сила сопротивления воздуха складывается из двух величин - из сопротивления трения поверхности тела и сопротивления формы тела. С целью уменьшения и добиваются уменьшения неровностей и шероховатостей на внешних деталях при изготовлении автомобилей и любых иных транспортных средств.

Для этого их грунтуют, окрашивают, полируют и лакируют. Подобная обработка деталей приводит к тому, что сопротивление воздуха, воздействующее на автомобиль, уменьшается, повышается скорость автомобиля и уменьшается расход топлива при движении. Наличие силы сопротивления объясняется тем, что при движении автомобиля воздух сжимается и перед ним создается область местного повышенного давления, а за ним, соответственно, область разрежения.

Надо отметить, что при повышенных скоростях движения машины основной вклад в сопротивление вносит форма авто. Сила сопротивления, формула расчета которой приведена ниже, определяет факторы, от которых она зависит.

Сила сопротивления = Сх*S*V2*r/2

где S - площадь передней проекции машины;

Cx - коэффициент, учитывающий ;

Как нетрудно заметить из приведенной сопротивления не зависит от массы автомобиля. Основной вклад вносят два компонента - квадрат скорости и форма автомобиля. Т.е. при повышении скорости движения в два раза в четыре раза увеличится сопротивление. Ну и поперечное сечение автомобиля оказывает значительное влияние. Чем более обтекаемым будет автомобиль, тем меньше сопротивление воздуха.

И в формуле есть еще параметр, который просто требует обратить на него пристальное внимание - плотность воздуха. Но его влияние уже более заметно при полетах самолетов. Как известно, с повышением высоты уменьшается плотность воздуха. Значит, соответственно будет уменьшаться сила его сопротивления. Однако и для самолета на величину оказываемого сопротивления будут по-прежнему влиять те же факторы - скорость движения и форма.

Не менее любопытной является история изучения влияния воздуха на точность стрельбы. Работы подобного характера велись давно, первые их описания относятся к 1742 году. Эксперименты проводились в разных странах, с различной формой пуль и снарядов. В итоге проведения исследований была определена оптимальная форма пули и соотношение ее головной и хвостовой части, разработаны баллистические таблицы поведения пули в полете.

В дальнейшем проводились исследования зависимости полета пули от ее скорости, продолжала отрабатываться форма пули, а также совершенствовалась Были разработаны и создан специальный математический инструмент - баллистический коэффициент. Он показывает соотношение сил аэродинамического сопротивления и действующих на пулю.

В статье рассмотрено, что собой представляет сила сопротивления воздуха, дана формула, позволяющая определить величину и степень влияния различных факторов на величину сопротивления, рассмотрено его воздействие в разных областях техники.

Как найти силу сопротивления воздуха? Подскажите пожалуйста, заранее спасибо.

  1. Но у ВАС нет задачи!! ? Если при падении в воздухе, то по формуле: Fc=m*g-m*a; m- масса тела g=9,8 мс a-ускорение, с которым тело падает.
  2. Сила сопротивления определяеться по формуле Ньютона
    F=B*v^2,
    где В - некоторый коэфициент, для каждого тела (зависит от формы, материала, качества поверхности - гладкаяч, шероховатая) , погодных условий (давления и влажности) и т. п. Она применима только при скоростях до 60-100 м/с - и то с большими оговорками (опять же от условий сильно зависит) .
    Более точно можно определить по формуле
    F=Bn*v^n
    , где Bn - в принципе тот же коэффициент B, но он зависит от скорости, как и показатель степени n (n=2(приближенно) при скорости тела в атмосфере меньше М/2 и и больше 2..3М, при этих параметрах Bn практически постоянная величина) .
    Здесь М - число Маха - если просто - равное скорости звука в воздухе - 315 м/с.
    Ну а вообще - самый эффективный метод - эксперимент.

    Было бы дольше информации - сказал бы больше.

  3. При движении электромобиля (автомобиля) на скоростях, превышающих скорость пешехода, заметное влияние оказывает сила сопротивления воздуха. Для расчета силы сопротивления воздуха используют следующую эмпирическую формулу:

    Fвозд. = Cx*S*#961;*#957;2/2

    Fвозд. сила сопротивления воздуха, Н
    Cx коэффициент сопротивления воздуха (коэффициент обтекаемости) , Н*с2/(м*кг) . Cx определяется эксперементально для каждого кузова.
    #961; плотность воздуха (1,29кг/м3 при нормальных условиях)
    S лобовая площадь электромобиля (автомобиля) , м2. S является площадью проекции кузова на плоскость, перпендикулярную продольной оси.
    #957; скорость электромобиля (автомобиля) , км/ч

    Для расчета разгонных характеристик электромобиля (автомобиля) следует учитывать силу сопротивления разгону (силу инерции) . Причем, нужно учитывать не только инерцию самого электромобиля, но и влияние момента инерции вращающихся масс внутри электромобиля (ротор, коробка передач, кардан, колеса) . Далее приведена формула расчета силы сопротивления разгону:

    Fин. = m*a*#963;вр

    Fин. сила сопротивления разгону, Н
    m масса электромобиля, кг
    a ускорение электромобиля, м/с2
    #963;вр коэффициент учета вращающихся масс

    Приблизительно коэффициент учета вращающихся масс #963;вр можно рассчитать по формуле:

    #963;вр=1,05 + 0,05*u2кп

    Где uкп передаточное число коробки передач

    Осталось описать силу сцепления колес с дорогой. Однако, данная сила в дальнейших расчетах малоприменима, поэтому пока оставим ее на-потом.

    И вот, мы уже имеем представление об основных силах, действующих на электромобиль (автомобиль) . Знание этого теоретического вопроса вскоре сподвигнет нас на изучение следующего вопроса вопроса расчета характеристик электромобиля, необходимых для обоснованного выбора двигателя, аккумуляторной батареи и контроллера.