Дисперсионная среда жидкость. Опорный конспект Тема: «Дисперсные системы

В окружающем нас мире чистые вещества встречаются крайне редко, в основном большинство веществ на земле и в атмосфере – это разнообразные смеси, содержащие более двух компонентов. Частицы размером примерно от 1 нм (несколько молекулярных размеров) до 10 мкм называются дисперсными (лат. dispergo – рассеивать, распылять). Разнообразные системы (неорганические, органические, полимерные, белковые), в которых хотя бы одно из веществ находится в виде таких частиц, называются дисперсными. Дисперсные - это гетерогенные системы, состоящие из двух или более фаз с сильно развитой поверхностью раздела между ними или смесь, состоящая как минимум из двух веществ, которые совершенно или практически не смешиваются друг с другом и не реагируют друг с другом химически. Одна из фаз – дисперсная фаза – состоит из очень мелких частиц, распределенных в другой фазе – дисперсионной среде.

Дисперсная система

По агрегатному состоянию дисперсные частицы могут быть твердыми, жидкими, газообразными, во многих случаях имеют сложное строение. Дисперсионные среды также бывают газообразными, жидкими и твердыми. В виде дисперсных систем существует большинство реальных тел окружающего нас мира: морская вода, грунты и почвы, ткани живых организмов, многие технические материалы, пищевые продукты и др.

Классификация дисперсных систем

Несмотря на многочисленные попытки предложить единую классификацию этих систем, она до сих пор отсутствует. Причина заключена в том, что в любой классификации принимаются в качестве критерия не все свойства дисперсных систем, а только какое-нибудь одно из них. Рассмотрим наиболее распространенные классификации коллоидных и микрогетерогенных систем.

В любой области знаний, когда приходится сталкиваться со сложными объектами и явлениями, для облегчения и установления определенных закономерностей целесообразно классифицировать их по тем или иным признакам. Это относится и к области дисперсных систем; в разное время для них были предложены различные принципы классификации. По интенсивности взаимодействия веществ дисперсионной среды и дисперсной фазы различают лиофильные и лиофобные коллоиды. Ниже кратко изложены другие приемы классификации дисперсных систем.

Классификация по наличию или отсутствию взаимодействия между частицами дисперсной фазы. Согласно этой классификации дисперсные системы делят на свободнодисперсные и связнодисперсные; классификация применима к коллоидным растворам и к растворам высокомолекулярных соединений.

К свободнодисперсным системам относят типичные коллоидные растворы, суспензии, взвеси, разнообразные растворы высокомолекулярных соединений, которые обладают текучестью, как обычные жидкости и растворы.

К связнодисперсным относят так называемые структурированные системы, в которых в результате взаимодействия между частицами возникает пространственная ажурная сетка-каркас, и система в целом приобретает свойство полутвердого тела. Например, золи некоторых веществ и растворы высокомолекулярных соединений при понижении температуры или с ростом концентрации выше известного предела, не претерпевая внешне каких-либо изменений, утрачивают текучесть - желатинируют (застудневают), переходят в состояние геля (студня). Сюда же можно отнести концентрированные пасты, аморфные осадки.

Классификация по дисперсности. Физические свойства вещества не зависят от размеров тела, но при высокой степени измельчения становятся функцией дисперсности. Например, золи металлов обладают различной окраской в зависимости от степени измельчения. Так, коллоидные растворы золота предельно высокой дисперсности имеют пурпурный цвет, менее дисперсные - синий, еще менее -зеленый. Есть основания полагать, что и другие свойства золей одного и того же вещества меняются по мере измельчения: Напрашивается естественный критерий классификации коллоидных систем по дисперсности, т. е. разделение области коллоидного состояния (10 -5 -10 -7 см ) на ряд более узких интервалов. Такая классификация была в свое время предложена, но она оказалась бесполезной, так как коллоидные системы практически всегда полидисперсны; монодисперсные встречаются очень редко. К тому же степень дисперсности может меняться во времени, т. е. зависит от возраста системы.

Разделы: Химия

Класс: 11

Изучив тему урока, вы узнаете:

  • что такое дисперсные системы?
  • какими бывают дисперсные системы?
  • какими свойствами обладают дисперсные системы?
  • значение дисперсных систем.

Чистые вещества в природе встречаются очень редко. Кристаллы чистых веществ – сахара или поваренной соли, например, можно получить разного размера – крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещество внутреннюю структуру – молекулярную или ионную кристаллическую решетку.

В природе чаще всего встречаются смеси различных веществ. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы. Такие системы мы будем называть дисперсными.

Дисперсной называется система, состоящая из двух или более веществ, причем одно из них в виде очень маленьких частиц равномерно распределено в объеме другого.

Вещество распадается на ионы, молекулы, атомы, значит “дробится” на мельчайшие частицы. “Дробление” > диспергирование, т.е. вещества диспергируют до разных размеров частиц видимых и невидимых.

Вещество, которое присутствует в меньшем количестве, диспергирует и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называются гетерогенными (неоднородными).

И дисперсную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях – твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсной среды и дисперсной фазы можно выделить 9 видов таких систем.

Таблица
Примеры дисперсных систем

Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем
Газ Газ Всегда гомогенная смесь (воздух, природный газ)
Жидкость Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
Твердое вещество Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость Газ Шипучие напитки, пены
Жидкость Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы
Твердое вещество Газ Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
Жидкость Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
Твердое вещество Горные породы, цветные стекла, некоторые сплавы

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делятся на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система – раствор . Она однородна, поверхности раздела между частицами и средой нет.

Дисперсные системы и растворы очень важны в повседневной жизни и в природе. Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета – наш общий дом – Земля; без клеток не было бы живых организмов и т.д.

ВЗВЕСИ

Взвеси – это дисперсные системы, в которых размер частицы фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсная среда легко разделяются отстаиванием, фильтрованием. Такие системы разделяются на:

  1. Эмульсии (и среда, и фаза – нерастворимые друг в друге жидкости). Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т.д.
  2. Суспензии (среда – жидкость, фаза – нерастворимое в ней твердое вещество).Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость и хорошо взболтать. Со временем частица выпадут на дно сосуда. Очевидно, чем меньше частицы, тем дольше будет сохраняться суспензия. Это строительные растворы, взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде – планктон, которым питаются гиганты – киты, и т.д.
  3. Аэрозоли взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различаются пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний – взвесь капелек жидкости в газе. Например: туман, грозовые тучи – взвесь в воздухе капелек воды, дым – мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига – клинкера. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающих изо рта больного гриппом, также вредные аэролози. Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопление облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, лечение дыхательных путей (ингаляция) – примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли – туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

КОЛЛОИДНЫЕ СИСТЕМЫ

Коллоидные системы (в переводе с греческого “колла” – клей, “еидос” вид клееподобные) это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсная среда в таких системах отстаиванием разделяются с трудом.

Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне.

Их подразделят на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок – кариоплазма, содержимое органоидов и вакуолей). И живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки и т.д.) Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия (“растворимого стекла”) с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде.

Характерное свойство коллоидных растворов – их прозрачность. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в лесу и в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Пропускание луча света через растворы;

а – истинный раствор хлорида натрия;
б – коллоидный раствор гидроксида железа (III).

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Это объясняется тем, что вещества в коллоидном, т.е., в мелкораздробленном, состоянии обладают большой поверхностью. На этой поверхности адсорбируются либо положительно, либо отрицательно заряженные ионы. Например, кремниевая кислота адсорбирует отрицательные ионы SiO 3 2- , которых в растворе много вследствие диссоциации силиката натрия:

Частицы же с одноименными зарядами взаимно отталкиваются и поэтому не слипаются.

Но при определенных условиях может происходить процесс коагуляции. При кипячении некоторых коллоидных растворов происходит десорбция заряженных ионов, т.е. коллоидные частицы теряют заряд. Начинают укрупняться и оседают. Тоже самое наблюдается при приливании какого-либо электролита. В этом случае коллоидная частица притягивает к себе противоположно заряженный ион и ее заряд нейтрализуется.

Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок – наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, мармелад, торт “Птичье молоко”) и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т.д. Историю развития на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление называют синерезисом.

Выполните лабораторные опыты по теме (групповая работа, в группе по 4 человека).

Вам выдан образец дисперсной системы. Ваша задача: определить какая дисперсная система вам выдана.

Выдано учащимся: раствор сахара, раствор хлорода железа (III), смесь воды и речного песка, желатин, раствор хлорида алюминия, раствор поваренной соли, смесь воды и растительного масла.

Инструкция по выполнению лабораторного опыта

  1. Рассмотрите внимательно выданный вам образец (внешнее описание). Заполните графу № 1 таблицы.
  2. Перемешайте дисперсную систему. Понаблюдайте за способностью осаждаться.

Осаждается или расслаивается в течении несколько минут или с трудом в течении продолжительного времени, или не осаждаются. Заполните графу № 2 таблицы.

Если вы не наблюдаете осаждение частиц, исследуйте его на процесс коагуляции. Отлейте немного раствора в две пробирки и добавьте в одну 2–3 капли желтой кровяной соли и в другую 3–5 капель щелочи, что наблюдаете?

  1. Пропустите дисперсную систему через фильтр. Что наблюдаете? Заполните графу № 3 таблицы. (Отфильтруйте немного в пробирку).
  2. Пропустите через раствор луч света фонарика на фоне темной бумаги. Что наблюдаете? (можно наблюдать эффект Тиндаля)
  3. Сделайте вывод: что это за дисперсная система? Что является дисперсной средой? Что является дисперсной фазой? Каковы размеры частиц в нем? (графа №5).
Синквейн ("синквейн" – от фр. слова, означающего "пять") – это стихотворение из 5 строк по определенной теме. Для сочинения синквейна дается 5 минут, после чего написанные стихотворения можно озвучить и обсудить в парах, группах или на всю аудиторию.

Правила написания синквейна :

  1. В первой строчке одним словом (обычно существительным) называется тема.
  2. Вторая строчка – это описание этой темы двумя прилагательными.
  3. Третья строчка – это три глагола (или глагольные формы), называющие самые характерные действия предмета.
  4. Четвертая строчка – это фраза из четырех слов, показывающая личное отношение к теме.
  5. Последняя строка – это синоним темы, подчеркивающий её суть.

Лето 2008 г. Вена. Шенбрунн.

Лето 2008 г. Нижегородская область.

Облака и их роль в жизни человека

Вся окружающая нас природа – организмы животных и растений, гидросфера и атмосфера, земная кора и недра представляют собой сложную совокупность множества разнообразных и разнотипных грубодисперсных и коллоидных систем.
Развитие коллоидной химии связано с актуальными проблемами различных областей естествознания и техники.
На представленной картинке представлены облака – один из видов аэрозолей коллоидных дисперсных систем. В изучении атмосферных осадков метеорология опирается на учение об аэродисперсных системах.
Облака нашей планеты представляют собой такие же живые сущности, как вся природа, которая нас окружает. Они имеют огромное значение для Земли, так как являются информационными каналами. Ведь облака состоят из капиллярной субстанции воды, а вода, как известно, очень хороший накопитель информации. Круговорот воды в природе приводит к тому, что информация о состоянии планеты и настроении людей накапливается в атмосфере, и вместе с облаками передвигается по всему пространству Земли.
Облака – удивительное творение природы, которое доставляет человеку радость, эстетическое удовольствие.

Краснова Мария,
11-й «Б» класс

Р.S.
Огромное спасибо Першиной О.Г., учителю химии МОУ гимназия “Дмитров”, на уроке работали с найденной презентацией, и она дополнялась нашими примерами.

Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое присутствует в меньшем количе­стве и распределено в объеме другого, называют дисперсной фазой . Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой . Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях − твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 8 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система − раствор . Она однородна (гомогенна), поверхности раздела между частицами дисперсной фазы и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (см. таблицу).

Таблица. Примеры дисперсных систем

Дисперсионная среда Дисперсная фаза Примеры некоторых природных и бытовых дисперсных систем
Газ Жидкость Туман, попутный газ с капельками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
Твердое вещество Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость Газ Шипучие напитки, пены
Жидкость Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
Твердое вещество Золи, гели, пасты (кисели, студни, клеи). Речной и морской ил, взвешенные в воде; строительные растворы
Твердое вещество Газ Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
Жидкость Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
Твердое вещество Горные породы, цветные стекла, некоторые сплавы

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета − наш общий дом − Земля; без клеток не было бы живых организмов и т. д.

Если все частицы дисперсной фазы имеют одинаковые размеры, то такие системы называют монодисперсными (рис. 1, а и б). Частицы дисперсной фазы неодинакового размера образуют полидисперсные системы (рис.1, в).

Рис. 1. Свободнодисперсные системы: корпускулярно − (а-в), волокнисто − (г) и пленочно-дисперсные − (д); а, б − монодисперсные; в − полидисперсная система.

Дисперсные системы могут быть свободнодисперсными (рис. 1) и связнодисперсными (рис. 2, а − в) в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, разбавленные суспензии и эмульсии. Они текучи, в этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы − твердообразны; они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придает ей способность сохранять форму. Порошки, концентрированные эмульсии и суспензии (пасты), пены, гели – примеры связнодисперсных систем. Сплошную массу вещества могут пронизывать поры и капилляры, образующие капиллярно-дисперсные системы (кожа, картон, ткани, древесина).


Рис. 3. Связнодисперсные (а-в) и капиллярно-дисперсные (г, д) системы: гель (а), коагулянт с плотной (б) и рыхлой – арочной (в) структурой.

Дисперсные системы, в соответствии с их промежуточным положением между миром молекул и крупных тел, могут быть получены двумя путями: методами диспергирования, т. е. измельчения крупных тел, и методами конденсации молекулярно- или ионнорастворенных веществ.

Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации в случае водных систем), т. е. образование сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Соответственно, по интенсивности взаимодействия между веществами дисперсной фазы и дисперсионной среды (только для систем с жидкой дисперсионной средой), по предложению Г. Фрейндлиха различают следующие дисперсные системы:

Лиофильные (гидрофильные, если ДС – вода): мицеллярные растворы ПАВ, критические эмульсии, водные растворы некоторых природных ВМС, например, белков (желатина, яичного белка), полисахаридов (крахмала). Для них характерно сильное взаимодействие частиц ДФ с молекулами ДС. В предельном случае наблюдается полное растворение. Лиофильные дисперсные системы образуются самопроизвольно вследствие процесса сольватации. Термодинамически агрегативно устойчивы.

Лиофобные (гидрофобные, если ДС – вода): эмульсии, суспензии, золи. Для них характерно слабое взаимодействие частиц ДФ с молекулами ДС. Самопроизвольно не образуются, для их образования необходимо затратить работу. Термодинамически агрегативно неустойчивы (т. е. имеют тенденцию к самопроизвольной агрегации частиц дисперсной фазы), их относительная устойчивость (так называемая метастабильность ) обусловлена кинетическими факторами (т. е. низкой скоростью агрегации).

3. Взвеси.

Взвеси – это дисперсные системы, в которых размер частицы фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсная среда легко разделяются отстаиванием, фильтрованием. Такие системы разделяются на:

1. Эмульсии (и среда, и фаза – нерастворимые друг в друге жидкости). Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т.д.

2. Суспензии (среда – жидкость, фаза – нерастворимое в ней твердое вещество).Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость и хорошо взболтать. Со временем частица выпадут на дно сосуда. Очевидно, чем меньше частицы, тем дольше будет сохраняться суспензия. Это строительные растворы, взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде – планктон, которым питаются гиганты – киты, и т.д.

3. Аэрозоли взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различаются пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний – взвесь капелек жидкости в газе. Например: туман, грозовые тучи – взвесь в воздухе капелек воды, дым – мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига – клинкера. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающих изо рта больного гриппом, также вредные аэролози. Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопление облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, лечение дыхательных путей (ингаляция) – примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли – туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

4. Коллоидные системы.

Коллоидные системы (в переводе с греческого “колла” – клей, “еидос” вид клееподобные) это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсная среда в таких системах отстаиванием разделяются с трудом.

Из курса общей биологии вам известно, что частицы такого размера можно обнаружить при помощи ультрамикроскопа, в котором используется принцип рассеивания света. Благодаря этому коллоидная частица в нем кажется яркой точкой на темном фоне.

Их подразделят на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы , или золи . Это большинство жидкостей живой клетки (цитоплазма, ядерный сок – кариоплазма, содержимое органоидов и вакуолей). И живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки и т.д.) Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия (“растворимого стекла”) с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде.

Характерное свойство коллоидных растворов – их прозрачность. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в лесу и в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Пропускание луча света через растворы:

а – истинный раствор хлорида натрия;

б – коллоидный раствор гидроксида железа (III).

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Это объясняется тем, что вещества в коллоидном, т.е., в мелкораздробленном, состоянии обладают большой поверхностью. На этой поверхности адсорбируются либо положительно, либо отрицательно заряженные ионы. Например, кремниевая кислота адсорбирует отрицательные ионы SiO 3 2- , которых в растворе много вследствие диссоциации силиката натрия:

Частицы же с одноименными зарядами взаимно отталкиваются и поэтому не слипаются.

Но при определенных условиях может происходить процесс коагуляции. При кипячении некоторых коллоидных растворов происходит десорбция заряженных ионов, т.е. коллоидные частицы теряют заряд. Начинают укрупняться и оседают. Тоже самое наблюдается при приливании какого-либо электролита. В этом случае коллоидная частица притягивает к себе противоположно заряженный ион и ее заряд нейтрализуется.

Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок – наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, мармелад, хлеб, мясо, джем, желе, мармелад, кисель, сыр, творог, простокваша, торт “Птичье молоко”) и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т.д. Историю развития на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление называют синерезисом .

Студни − это структурированные системы со свойствами эластичных твердых тел. Студнеобразное состояние вещества можно рассматривать как промежуточное между жидким и твердым состоянием.

Студни высокомолекулярных веществ могут быть получены в основном двумя путями: методом образования студней из растворов полимеров и методом набухания сухих высокомолекулярных веществ в соответствующих жидкостях.

Процесс перехода раствора полимера или золя в студень называется студнеобразованием . Студнеобразование связано с увеличением вязкости и замедлением броуновского движения и заключается в объединении частиц дисперсной фазы в форме сетки или ячеек и связывании при этом всего растворителя.

На процесс студнеобразования существенно влияет природа растворенных веществ, форма их частиц, концентрация, температура, время процесса и примеси других веществ, особенно электролитов.

На основании свойств студни делят на две большие группы:

а) эластичные, или обратимые, получаемые из высокомолекулярных веществ;

б) хрупкие, или необратимые, получаемые из неорганических гидрофобных золей.

Как уже говорилось, студни высокомолекулярных веществ могут быть получены не только методом студнеобразования растворов, но и методом набухания сухих веществ. Ограниченное набухание заканчивается образованием студня и не переходит в растворение, а при неограниченном набухании студень - промежуточная стадия на пути к растворению.

Для студней характерен ряд свойств твердых тел: они сохраняют форму, обладают упругими свойствами и эластичностью. Однако их механические свойства определяются концентрацией и температурой.

При нагревании студни переходят в вязкотекучее состояние. Этот процесс называется плавлением. Он обратим, так как при охлаждении раствор снова образовывает студень.

Многие студни способны разжижаться и переходить в растворы при механическом воздействии (перемешивание, встряхивание). Этот процесс обратим, так как в состоянии покоя через некоторое время раствор образовывает студень. Свойство студней многократно изотермически разжижаться при механических воздействиях и образовывать студень в состоянии покоя называется тиксотропией . К тиксотропным изменениям способны, например, шоколадная масса, маргарин, тесто.

Имея в своем составе огромное количество воды, студни, кроме свойств твердых тел, обладают и свойствами жидкого тела. В них могут протекать различные физико-химические процессы: диффузия, химические реакции между веществами.

Свежеприготовленные студни с течением времени подвергаются изменениям, так как процесс структурирования в студне продолжается. При этом на поверхности студня начинают появляться капельки жидкости, которые, сливаясь, образуют жидкую среду. Образующаяся дисперсионная среда является разбавленным раствором полимера, а дисперсная фаза – студнеобразная фракция. Такой самопроизвольный процесс разделения студня на фазы, сопровождающийся изменением объема студия, называет синерезисом (отмоканием).

Синерезис рассматривается как продолжение процессов, обусловливающих образование студня. Скорость синерезиса различных студней различна и зависит в основном от температуры и концентрации.

Синерезис у студней, образованных полимерами, частично обратим. Иногда достаточно нагревания, чтобы студень, претерпевший синерезис, вернуть в исходное состояние, В кулинарной практике этим способом пользуются, например, для освежения каш, пюре, черствого хлеба. Если при хранении студней возникают химические процессы, то синерезис усложняется и его обратимость теряется, происходит старение студня. При этом студень теряет способность удерживать связанную воду (черствение хлеба). Практическое значение синерезиса довольно велико. Чаще всего синерезис в быту и промышленности нежелателен. Это черствение хлеба, отмокание мармелада, желе, карамели, фруктовых джемов.

5. Растворы высокомолекулярных веществ.

Полимеры, подобно низкомолекулярным веществам, в зависимости от условий получения раствора (природа полимера и растворителя, температура и др.) могут образовывать как коллоидные, так и истинные растворы. В связи с этим принято говорить о коллоидном или истинном состоянии вещества в растворе. Мы не будем касаться систем «полимер – растворитель» коллоидного типа. Рассмотрим только растворы полимеров молекулярного типа. Следует отметить, что вследствие больших размеров молекул и особенностей их строения, растворы ВМС обладают рядом специфических свойств:

1. Равновесные процессы в растворах ВМС устанавливаются медленно.

2. Процессу растворения ВМС, как правило, предшествует процесс набухания.

3. Растворы полимеров не подчиняются законам идеальных растворов, т.е. законам Рауля и Вант-Гоффа.

4. При течении растворов полимеров возникает анизотропия свойств (неодинаковые физические свойства раствора в разных направлениях) за счет ориентации молекул в направлении течения.

5. Высокая вязкость растворов ВМС.

6. Молекулы полимеров, благодаря большим размерам, проявляют склонность к ассоциации в растворах. Время жизни ассоциатов полимеров более длительное, чем ассоциатов низкомолекулярных веществ.

Процесс растворения ВМС протекает самопроизвольно, но в течение длительного времени, и ему часто предшествует набухание полимера в растворителе. Полимеры, макромолекулы которых имеют симметричную форму, могут переходить в раствор, предварительно не набухая. Например, гемоглобин, печеночный крахмал – гликоген при растворении почти не набухают, а растворы этих веществ не обладают высокой вязкостью даже при сравнительно больших концентрациях. В то время, как вещества с сильно асимметрическими вытянутыми молекулами при растворении очень сильно набухают (желатин, целлюлоза, натуральный и синтетические каучуки).

Набухание – это увеличение массы и объема полимера за счет проникновения молекул растворителя в пространственную структуру ВМС.

Различают два вида набухания: неограниченное, заканчивающееся полным растворением ВМС (например, набухание желатины в воде, каучука в бензоле, нитроцеллюлозы в ацетоне) и ограниченное , приводящее к образованию набухшего полимера – студня (например, набухание целлюлозы в воде, желатина в холодной воде, вулканизованного каучука в бензоле).

Дисперсные системы.

Дисперсные системы широко распространены в природе и с давних времен используются человеком в его жизнедеятельности. Практически любой живой организм либо представляет собой дисперсную систему, либо содержит их в различных формах.

Пример: свободнодисперсные системы (нет сплошных жестких структур - золи): кровь, лимфа, желудочный и кишечный соки, спинномозговая жидкость и т.д.

связнодисперсные системы (есть жесткие пространственные структуры - гели): протоплазма, мембраны клеток, мышечное волокно, хрусталик глаза и т.д.

Дисперсные системы активно применяют в медицине, это в первую очередь коллоидные растворы, аэрозоли, кремы, мази. Биохимические процессы в организме протекают в дисперсных системах. Усвоение пищи связано с переходом питательных веществ в растворенное состояние. Биожидкости (дисперсные системы) участвуют в транспорте питательных веществ (жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов (мочевины, билирубина, углекислого газа).

Знание закономерностей физико-химических процессов в дисперсных системах важно будущим врачам как для изучения медико-биологических и клинических дисциплин, так и для более глубокого понимания процессов, протекающих в организме, и сознательного изменения их в желаемом направлении.

Дисперсные системы – это многокомпонентные системы, в которых одни вещества в виде мелких частиц распределены в другом веществе. Вещество, которое распределяется, называется дисперсной фазой. Вещество, в котором распределяется дисперсная фаза, называется дисперсионной средой.

Пример: водный раствор глюкозы

молекулы глюкозы – дисперсная фаза

вода – дисперсионная среда

Дисперсность – величина, характеризующая размер взвешенных частиц в дисперсных системах. Она обратна диаметру частиц дисперсной фазы. Чем меньше размер частиц, тем больше дисперсность.

Классификация дисперсных систем.



Дисперсные системы классифицируют по пяти признакам.

1. По степени дисперсности:

· грубодисперсные

Д = 10 4 – 10 6 м –1 , характеризуются неустойчивостью, непрозрачностью.

Пример: суспензии, эмульсии, пены, взвеси.

· коллоидно-дисперсные

Д = 10 7 – 10 9 м –1 , могут быть прозрачными и мутными, обладать устойчивостью и быть неустойчивыми.

Пример: коллоидные растворы, растворы высокомолекулярных соединений.

· молекулярно-дисперсные и ионно-дисперсные

Д = 10 10 – 10 11 м –1 , характеризуются прозрачностью и устойчивостью.

Пример: растворы низкомолекулярных соединений.

2. По наличию физической поверхности раздела между дисперсной фазой и дисперсионной средой:

· гомогенные (однофазные системы, граница раздела отсутствует.

Пример: растворы низкомолекулярных и высокомолекулярных соединений.

· гетерогенные

существует граница раздела между дисперсной фазой и дисперсионной средой.

Пример: коллоидные растворы и грубодисперсные системы.

3. По характеру взаимодействия между дисперсной фазой и дисперсионной средой:

· лиофильные

между дисперсной фазой и дисперсионной средой существует сродство.

Пример: все гомогенные системы.

· лиофобные

между дисперсной фазой и дисперсионной средой слабое взаимодействие или отсутствует.

Пример: все гетерогенные системы.

4. По агрегатному состоянию дисперсной фазы и дисперсионной среды:

дисп.фаза дисп.среда газообразная твердая жидкая
газообразная смесь газов (воздух) табачный дым пыль мучная, космическая аэрозоли туман пар облака
жидкая растворенный в крови CO 2 , O 2 , N 2 , пены минеральные воды фруктовые газированные напитки коллоидные растворы суспензии растворы ВМС растворы НМС эмульсии: молоко масло сливочное маргарин кремы мази нефть
твердая твердые пены (пенопласт, активированный уголь) ионообменные смолы молекулярные сита сплавы металла цветные стекла, хрусталь драгоценные камни (рубин, аметист) суппозитории (лечебные свечи) кристаллогидраты минералы с жидкими включениями (жемчуг, опал) влажные почвы

5. По природе дисперсионной среды:

Истинные растворы.

Истинный раствор – это гомогенная лиофильная дисперсная система с размерами частиц 10 –10 – 10 –11 м.

Истинные растворы – это однофазные дисперсные системы, они характеризуются большой прочностью связи между дисперсной фазой и дисперсионной средой. Истинный раствор сохраняет гомогенность неопределенно долгое время. Истинные растворы всегда прозрачны. Частицы истинного раствора не видны даже в электронный микроскоп. Истинные растворы хорошо диффундируют.

Компонент, агрегатное состояние которого не изменяется при образовании раствора, называют растворителем (дисперсионная среда), а другой компонент – растворенным веществом (дисперсная фаза).

При одинаковом агрегатном состоянии компонентов растворителем считается компонент, количество которого в растворе преобладает.

В растворах электролитов вне зависимости от соотношения компонентов электролиты рассматриваются как растворенные вещества.

Истинные растворы подразделяются:

· по типу растворителя: водные и неводные

· по типу растворенного вещества: растворы солей, кислот, щелочей, газов и т.д.

· по отношению к электрическому току: электролиты и неэлектролиты

· по концентрации: концентрированные и разбавленные

· по степени достижения предела растворимости: насыщенные и ненасыщенные

· с термодинамической точки зрения: идеальные и реальные

· по агрегатному состоянию: газообразные, жидкие, твердые

Истинные растворы бывают:

· ионно-дисперсные (дисперсная фаза – гидратированные ионы): водный раствор NaCl

· молекулярно-дисперсные (дисперсная фаза – молекулы): водный раствор глюкозы

Ионы каждый в отдельности или совместно выполняют определённые функции в организме. Решающая роль в переносе воды в организме принадлежит ионам Na + и Cl – , т.е участвуют в водно-солевом обмене. Ионы электролитов участвуют в процессах поддержания постоянства осмотического давления, установления кислотно-щелочного равновесия, в процессах передачи нервных импульсов, в процессах активации ферментов.

С позиции живых систем наибольший интерес представляют растворы, в которых растворителем является вода.

В ней растворяется огромное число веществ. Она не только растворитель, который обеспечивает молекулярное рассеяние веществ по всему организму. Она также является участником многих химических и биохимических процессов в организме. Например, гидролиза, гидратации, набухания, транспорта питательных и лекарственных веществ, газов, антител и т.п.

В организме происходит непрерывный обмен воды и растворённых в ней веществ. Вода составляет основную массу любого живого существа. Её содержание в теле человека меняется с возрастом: у эмбриона человека – 97%, у новорождённого – 77%, у взрослых мужчин – 61%, у взрослых женщин – 54%, у стариков старше 81 года – 49,8%. Большая часть воды в организме находится внутри клеток (70%), около 23% – межклеточной воды, а остальная (7%) – находится внутри кровеносных сосудов и в составе плазмы крови.

Всего в организме 42 л воды. В сутки поступает в организм и выводится из него 1,5 – 3 л воды. Это нормальный водный баланс организма.

Главный путь выведения воды из организма – почки. Потеря 10 – 15% воды опасна, а 20 – 25% смертельна для организма.

Важнейшей характеристикой раствора является его концентрация.

Способы выражения концентрации растворов:

1. Массовая доля w(х) – величина, равная отношению массы растворённого вещества m(x) к массе раствора m(p-p)

w (x) = × 100%

2. Молярная концентрация раствора с (х) – величина, равная отношению количества вещества n(х), содержащегося в растворе, к объёму этого раствора V(р-р).

с (х) = [моль/л], где n(х) = [моль]

Миллимолярный раствор – раствор с молярной концентрацией равной 0,001 моль/л

Сантимолярный раствор – раствор с молярной концентрацией равной 0,01 моль/л

Децимолярный раствор – раствор с молярной концентрацией равной 0,1 моль/л

3. Молярная концентрация эквивалента с ( x) – величина, равная отношению количества вещества эквивалента n ( x) в растворе к объёму этого раствора.

c ( x) = [моль/л], где n ( x) = [моль], а М( x) = × М(x)

Эквивалент – это реальная или условная частица вещества х , которая в данной кислотно-основной реакции эквивалентна одному иону водорода или в данной ОВР – одному электрону.

Число эквивалентности z и фактор эквивалентности f = . Фактор эквивалентности показывает, какая доля реальной частицы вещества х эквивалентна одному иону водорода или одному электрону. Число эквивалентности z равно для:

а) кислот – основности кислоты H 2 SO 4 z = 2.

б) оснований – кислотности основания Aℓ(OH) 3 z = 3.

в) солей – произведению степени окисления (с.о.) металла на число его атомов в молекуле Fe 2 (SO 4) 3 z = 2 × 3 = 6.

г) окислителей – числу присоединенных электронов

Mn +7 + 5ē → Mn +2 z = 5

д) восстановителей – числу отданных электронов

Fe +2 – 1ē → Fe +3 z = 1

4. Моляльная концентрация b(x) – величина, равная отношению количества вещества к массе растворителя (кг)

b(x) = = [моль/кг]

5. Молярная доля c(x i) равна отношению количества вещества данного компонента к суммарному количеству всех компонентов раствора

Формулы взаимосвязи концентраций:

с ( x) = c (x) × z

У растворов имеется ряд свойств, которые не зависят от природы растворенного вещества, а зависят только от его концентрации. Наиболее важным является осмос.

Благодаря осмосу через мембраны клеток органов и тканей осуществляется сложный процесс обмена веществ организма с внешней средой.

Диффузия – процесс самопроизвольного выравнивания концентрации в единице объема.

Осмос – односторонняя диффузия молекул растворителя через полупроницаемую мембрану из растворителя в раствор или из раствора с меньшей концентрацией в раствор с большей концентрацией.

раствор растворитель

Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса - обратной диффузии растворителя. Обратный осмос имеет место при фильтрации плазмы крови в артериальной части капилляра и в почечных клубочках.

Осмотическое давление – давление, которое нужно приложить к раствору, чтобы осмос прекратился.

Уравнение Вант-Гоффа: Р осм = c RT×10 3

Осмотическое давление крови: 780 – 820 кПа

Все растворы, с точки зрения осмотических явлений, можно разделить на 3 группы:

· Изотонические растворы – растворы, имеющие одинаковые осмотические давления и осмолярные концентрации. Примеры: желчь, раствор NaCl (w=0,9%, с=0,15 моль/л), раствор глюкозы (w=7%, с=0,3 моль/л)

Осмолярная концентрация (осмолярность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 литре раствора. с осм, осмоль/л

Осмоляльная концентрация (осмоляльность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 кг растворителя. b осм, осмоль/кг

Для разбавленных растворов осмолярная концентрация совпадает с осмоляльной концентрацией. с осм ≈ b осм

· Гипертонический раствор – раствор с более высокой концентрацией растворенных веществ, следовательно, с более высоким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран вытягивать из него воду. Примеры: кишечный сок, моча.

· Гипотонический раствор – раствор с более низкой концентрацией растворенных веществ, следовательно, с более низким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран терять воду. Примеры: слюна, пот.

Животные и растительные клетки отделены от окружающей среды мембраной. При помещении клетки в различные по осмолярным концентрациям или давлениям растворы будут наблюдаться следующие явления:

· плазмолиз – уменьшение клетки в объеме. При этом клетку помещают в гипертонический раствор. Разность осмотических давлений вызывает перемещение растворителя из клетки в гипертонический раствор.

· лизис – увеличение клетки в объеме. При этом клетку помещают в гипотонический раствор. Разность осмотических давлений вызывает перемещение растворителя в клетку. В случае разрыва эритроцитарных мембран и перехода гемоглобина в плазму явление называется гемолизом.

· изоосмия – объем клетки не изменяется. При этом клетку помещают в изотонический раствор.

С помощью осмотических явлений поддерживается водно-солевой обмен в организме человека. Осмос – это основа механизма работы почек. Изотонический (физиологический) раствор NaCl (0,9%) используется при больших кровопотерях. Гипертонический раствор NaCl (10%) используют при накладывании марлевых повязок на гнойные раны.

Онкотическое давление – это часть осмотического давления, создаваемого белками.

В плазме крови человека составляет лишь около 0,5 % осмотического давления (0,03-0,04 атм или 2,5 – 4,0 кПа). Тем не менее, онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. При заболеваниях, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотическое давление снижается, и это может явиться одной из причин накопления жидкости в межклеточном пространстве, в результате чего развиваются отёки.


Дисперсными называют системы, состоящие из множества малых частиц, распре­деленных в жидкой, твердой или газообразной среде.

Понятие «дисперсный» происходит от лат. dispersus - раздробленный, рассеянный.

Для всех дисперсных систем характерны два основных признака: высокая раздробленность (дисперсность) и гетерогенность.

Гетерогенность дисперсных систем проявляется в том, что эти системы состоят из двух (или более) фаз: дисперсной фазы и диспер­сионной среды. Дисперсная фаза - это раздробленная фаза. Она состоит из частиц нерастворимого тонкоизмельченного вещества, распределенных по всему объему дисперсионной среды.

Высокая дисперсность придает веществам новые качественные признаки: повышенную реакционную способность и растворимость, интенсив­ность окраски, светорассеяние и т. п. Большая поверхность раздела создает в этих системах боль­шой запас поверхностной энергии, которая делает их термодинамически неустойчивыми, чрезвычайно реакционноспособными. В них легко протекают самопроиз­вольные процессы, приводящие к снижению запаса поверхностной энергии: адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы - гегетрогенность и высокая дисперсность - полностью определяют свойства и поведе­ние этих систем.

Классификацию дисперсных систем проводят на основе различных признаков, а именно: по размеру частиц, по агрегатному состоянию дисперсной фазы и дисперсионной среды, по характеру взаимо­действия частиц дисперсной фазы между собой и со средой.

2.2. Классификация дисперсных систем

Классификация по размеру частиц (дисперсности)

Дисперсность D является основной характеристикой дисперс­ной системы и мерой раздробленности вещества. Математически дисперсность определяют как величину, обратную размеру частицы:

D = 1/а ,

где а - размер частицы (диаметр или длина ребра), м -1 .

С другой стороны, для характеристики степени раздроблен­ности служит величина удельной поверхности S уд . Удельную поверх­ность находят как отношение поверхности S частицы к ее объему V или массе т: S уд = S / V или S уд = S / m . Если удельную поверх­ность определяют по отношению к массе частицы раздробленного вещества, то ее размерность м 2 /кг, если же по отношению к объему, то размерность совпадает с размерностью дисперсности (м -1).

Физический смысл понятия «удельная поверхность» заключа­ется в том, что это суммарная поверхность всех частиц, общий объем которых составляет 1м 3 или общая масса которых равна 1 кг.

По дисперсности системы подразделяют на типы:

1) грубо-дисперсные (грубые взвеси, суспензии, эмульсии, порошки) с радиусом частиц 10 -4 - 10 -7 м;

2) коллоидно-дисперсные (золи) с размером частиц 10 -7 - 10 -9 м;

3) молекулярные и ионные растворы с размером частиц менее 10 -9 м.

В коллоидных системах дости­гается высшая степень раздробления вещества, при которой еще сохраняются понятия «фаза» и «гетерогенность». Уменьшение раз­мера частиц еще на порядок переводит системы в гомогенные моле­кулярные или ионные растворы.

Дисперсность влияет на все основные свойства дисперсных систем: кинетические, оптические, каталитические и т. д.

Свойства дисперсных систем сопоставлены в табл. 1.2.

Т а б л и ц а 1.2.Свойства дисперсных систем разных типов

Грубодисперсные

Коллоидно-дисперсные

Молекулярные и ионные (истинные) растворы

Непрозрачные - отражают свет

Прозрачные опалесцирующие - рассеивают свет, да­ют конус Тиндаля

Прозрачные неопалесцирующие, конус Тиндаля не на­блюдается

Частицы не проходят че­рез фильтр

Частицы проходят через бу­мажный фильтр

Частицы проходят через бу­мажный фильтр

Частицы задерживаются ультрафильтрами

Частицы проходят через льтрафильтры

Гетерогенные

Гетерогенные

Гомогенные

Неустойчивы кинетически и термодинамически

Относительно устойчивы ки­нетически

Устойчивы кинет. и термодинамич.ки

Стареют во времени

Стареют во времени

Не стареют

Частицы видны в оптиче­ский микроскоп

Частицы видны в электрон. Микроскоп и ультрамикроскоп

Частицы не видны в совре­менные микроскопы

Помимо размера частиц большое значение для свойств дисперсных систем имеет геометрическая форма частиц. В зависимости от условий дробления вещества форма частиц дисперсной фазы может быть очень разнообразной. Один м 3 исходного вещества принципиаль­но возможно раздробить на кубики с длиной ребра l = 10 -8 м, вы­тянуть в нить с сечением 10 -8 х 10 -8 м или расплющить в пластину (пленку) толщиной 10 -8 м. В каждом из этих случаев система будет дисперсной со всеми присущими признаками.

Удельная поверхность частиц кубической формы возрастает от исходного значения в 6 м 2 до значения, определяемого по формуле

S уд = S / V = 6l 2 / l 3 = 6 . 10 8 м -1

Для нитей S уд = 4-10 8 м -1 ; для пленки S уд = 2 . 10 8 м -1 .

Частицы кубической, шарообразной или близкой к ним непра­вильной формы характерны для многих коллоидных растворов - золей и более грубодисперсных систем – эмульсий.

Классификация по агрегатному состоянию фаз

Наиболее распространена классификация дисперсных систем по агрегатному состоянию дисперсной фазы и дисперсионной среды. Каждая из этих фаз может быть в трех агрегатных состояниях: газообразном, жидком и твердом. Поэтому возможно существо­вание восьми типов коллоидных систем (табл. 1.3). Система «газ в газе» не входит в это число, так как является гомогенной молекуляр­ной, в ней отсутствуют границы раздела. Высокодисперсные коллоидные растворы, относящиеся к типу систем т/ж, носят название золей (от лат. solutio - раствор). Золи, у которых дисперсионной средой является вода, называют гидрозо­лями. Если дисперсионной средой служит органическая жидкость, коллоидный раствор носит название органозоля. Эти последние, в свою очередь, подразделяют на алкозоли, бензозоли, этерозоли и т.п., в которых дисперсионной средой являются соответственно спирт, бензол, эфир и т. д. В зависимости от агрегатного состояния дисперсионной среды различают лиозоли - золи с жидкой дисперсионной средой (от греч. lios - жидкость), аэрозоли - золи с газообразной дисперсионной средой, твердые золи - системы типа т/т. Грубодисперсные системы типа т/ж называют суспензиями, типа ж/ж – эмульсиями.

Таблица 2..2. Основные типы дисперсных систем

Дисп фаза

Дисп.среда

Не существ.

Жидкость

Туман, облака, аэрозоли жидких лекарств

Твердое тело

Дым, пыль, порошки, аэрозоли твердых лекарств

Жидкость

Пены, газовые эмульсии

Жидкость

Эмульсии (молоко, лекарственные эмульсии)

Твердое тело

Суспензии, коллоидные растворы

Твердое тело

Твердые пены, хлеб, пемза, силикагель, активные угли

Жидкость

Жемчуг, капиллярные системы, цементный камень, гели

Твердое тело

Цветные стекла, минералы, сплавы

Классификация по отсутствию или наличию взаимодей­ствия между частицами дисперсной фазы

По кинетическим свойствам дисперсной фазы все дисперсные системы можно подразделить на два класса: свободно-дисперсные, в которых частицы дисперсной фазы не связаны между собой и мо­гут свободно перемещаться (лиозоли, аэрозоли, суспензии, эмуль­сии), и связно-дисперсные, в которых одна из фаз структурно закре­плена и не может перемещаться свободно. К этому классу относят гели и студни, пены, капиллярно-пористые тела (диафрагмы), твердые растворы и др.

Классификация по степени взаимодействия дисперсной фазы с дисперсионной средой

Для характеристики взаимодействия между веществом дисперс­ной фазы и жидкой дисперсионной средой служат понятия «лиофильность» и «лиофобность». Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации), т. е. образова­ние сольватных (гидратных) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Системы, в которых сильно выражено взаимодействие частиц дисперсной фазы с растворителем, называют лиофильными (по отношению к воде - гидрофильными). Если частицы дисперсной фазы состоят из вещества, слабо взаимо­действующего со средой, системы являются лиофобными (по отно­шению к воде - гидрофобными) . Термин «лиофильный» происходит от греч. 1уо - растворяю и philia - любовь; «лиофобный» от 1уо - растворяю и phobia - ненависть, что означает «не любящий растворения». Хорошо сольватирующиеся лиофильные дисперсные системы образуются путем самопроизвольного диспергирования. Такие си­стемы термодинамически устойчивы. Приме­рами таких систем являются дисперсии некоторых глин и поверх­ностно-активных веществ (ПАВ), растворы высокомолекулярных веществ (ВМВ).

У гидрофобных золей частицы состоят из труднорастворимых соединений, отсутствует или слабо выражено сродство дисперсной фазы к растворителю. Такие частицы плохо сольватированы. Гидрофобные золи являются основным классом коллоидных растворов, у которых ярко выражены гетерогенность и высокая удельная поверхность.