Как объяснить сложение дробей с разными знаменателями. Сложение дробей

Правила сложения дробей с разными знаменателями очень простые.

Рассмотрим правила сложения дробей с разными знаменателями по шагам:

1. Найти НОК (наименьшее общее кратное) знаменателей. Полученный НОК будет общим знаменателем дробей;

2. Привести дроби к общему знаменателю;

3. Сложить дроби, приведенные к общему знаменателю.

На простом примере научимся применять правила сложения дробей с разными знаменателями.

Пример

Пример сложения дробей с разными знаменателями.

Сложить дроби с разными знаменателями:

1 + 5
6 12

Будем решать по шагам.

1. Найти НОК (наименьшее общее кратное) знаменателей.

Число 12 делится на 6.

Отсюда делаем вывод, что 12 есть наименьшее общее кратное чисел 6 и 12.

Ответ: нок чисел 6 и 12 равен 12:

НОК(6, 12) = 12

Полученный НОК и будет общим знаменателем двух дробей 1/6 и 5/12.

2. Привести дроби к общему знаменателю.

В нашем примере привести к общему знаменателю 12 нужно только первую дробь, ведь у второй дроби знаменатель уже равен 12.

Разделим общий знаменатель 12 на знаменатель первой дроби:

2 есть дополнительный множитель.

Умножим числитель и знаменатель первой дроби (1/6) на дополнительный множитель 2.

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей - правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби - выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Рассмотрим дробь $\frac63$. Ее величина равна 2, так как $\frac63 =6:3 = 2$. А что произойдет, если числитель и знаменатель умножить на 2? $\frac63 \times 2=\frac{12}{6}$. Очевидно, величина дроби не изменилась, так $\frac{12}{6}$ как у также равно 2. Можно умножить числитель и знаменатель на 3 и получить $\frac{18}{9}$, или на 27 и получить $\frac{162}{81}$ или на 101 и получить $\frac{606}{303}$. В каждом из этих случаев величина дроби, которую мы получаем, разделив числитель на знаменатель, равна 2. Это означает, что не изменилась.

Такая же закономерность наблюдается и в случае других дробей. Если числитель и знаменатель дроби $\frac{120}{60}$ (равной 2) разделить на 2 (результат $\frac{60}{30}$), или на 3 (результат $\frac{40}{20}$), или на 4 (результат $\frac{30}{15}$) и так далее, то в каждом случае величина дроби остается неизменной и равной 2.

Это правило распространяется также на дроби, которые не равны целому числу .

Если числитель и знаменатель дроби $\frac{1}{3}$ умножить на 2, мы получим $\frac{2}{6}$, то есть величина дроби не изменилась. И в самом деле, если вы разделите пирог на 3 части и возьмете одну из них или разделите его на 6 частей и возьмете 2 части, вы в обоих случаях получите одинаковое количество пирога. Следовательно, числа $\frac{1}{3}$ и $\frac{2}{6}$ идентичны. Сформулируем общее правило.

Числитель и знаменатель любой дроби можно умножить или разделить на одно и то же число, и при этом величина дроби не изменяется.

Это правило оказывается очень полезным. Например, оно позволяет в ряде случаев, но не всегда, избежать операций с большими числами.

Например, мы можем разделить числитель и знаменатель дроби $\frac{126}{189}$ на 63 и получить дробь $\frac{2}{3}$ с которой гораздо проще производить расчеты. Еще один пример. Числитель и знаменатель дроби $\frac{155}{31}$ можем разделить на 31 и получить дробь $\frac{5}{1}$ или 5, поскольку 5:1=5.

В этом примере мы впервые встретились с дробью, знаменатель которой равен 1 . Такие дроби играют важную роль при вычислениях. Следует помнить, что любое число можно разделить на 1 и при этом его величина не изменится. То есть $\frac{273}{1}$ равно 273; $\frac{509993}{1}$ равно 509993 и так далее. Следовательно, мы можем не разделять числа на , поскольку каждое целое число можно представить в виде дроби со знаменателем 1.

С такими дробями, знаменатель которых равен 1, можно производить те же арифметические действия, что и со всеми остальными дробями: $\frac{15}{1}+\frac{15}{1}=\frac{30}{1}$, $\frac{4}{1} \times \frac{3}{1}=\frac{12}{1}$.

Вы можете спросить, какой прок от того, что мы представим целое число в виде дроби, у которой под чертой будет стоять единица, ведь с целым числом работать удобнее. Но дело в том, что представление целого числа в виде дроби дает нам возможность эффективнее производить различные действия, когда мы имеем дело одновременно и с целыми, и с дробными числами. Например, чтобы научится складывать дроби с разными знаменателями . Предположим, нам надо сложить $\frac{1}{3}$ и $\frac{1}{5}$.

Мы знаем, что складывать можно только те дроби, знаменатели которых равны. Значит, нам нужно научиться приводить дроби к такому виду, когда их знаменатели равны. В этом случае нам опять пригодится то, что можно умножать числитель и знаменатель дроби на одно и то же число без изменения ее величины.

Сначала умножим числитель и знаменатель дроби $\frac{1}{3}$ на 5. Получим $\frac{5}{15}$, величина дроби не изменилась. Затем умножим числитель и знаменатель дроби $\frac{1}{5}$ на 3. Получим $\frac{3}{15}$, опять величина дроби не изменилась. Следовательно, $\frac{1}{3}+\frac{1}{5}=\frac{5}{15}+\frac{3}{15}=\frac{8}{15}$.

Теперь попробуем применить эту систему к сложению чисел, содержащих как целую, так и дробную части.

Нам надо сложить $3 + \frac{1}{3}+1\frac{1}{4}$. Сначала переведем все слагаемые в форму дробей и получим: $\frac31 + \frac{1}{3}+\frac{5}{4}$. Теперь нам надо привести все дроби к общему знаменателю, для этого мы числитель и знаменатель первой дроби умножаем на 12, второй - на 4, а третьей - на 3. В результате получаем $\frac{36}{12} + \frac{4}{12}+\frac{15}{12}$, что равно $\frac{55}{12}$. Если вы хотите избавиться от неправильной дроби , ее можно превратить в число, состоящее из целой и дробной частей: $\frac{55}{12} = \frac{48}{12}+\frac{7}{12}$ или $4\frac{7}{12}$.

Все правила, позволяющие проводить операции с дробями , которые мы с вами только что изучили, также справедливы и в случае отрицательных чисел. Так, -1: 3 можно записать как $\frac{-1}{3}$, а 1: (-3) как $\frac{1}{-3}$.

Поскольку как при делении отрицательного числа на положительное, так и при деле­нии положительного числа на отрицатель­ное в результате мы получаем отрицатель­ные числа, в обоих случаях мы получим ответ в виде отрицательного числа. То есть

$(-1) : 3 = \frac{1}{3}$ или $1: (-3) = \frac{1}{-3}$. Знак минус при таком написании относится ко всей дроби целиком, а не отдельно к числителю или знаменателю.

С другой стороны, (-1) : (-3) можно записать как $\frac{-1}{-3}$, а поскольку при деле­нии отрицательного числа на отрицатель­ное число мы получаем положительное число, то $\frac{-1}{-3}$ можно записать как $+\frac{1}{3}$.

Сложение и вычитание отрицательных дробей проводят по той же схеме, что и сложение, и вычитание положительных дро­бей. Например, что такое $1- 1\frac13$? Пред­ставим оба числа в виде дробей и получим $\frac{1}{1}-\frac{4}{3}$. Приведем дроби к общему знаменателю и получим $\frac{1 \times 3}{1 \times 3}-\frac{4}{3}$, то есть $\frac{3}{3}-\frac{4}{3}$, или $-\frac{1}{3}$.

Обратите внимание! Перед тем как написать окончательный ответ, посмотрите, может можно сократить дробь , которую вы получили.

Вычитание дробей с одинаковыми знаменателями, примеры:

,

,

Вычитание правильной дроби из единицы.

Если необходимо вычесть из единицы дробь, которая является правильной , единицу переводят к виду неправильной дроби , у нее знаменатель равен знаменателю вычитаемой дроби.

Пример вычитания правильной дроби из единицы:

Знаменатель вычитаемой дроби = 7 , т.е., единицу представляем в виде неправильной дроби 7/7 и вычитаем по правилу вычитания дробей с одинаковыми знаменателями.

Вычитание правильной дроби из целого числа.

Правила вычитания дробей - правильной из целого числа (натурального числа) :

  • Переводим заданные дроби, которые содержат целую часть, в неправильные. Получаем нормальные слагаемые (не важно если они с разными знаменателями), которые считаем по правилам, приведенным выше;
  • Далее вычисляем разность дробей, которые мы получили. В результате мы почти найдем ответ;
  • Выполняем обратное преобразование, то есть избавляемся от неправильной дроби - выделяем в дроби целую часть.

Вычтем из целого числа правильную дробь: представляем натуральное число в виде смешанного числа. Т.е. занимаем единицу в натуральном числе и переводим её к виду неправильной дроби, знаменатель при этом такой же, как у вычитаемой дроби.

Пример вычитания дробей:

В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.

Вычитание дробей с разными знаменателями.

Или, если сказать другими словами, вычитание разных дробей .

Правило вычитания дробей с разными знаменателями. Для того, чтобы произвести вычитание дробей с разными знаменателями, необходимо, для начала, привести эти дроби к наименьшему общему знаменателю (НОЗ) , и только послеиэтого произвести вычитание как с дробями с одинаковыми знаменателями.

Общий знаменатель нескольких дробей — это НОК (наименьшее общее кратное) натуральных чисел, которые являются знаменателями данных дробей.

Внимание! Если в конечной дроби у числителя и знаменателя есть общие множители , то дробь необходимо сократить. Неправильную дробь лучше представить в виде смешанной дроби. Оставить результат вычитания, не сократив дробь, где есть возможность, — это незаконченное решение примера!

Порядок действий при вычитании дробей с разными знаменателями.

  • найти НОК для всех знаменателей;
  • поставить для всех дробей дополнительные множители;
  • умножить все числители на дополнительный множитель;
  • полученные произведения записываем в числитель, подписывая под всеми дробями общий знаменатель;
  • произвести вычитание числителей дробей, подписывая под разностью общий знаменатель.

Таким же образом проводится сложение и вычитание дробей при наличии в числителе букв.

Вычитание дробей, примеры:

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

Как известно из математики, дробное число состоит из числителя и знаменателя. Числитель расположен вверху, а знаменатель внизу.

Производить математические действия по сложению или вычитанию дробных величин с одним и тем же знаменателем достаточно просто. Нужно всего лишь уметь складывать или вычитать между собой цифры, находящиеся в числителе (сверху), а одинаковое нижнее число остается без изменений.

Для примера возьмем дробное число 7/9, здесь:

  • цифра «семь» сверху - числитель;
  • цифра «девять» снизу - знаменатель.

Пример 1 . Сложение:

5/49 + 4/49 = (5+4) / 49 =9/49.

Пример 2 . Вычитание:

6/35−3/35 = (6−3) / 35 = 3/35.

Вычитание простых дробных величин, имеющих разный знаменатель

Чтобы выполнить математическое действие по вычитанию величин, имеющих разный знаменатель, надо первым делом привести их к единому знаменателю. При выполнении этой задачи необходимо придерживаться того правила, что этот общий знаменатель должен быть меньшим из всех возможных вариантов.

Пример 3

Даны две простые величины с разными знаменателями (нижними цифрами): 7/8 и 2/9.

Необходимо вычесть из первой величины вторую.

Решение состоит из нескольких действий:

1. Находимо найти общее нижнее число, т.е. то, что делится как на нижнюю величину первой дроби, так и второй. Это будет цифра 72, поскольку она кратна цифрам «восемь» и «девять».

2. Нижняя цифра каждой дроби увеличилась:

  • цифра «восемь» в дроби 7/8 увеличилось в девять раз - 8*9=72;
  • цифра «девять» в дроби 2/9 увеличилось в восемь раз - 9*8=72.

3. Если изменился знаменатель (нижняя цифра), значит, должен измениться и числитель (верхняя цифра). По существующему математическому правилу, верхнюю цифру надо увеличить ровно во столько же, что и нижнюю. То есть:

  • числитель «семь» в первой дроби (7/8) умножаем на цифру «девять» - 7*9=63;
  • числитель «два» во второй дроби (2/9) умножаем на цифру «восемь» - 2*8=16.

4. В результате действий у нас получились две новые величины, которые, однако, тождественны первоначальным.

  • первая: 7/8 = 7*9 / 8*9 = 63/72;
  • вторая: 2/9 = 2*8 / 9*8 = 16/72.

5. Теперь допускается произвести вычитание одного дробного числа из другого:

7/8−2/9 = 63/72−16/72 =?

6. Выполняя это действие, возвращаемся к теме вычитания дробей с одинаковыми нижними цифрами (знаменателями). А это значит, что сверху, в числителе, будет проведено действие вычитания, а нижняя цифра переносится без изменений.

63/72−16/72 = (63−16) / 72 = 47/72.

7/8−2/9 = 47/72.

Пример 4

Усложним задачу, взяв для решения несколько дробей с разными, но кратными цифрами внизу.

Даны величины: 5/6; 1/3; 1/12; 7/24.

Надо их отнять друг от друга в этой последовательности.

1. Приводим дроби вышеуказанным способом к общему знаменателю, которым будет цифра «24»:

  • 5/6 = 5*4 / 6*4 = 20/24;
  • 1/3 = 1*8 / 3*8 = 8/24;
  • 1/12 = 1*2 / 12*2 = 2/24.

7/24 - эту последнюю величину оставляем без изменения, поскольку знаменателем является общее число «24».

2. Выполняем вычитание всех величин:

20/24−8/2−2/24−7/24 = (20−8−2−7)/24 = 3/24.

3. Поскольку числитель и знаменатель получившейся дроби делятся на одно число, то их можно сократить, разделив на цифру «три»:

3:3 / 24:3 = 1/8.

4. Ответ записываем так:

5/6−1/3−1/12−7/24 = 1/8.

Пример 5

Дано три дроби с некратными знаменателями: 3/4; 2/7; 1/13.

Требуется найти разницу.

1. Приводим к общему знаменателю два первых числа, им будет цифра «28»:

  • ¾ = 3*7 / 4*7 = 21/28;
  • 2/7 = 2*4 / 7*4 = 8/28.

2. Вычитаем первые две дроби между собой:

¾−2/7 = 21/28−8/28 = (21−8) / 28 = 13/28.

3. Вычитаем из получившегося значения третью заданную дробь:

4. Приводим числа к общему знаменателю. Если нет возможности подобрать одинаковый знаменатель более легким способом, то нужно лишь выполнить действия, умножив последовательно все знаменатели друг на друга, не забывая повышать и значение числителя на такую же цифру. В этом примере делаем так:

  • 13/28 = 13*13 / 28*13 = 169/364, где 13 - это нижняя цифра от 5/13;
  • 5/13 = 5*28 / 13*28 = 140/364, где 28 - нижняя цифра от 13/28.

5. Отнимаем полученные дроби:

13/28−5/13 = 169/364−140/364 = (169−140) / 364 = 29/364.

Ответ: ¾−2/7−5/13 = 29/364.

Смешанные дробные числа

В примерах, которые были рассмотрены выше, применялись лишь правильные дроби.

Как пример:

  • 8/9 - это правильная дробь;
  • 9/8 - неправильная.

Неправильную дробь превратить в правильную нельзя, но есть возможность превратить ее в смешанную . Для чего верхнее число (числитель) делят на нижнее (знаменатель) и получают цифру с остатком. Получившееся при делении целое число так и записывают, остаток пишут в числитель вверху, а знаменатель, который снизу, остается прежним. Чтобы было понятнее, рассмотрим конкретный пример:

Пример 6

Переводим неправильную дробь 9/8 в правильную.

Для этого цифру «девять» делим на «восемь», получаем в результате смешанную дробь с целым числом и остатком:

9: 8 = 1 и 1/8 (по-другому это можно записать, как 1+1/8), где:

  • цифра 1 - получившееся при делении целое число;
  • другая цифра 1 - остаток;
  • цифра 8 - знаменатель, оставшийся неизменным.

Целое число называют еще натуральным.

Остаток и знаменатель - это новая, но уже правильная дробь.

При записи числа 1 его пишут перед правильной дробью 1/8.

Вычитание смешанных чисел с разным знаменателем

Из вышесказанного дадим определение смешанного дробного числа: «Смешанное число - это такая величина, которая равна сумме целого числа и правильной обыкновенной дроби. При этом целую часть называют натуральным числом , а то число, что в остатке, его дробной частью ».

Пример 7

Дано: две смешанные дробные величины, состоящие из целого числа и правильной дроби:

  • первая величина - 9 и 4/7, то есть (9+4/7);
  • вторая величина - 3 и 5/21, то есть (3+5/21).

Требуется найти разность между этими величинами.

1. Чтобы из 9+4/7 вычесть 3+5/21, нужно сначала вычесть друг из друга целые величины:

4/7−5/21 = 4*3 / 7*3−5/21 =12/21−5/21 = (12−5) / 21 = 7/21.

3. Полученный результат разницы двух смешанных чисел будет состоять из натурального (целого) числа 6 и правильной дроби 7/21 = 1/3:

(9 + 4/7) - (3 + 5/21) = 6 + 1/3.

Математики всех стран договорились, что знак «+» при написании смешанных величин можно опустить и оставить лишь целое число перед дробью без всякого знака.