Как появилась жизнь на земле кратко. Как появилась жизнь на Земле

Из архивов «Континента»

Хорошо известно, что наша Вселенная образовалась около 14 миллиардов лет тому назад в результате гигантского взрыва, известного в науке как Big Bang. Возникновение Вселенной “из ничего” не противоречит известным законам физики: положительная энергия вещества, образовавшегося после взрыва, в точности равна отрицательной энергии гравитации, так что полная энергия такого процесса равна нулю. В последнее время ученые обсуждают также возможность образования и других вселенных – “пузырей”. Мир, согласно этим теориям, состоит из бесконечного числа вселенных, о которых мы пока еще ничего не знаем. Интересно, что в момент взрыва образовалось не только трехмерное пространство, но, и что очень важно, и время, связанное с пространством. Время – причина всех тех изменений, которые произошли во Вселенной после Big Bang. Эти изменения происходили последовательно, шаг за шагом по мере возрастания стрелы времени, и включают в себя образование огромного числа галактик (порядка 100 млрд.), звезд (число галактик умноженное на 100 млрд.), планетных систем и в конечном счете самой жизни, включая разумную жизнь. Чтобы представить себе, как много звезд во Вселенной, астрономы приводят такое любопытное сравнение: число звезд в нашей Вселенной сравнимо с числом песчинок на всех пляжах Земли, включая моря, реки и океаны. Вселенная, замороженная во времени, была бы неизменной и мало интересной и в ней не было бы никакого развития, т.е. всех тех изменений, которые произошли потом и в конечном счете привели к существующей картине мира.

Возраст нашей Галактики 12.4 миллиардов лет, а нашей солнечной системы 4.6 млрд. лет. Возраст метеоритов и самых старых камней на Земле немного меньше 3.8-4.4 млрд. лет. Первые одноклеточные организмы, лишенные ядер прокариоты и зелено-голубые бактерии, появились 3.0-3.5 млрд. лет тому назад. Это простейшие биологические системы, способные образовывать протеины, цепи аминокислот, состоящие из основных элементов жизни С, Н, О, N, S, и ведущие независимый образ жизни. Простые зелено-голубые “аlgае”, т.е. водяные растения без сосудистых тканей и “archaebacteria” или старые бактерии (используемые для приготовления лекарственных препаратов) и сегодня важная часть нашей биосферы. Эти бактерии – первое успешное приспособление жизни на Земле. Интересно, что зелено-голубые бактерии и другие прокариоты почти не изменились в течение млрд. лет, в то же время исчезнувшие динозавры и другие виды уже никогда не могут возродиться снова, т.к. условия на Земле сильно изменились, и они уже не могут пройти через все те этапы развития, которые они прошли в те далекие годы. Если по тем или иным причинам жизнь на Земле прекратится (из-за столкновения с гигантским метеоритом, в результате взрыва соседней к солнечной системе суперновой или нашего собственного самоуничтожения), она не может начаться вновь в том же виде, ибо теперешние условия в корне отличаются от тех, которые были около четырех млрд. лет тому назад (например, наличие свободного кислорода в атмосфере, а также изменение фауны Земли). Эволюция, уникальная по своей сути, уже не может повториться в том же виде и пройти все те этапы, через которые она прошла за минувшие миллиарды лет. Доктор Пайсон из Лос-Аламосской Национальной Лаборатории США высказал весьма любопытную мысль о роли эволюции в организации системы живых структур: “Жизнь – это последовательность молекулярных взаимодействий. Если мы откроем в биологии принцип иной, чем эволюция, мы научимся создавать живые системы лабораторным путем и таким образом понять механизм образования жизни”. Причина, почему мы не можем лабораторным путем осуществить превращение видов (например, мухи дрозофилы в какой-нибудь другой вид), состоит в том, что в естественных условиях на это понадобились миллионы лет, и мы сегодня не знаем другого принципа, как вызвать такое превращение.

По мере увеличения количества прокариотов они “изобрели” явление фотосинтеза, т.е. сложную цепь химических реакций, в которых энергия солнечного света вместе с углекислым газом и водой преобразуется в кислород и глюкозу. В растениях фотосинтез осуществляется в хлоропластах, которые содержатся в их листьях, приводя к атмосферному кислороду. Атмосфера, насыщенная кислородом, появилась 2-2.5 млрд. тому назад. Эукариоты, многоклеточные клетки, содержащие ядро с генетической информацией, а также органеллы, образовались 1-2 млрд. лет тому назад. Органеллы содержатся в клетках прокариотов, а также в клетках животных и растений. ДНК – это генетический материал любой живой клетки, в которой содержится наследственная информация. Наследственные гены расположены в хромосомах, которые содержат протеины, связанные с ДНК. Все организмы – бактерии, растительный и животный миры – несмотря на гигантское разнообразие видов, имеют общее происхождение, т.е. имеют общего предка (common ancestor). Дерево жизни состоит из трех основных ветвей – Bacteria, Archaea, Eukaria. В последнюю группу входит весь растительный и животный мир. Все известные живые организмы образуют протеины, используя лишь 20 основных аминокислот (хотя общее количество аминокислот в природе равно 70), а также используют одну и то же молекулу энергии АТФ для запаса энергии в клетках. Они также используют молекулы ДНК для передачи генов из одного поколения другому. Ген – это фундаментальная единица наследственности, часть ДНК, который содержит информацию, необходимую для синтеза протеина. Различные организмы имеют сходные гены, которые могут подвергаться мутации или улучшаться в течение длительной эволюции. От бактерий до амеб и от амеб до человека) гены ответственны за характеристики организмов и улучшение видов, тогда как протеины поддерживают жизнь. Все живые организмы используют ДНК, чтобы передать свои гены другому поколению. Генетическая информация передается от ДНК протеину путем сложной цепочки превращений посредством РНК, которая подобна ДНК, но отличается от нее своей структурой. В цепочке превращений химия®биология®жизнь синтезируется органическая молекула. Биологам хорошо известны все эти превращения. Самое удивительное из них – расшифровка генетического кода (The Human Genome Project), которая поражает воображение как сложностью, так и совершенством. Генетический код универсален для всех трех ветвей дерева жизни.

Самый интересный вопрос, некоторый человечество ищет ответ в течение всей своей истории, это как возникла первая жизнь и, в частности, зародилась ли она на Земле или же была привнесена из межзвездной среды с помощью метеоритов. Все основные молекулы жизни, включая аминокислоты и ДНК, найдены и в метеоритах. Теория направленной пансмермии (panspermia) предполагает, что жизнь возникла в межзвездном пространстве (интересно, откуда?), мигрирует через огромное пространство, однако эта теория не может объяснить, как жизнь может сохраниться в суровых условиях космоса (опасная радиация, низкие температуры, отсутствие атмосферы и т.д.). Ученые придерживаются теории, согласно которой естественные, хотя и примитивные условия на Земле привели к образованию простых органических молекул, а также к развитию форм различной химической активности, которые, в конечном счете, запустили дерево жизни. В очень интересном эксперименте Miller and Urey, выполненном в 1953 году, они доказали образование сложных органических молекул (альдегидов, карбоксилов и аминокислот) путем пропускания мощного электрического разряда – аналога молнии в естественных условиях – через смесь газов CН4, NH3, H2O, H2, которые имелись в первичной атмосфере Земли. Этот эксперимент продемонстрировал, что основные химические компоненты жизни, т.е. биологические молекулы, могут быть естественным путем сформированы путем симуляции примитивных условий на Земле. Однако, никакие формы жизни, включая полимеризацию молекул ДНК, не были обнаружены которые, по-видимому, могли возникнуть только в результате длительной эволюции.

Тем временем стали появляться более сложные структуры, огромные клетки – органы и большие живые образования, состоящие из млн. и млрд. клеток (например, человек состоит из десяти триллионов клеток). Сложность системы зависела от прошедшего времени и глубины естественного отбора, который сохранял виды, наиболее приспособленные к новым условиям жизни. Хотя все простые эукариоты воспроизводились путем деления, более сложные системы образовывались половым путем. В последнем случае каждая новая клетка берет половину генов от одного родителя и вторую половину от другого.

Жизнь в течение очень длительного периода ее истории (почти 90%) существовала в микроскопических и невидимых формах. Примерно 540 млн. лет тому назад начался совершенно новый революционный период, известный в науке как Cambrian era. Это период бурного возникновения огромного количества многоклеточных видов с твердой оболочкой, скелетом и мощным панцирем. Появились первые рыбы и позвоночные, растения из океанов начали мигрировать по всей Земле. Первые насекомые и их потомки способствовали распространению по Земле и животного мира. Последовательно стали появляться насекомые с крыльями, амфибии, первые деревья, пресмыкающиеся, динозавры и мамонты, первые птицы и первые цветы (динозавры исчезли 65 млн. лет тому назад, по-видимому, вследствие гигантского столкновения Земли с массивным метеоритом). Затем наступил период дельфинов, китов, акул и приматов, прародителей обезьян. Примерно 3 млн. лет тому назад появились существа с необычайно большим и сильно развитым мозгом, hominids (первые предки людей). Появление первого человека (homo sapiens) датируется 200,000 лет тому назад. Согласно некоторым теориям, появление первого человека, который качественно отличается от всех других видов животного мира, возможно, является результатом сильной мутации hominids, которое явилось источником образования новой аллели (allele) – измененной формы одного из генов. Появление современного человека датируется примерно 100,000 лет – тому назад, исторические и культурные свидетельства нашей истории не превышают 3000-7 4000 лет, однако технологически – развитой цивилизацией мы стали совсем недавно, всего лишь 200 лет назад!

Жизнь на Земле – это продукт биологической эволюции, насчитывающей примерно 3.5 млрд. лет. Появление жизни на Земле – это результат большого числа благоприятных условий – астрономических, геологических, химических и биологических. Все живые организмы от бактерий до человека имеют общего предка и состоят из нескольких основных молекул, присущих всем объектам нашей Вселенной. Главные свойства живых организмов – они имеют реакцию, растут, размножаются и передают информацию от одного поколения другому. Мы, земная цивилизация, несмотря на свой юношеский возраст, многого достигли: освоили атомную энергию, расшифровали генетический код человека, создали сложные технологии, стали экспериментировать в области генной инженерии (синтетической жизни), занимаемся клонированием, работаем над увеличением продолжительности нашей жизни (уже сегодня ученые обсуждают возможность увеличения продолжительности жизни до 800 и более лет), начали летать в космос, изобрели компьютеры и даже пытаемся вступить в контакт с внеземной цивилизацией (программа SETI, Search for Extraterrestrial Intelligence). Т.к. другая цивилизация пройдет совершенно другой путь развития, она полностью будет отличаться от нашей. В этом смысле каждая цивилизация по-своему уникальна – возможно, – это одна из причин, почему программа SETI оказалась безуспешной. Мы стали вмешиваться в святая святых, т.е. в процессы, которые в естественной среде занимали бы миллионы и миллионы лет.

Чтобы лучше понять, как мы молоды, предположим, что полная история Земли равна одному году и что наша история началась 1 января. В этой шкале уже 1 июня появились прокариоты и зелено-голубые бактерии, которые вскоре привели к насыщенной кислородом атмосфере. Cambrion эра началась 13 ноября. Динозавры жили на Земле с 13 по 26 декабря, а первые hominids появились днем 31 декабря. К Новому году мы, уже современные люди, послали первое послание в космос – в другую часть нашей Галактики. Только примерно через 100,000 лет (или по нашей шкале через 15 минут) наше послание (не прочитанное еще никем) покинет нашу Галактику и устремится к другим галактикам. Будет ли оно прочитано когда-нибудь? Мы этого не узнаем. Вероятнее всего нет.

Для возникновения в другой части Вселенной цивилизации, подобной нашей, не только потребуются миллиарды лет. Важно, чтобы такая цивилизация имела достаточно времени для своего развития и превращения в технологическую, а главное не уничтожила себя (это другая причина, почему мы не можем найти другую цивилизацию, хотя мы ее ищем более 50 лет: она, возможно, погибает раньше, чем успевает стать технологической). Наша технология может оказать пагубное влияние на атмосферу. Уже сегодня мы озабочены появлением озоновых дыр в нашей атмосфере, которые сильно увеличились за последние 50 лет (озон – трехатомная молекула кислорода, которая, в общем, является ядом). Это – результат нашей технологической активности. Озоновая оболочка предохраняет нас от опасного ультрафиолетового излучения Солнца. Такое излучение, при наличии озоновых дыр, приведет к повышению земной температуры и как результат – к глобальному потеплению (global warming). Поверхность Марса сегодня стерильна из-за отсутствия озонового слоя. За последние 20 лет озоновая дыра в атмосфере Земли возросла до размеров большого континента. Увеличение температуры даже на 2 градуса приведет к таянию льдов, возрастанию уровня океанов, а также к их испарению и опасному увеличению углекислого газа в атмосфере. Затем произойдет новое потепление атмосферы, и этот процесс будет продолжаться, пока не испаряться все моря и океаны (ученые называют это явление runaway greenhouse effect). После испарения океанов количество углекислого газа в атмосфере увеличится примерно в 100,000 раз и составит около 100%, что приведет к полному и необратимому уничтожению не только озонового слоя земной атмосферы, но и всего живого на Земле. Такое развитие событий уже имело место в истории нашей солнечной системы на Венере. 4 млрд. лет тому назад условия на Венере были близки к земным и, возможно, даже там была жизнь, т.к. Солнце в те далекие времена светило не так ярко (известно, что интенсивность излучения Солнца постепенно увеличивается). Возможно, что жизнь с Венеры мигрировала на Землю, а с Земли, по мере возрастания солнечного излучения, мигрирует на Марс, хотя, по-видимому, такое развитие событий маловероятно из-за проблем миграции живой клетки через космос. Количество углекислого газа в атмосфере Венеры сегодня равно 98%, а атмосферное давление почти в сто раз превышает земное. Возможно, это результат глобального потепления и испарения венерианских океанов. Венера и Марс преподают нам важный урок, т.е. мы знаем сегодня, что может произойти и с нашей планетой, если не предпринимать никаких мер. Другая проблема связана с возрастанием излучения Солнца, которое, в конечном счете, обусловит runaway greenhouse effect на Земле с известным результатом.

Наше развитие идет по экспоненте, с ускорением. Население Земли удваивается каждые 40 лет и возросло примерно с 200 тысяч до 6 млрд. за последние 2000 лет. Однако, не содержатся ли в таком бурном развитии семена опасности нашему существованию? Не погубим ли мы свою цивилизацию? Успеем ли мы стать высокоразвитой цивилизацией и понять нашу историю? Сумеем ли мы летать глубоко в космос и найти другую цивилизацию, подобную нашей? Согласно Эйнштейну, самое удивительное в мире состоит в том, что мир познаваем. Пожалуй, эта одна из самых интригующих особенностей человеческой цивилизации – умение раскрывать тайны мира. Мы можем понять мир, в котором живем, и понять законы, управляющие им. Однако, почему эти законы существуют? Почему скорость света, например, равна 300,000 км/сек или почему хорошо известное в математике число я (отношение длины окружности к его диаметру) равно именно 3.14159…? Американский физик А. Майкельсон получил Нобелевскую премию за измерения скорости света с невиданной точностью (напомню, что это гигантская величина: двигаясь с такой скоростью мы бы оказались на Луне через примерно одну секунду, на Солнце через 8 минут, а в центре Галактики через 28,000 лет). Другой пример – расшифровка генетического кода, состоящего из 30 млн. кусочков, каждый длиной в 500-600 букв, потребовала 15 лет работы с использованием сложных программ и компьютеров. Оказалось, что длина всего кода равна длине 100 млн. писем. Это открытие было сделано на рубеже двух тысячелетий и показало, что, возможно, мы научимся лечить болезни любой сложности путем исправления ошибок соответствующего участка поврежденного гена. Математики с помощью быстрых компьютеров рассчитали число я с немыслимой точностью до триллиона знаков после запятой, чтобы знать точное его значение и описать это число с помощью какой-нибудь простой формулы. Кто придумал эти числа и почему они именно такие? Как генетический код мог оказаться столь совершенным? Как физические постоянные связаны с нашим мирозданием? Разумеется, они отражают геометрическую структуру нашей Вселенной и, по-видимому, имеют разное значение для разных вселенных. Мы не знаем этого сегодня, как, впрочем, много другого. Но мы стремимся найти общие законы нашего мира или даже единый закон, из которого могли бы получить все другие законы в частном случае, а также, что очень важно, понять смысл мировых постоянных. Мы также не знаем, связано ли наше существование с выполнением какой-то миссии.

Но вернемся к нашей истории и нашей эволюции. Закончилась ли она и в чем ее смысл? Что произойдет с нами через миллионы лет, если, конечно, мы сумеем решить намят технологические проблемы и не уничтожим себя? В чем смысл появления в нашей истории таких гениальных личностей, как Эйнштейн, Шекспир или Моцарт? Возможна ли новая мутация и создание другого более совершенного вида, чем человек? Может ли этот новый вид решить проблемы мироздания и понять смысл нашей истории? Мы открыли законы и измерили с захватывающей дух точностью мировые постоянные, но мы не понимаем, почему они такие и какова их роль во Вселенной. Если совсем немного изменить те постоянные, то вся наша история выглядела бы по-другому. Несмотря на всю сложность и загадочность генетического кода, загадки самой Вселенной выглядят бесконечными. В чем суть этих загадок и удастся ли нам расшифровать их? Безусловно, мы изменимся. Но как? Являемся ли мы высшим и последним звеном в длительной истории нашего развития? Является ли наша история результатом какого-то остроумного плана или же оно просто результат сотен и тысяч благоприятных условий, которые стали возможными благодаря времени и длительной эволюции? Вне сомнения, что нашему развитию нет предела и оно также бесконечно, как бесконечен мир, состоящий из миллионов и миллионов вселенных, которые постоянно и разрушаются и образуются вновь.

Илья Гулькаров, Профессор, доктор физико-математических наук, Чикаго
June 18, 2005

По современным представлениям, жизнь на Земле зародилась более 3,5 миллиардов лет назад. Это была совсем не та планета, которую мы знаем сегодня: раскалённый каменистый шар без кислорода, сотрясаемый бурной деятельностью молодых вулканов, над которым с сумасшедшей скоростью проносилось солнце и звёзды – ведь сутки длились всего около 6 часов. Теорий о происхождении первых форм жизни, а затем и более сложных, существует великое множество – включая разумный замысел. Мы же ознакомимся с основными научными идеями, понимание которых так же позволяет нам предполагать, где и при каких условиях может существовать внеземная жизнь.

Панспермия

Панспермия (от греч. «смесь» и «семя») – очень авторитетная в наше время теория о появлении жизни на Земле в результате переноса «зародышей жизни» с других планет. Эту гипотезу выдвинул немецкий учёный Г. Рихтер в 1865 году, который имел в виду перенос спор микроорганизмов либо метеоритами, либо под действием давления света. Позже была открыта космическая радиация, которая действует на живые организмы не менее губительно, чем распад урана. И теория панспермии «припадала пылью» вплоть до первого полёта на Луну – когда на прилунившемся зонде «Сервейер-3» всё-таки были найдены живые микроорганизмы с Земли, которые благополучно пережили продолжительный полёт в открытом космосе.

В 2006 году было обнаружено присутствие в кометном веществе как воды, так и простейших органических соединений. Забавно, но это означает, что маленький метеорит со светящимся шлейфом, который приближается к гораздо большему шару планеты, - это нечто вроде космического аналога женской и мужской половых клеток, вместе дающих начало новой жизни.


Часть последователей панспермии полагает, что обмен бактериями произошёл между Землёй и Марсом в тот период, когда Красная планета ещё процветала и была частично покрыта океанами. Причём совсем не обязательно этому послужили метеориты – возможно, бактерии сюда завезли разумные посетители (но это уже отдельная тема). Но даже если такие события имели место в истории – мы вынуждены будем разгадывать, откуда жизнь взялась на другой планете.

Электричество и первичный бульон


Известный эксперимент Миллера-Урея в 1953 году доказал, что электрические искры могут генерировать основу жизни - аминокислоты и сахарозу – при наличии в атмосфере воды, метана, аммиака и водорода. Это значит, что обычные молнии могли создать основные строительные блоки жизни на древней Земле, называемые первичным бульоном. Этот термин ввёл в 1924 году советский биолог Опарин. Согласно его теории, этот «супчик» возник около 4 миллиардов лет назад в мелких водоёмах планеты под воздействием электрических разрядов, космического излучения и высокой температуры жидкости. Сначала в его составе преобладали нуклеотиды, полипептиды, азотистые основания и аминокислоты. Затем на протяжении миллионов лет в первичном бульоне формировались более сложные молекулы, пока не образовали простейшие одноклеточные организмы – бактерии.

Глиняная жизнь


Если верить религиозным источникам, Адам был создан из праха земного, а в Коране и у некоторых народов (например, японцев), боги слепили людей из глины. По мнению химика-органика Александра Грэм Кернс-Смит из Университета Глазго в Шотландии, это может быть не простой аллегорией: первые молекулы жизни могли образоваться именно на глине. Первоначально примитивные углеродные соединения не имели ДНК, а значит, не могли воспроизводить себе подобных – «размножение» могло быть стимулировано только источниками из внешней среды.


Таким источником могла быть глинистая порода, которая являет собой не просто некую массу земли – это организованная, упорядоченная последовательность молекул. Глиняная поверхность могла не только концентрировать и объединять органические соединения, но на микроскопическом уровне организовывать их в структуры, действуя наподобие генома. Со временем органические молекулы «запомнили» эту последовательность и научились самоорганизовываться. Впоследствии они усложнялись: у них появился прототип ДНК, РНК и других нуклеиновых кислот.

Жизнь из океанов


«Теория подводных гидротермальных источников» предполагает, что жизнь могла зародиться у истоков подводных вулканов, которые выбрасывали сквозь трещины в океаническом дне богатые водородом молекулы и много тепла. Эти молекулы объединялись на поверхности скал, которые обеспечивали минеральные катализаторы для новых химических реакций.

Так родились бактерии, образовавшие всемирно известную геологическую диковинку - строматолиты (от «строматос» - ковер и «литос» - камень). В окаменевшем виде эти образования сохранились до сих пор. А подводные источники такого типа в наше время продолжают играть важную роль в поддержании разнообразных морских экосистем.

Холод – катализатор эволюции


Кто бы из учёных ни был прав, но простые одноклеточные бактерии всё-таки заселили планету – и в таком виде они неизменно существовали на протяжении более миллиарда лет. Затем произошёл невероятно быстрый по меркам эволюции взрыв – начали развиваться гораздо более сложные формы жизни, которые освоили сначала океаны, а затем сушу, почвы и, наконец, воздух. Не так давно учёные сумели разобраться, что стало толчком для решающих перемен. Им оказался самый мощный ледниковый период за всю историю Земли, который наступил около 3 миллиардов лет назад. Планета была полностью покрыта льдом толщиной до одного километра – специалисты назвали это явление «Земля-снежок» (вроде тех, в которые играют дети).

Условия жизни для простейших микроорганизмов резко изменились – но, с другой стороны, под толщей льда выносливым бактериям-экстримофилам пришлось адаптироваться! Именно в этот «инкубаторный» период произошло первичное разделение бактерий по способам выживания: одни из них научились получать энергию из солнечного света, другие черпали силы, перерабатывая растворённые в воде вещества. Это положило начало царствам живой природы – первые в будущем станут растениями и одноклеточными фотосинтезирующими животными, вторые – многоклеточными животными и грибами.


Но однажды горячие вулканы снова пробудились, и выплеснули в атмосферу огромное количество углекислого газа, который стал причиной мощного парникового эффекта. Планета согрелась, льды растаяли и выпустили на волю «повзрослевшие» бактерии. Процесс фотосинтеза, происходящий в цианобактериях (сине-зелёных водорослях), дал новую реакцию - и атмосфера в короткие сроки насытилась кислородом. А попавшие в океан обломки минеральных пород, принесённых ледником, дали новые варианты химических реакций. Это, как уже становится понятно, позволило эволюционировать животным. Вскоре, вместо разделения бактерий на две новых, они начали делиться без ухода в «вольное плавание», и образовывать первые многоклеточные структуры. Примером могут служить древнейшие многоклеточные животные без нервной, кровяной и пищеварительной систем – морские губки.


Согласно с этой теорией, жизнь вполне вероятна под толстым слоем льда на одном из спутников Юпитера – в скрытых от космических зондов холодных океанах Европы. Группа исследователей из NASA так же установила, что под льдами спутника присутствует геотермальная активность. Поэтому вполне возможно, что Европа повторяет наш собственный путь, и когда наше солнце начнёт стареть и станет ярче, эволюция тоже возьмёт верх над вечным холодом.


История жизни на Земле началась с момента появления первых живых организмов — примерно 3,7 миллиарда лет назад — и продолжается по сей день. Сходство между всеми организмами указывают на наличие общего предка, из которого все известные виды разошлись в процессе эволюции.

Цианобактериальные маты и археи были доминирующей формой жизни в начале архейского эона и были огромным эволюционным шагом того времени. Кислородный фотосинтез, появившийся тогда, около 3500000000 лет назад, в конечном итоге привел к оксигенации атмосферы, начиная примерно с 2400 млн лет назад. Первые свидетельства эукариот датируется 1850 млн лет назад, хотя, возможно, они появились раньше, их диверсификация ускорилась, когда они начали использовать кислород в метаболизме. Позже, около 1700000000 лет назад, стали появляться многоклеточные организмы с дифференцированными клетками выполнения специализированных функций.

Примерно 1200 млн лет назад появляются первые водоросли, а уже примерно 450 млн лет назад — первые высшие растения. Беспозвоночные животные появились в едиакарскому периоде, а позвоночные возникли около 525 000 000 лет назад во время кембрийского взрыва.

Возникновение жизни на Земле

В соответствии с современной концепцией мира РНК, рибонуклеиновая кислота (РНК) была первой молекулой, которая обладала способностью к самовоспроизведению. Могли пройти миллионы лет, прежде чем на Земле появилась первая такая молекула. Но после ее образования на нашей планете появилась возможность возникновения жизни.

Молекула РНК может работать как фермент, соединяя свободные нуклеотиды в комплементарную последовательность. Таким способом происходит размножение РНК.

Но эти химические соединения еще нельзя назвать живыми существами, поскольку они не имеют границ тела. Любой живой организм имеет следующие границы. Только внутри изолированного от внешнего хаотического движения частиц тела могут происходить сложные химические реакции, которые позволяют существу питаться, размножаться, двигаться и т. Д.

Появление изолированных полостей в океане довольно частым явлением. Их образуют жирные (алифатические) кислоты, которые попадают в воду. Все дело в том, что один конец молекулы гидрофильный, а другой — гидрофобный. Жирные кислоты, которые попадают в воду, образуют сферы таким образом, что гидрофобные концы молекул находятся внутри сферы. Возможно, молекулы РНК начали попадать в такие сферы.

Первый обмен веществ

Способность к самовоспроизведению и наличие границ тела — это еще не все признаки, которые отличают живое существо от неживой природы. Для воспроизведения внутри сферы из жирных кислот, молекулы РНК нужно было наладить процесс обмена веществ. Известно, что молекула РНК способна притягивать нужные нуклеотиды и отталкивать нужны. Поэтому ей ничего не мешало сделать это через мембрану. Скорее всего, процесс происходил так: нужен нуклеотид привлекался к мембране вплотную, как только он приближался на достаточно близкое расстояние, то начинал отталкивать от себя молекулы жирных кислот, из-за чего образовался проем по размерам нуклеотида, после чего он свободно проходил через него и присоединялся к создаваемому цепочки.

Первый деление клетки

Как начали делиться первые клетки, состоящие из молекулы РНК и мембраны из жирных кислот, в настоящее время неизвестно. Возможно, построенная внутри мембраны новая молекула РНК начинала отталкиваться от первой. В конце концов, одна из них прорывала мембрану. Вместе с молекулой РНК выходила и часть молекул жирных кислот, которые образовывали вокруг нее новую сферу.

докембрий

Докембрий длился около 3800000000 лет. В течение этого отрезка времени на Земле произошли значительные изменения: кора остыла, появились океаны и, что самое важное, появилось примитивная жизнь. Однако следы этой жизни в палеонтологической летописи редки, поскольку первые организмы были мелкими и не имели твердых оболочек.

На докембрий приходится большая часть геологической истории Земли. При этом его хронология разработана гораздо хуже, чем на следующий за ним фанерозоя. Причина этого в том, что органические остатки в докембрийских отложениях встречаются крайне редко, что является одной из характерных особенностей этих древних геологических образований. Поэтому палеонтологический метод изучения нельзя применять для докембрийских толщ.

архей

Охватывает временной промежуток 4,6-2,5 млрд лет назад.

Исследование метеоритов, горных пород и других материалов того времени показывают, что наша планета сформировалась примерно 4600000000 лет назад. К этому времени вокруг Солнца был только размытый диск, состоящий из газа и космической пыли. Затем, под действием силы тяжести пыль начал собираться в небольшие тела, которые со временем превратились в планеты.

В течение миллионов лет на Земле не существовало никаких форм жизни. После архейского эпизода расплавления верхней мантии и ее перегрева с возникновением в этой геосфере магматического океана вся начальная поверхность Земли вместе с ее первичной и сначала плотной литосферой очень быстро погрузилась в расплавы верхней мантии. Атмосфера в то время не была плотной и состояла из таких газов, как аммиак (NH 3), метан (CH 4), водород (H 2), хлор (Cl 2), пары серы. Температура ее достигала 80 ° C. Естественная радиоактивность была намного выше сегодняшней. Жизнь в таких условиях было невозможно.

4 млрд лет назад Земля столкнулась с планетой Тейя (ее размер был близок к размерам Марса). Столкновение было таким сильным, что образованные при столкновении обломки были выброшены в космос и образовали Луну. Образование Луны способствовало появлению жизни: он вызвал приливы, которые способствовали очищению и аэрации морей и стабилизировал ось вращения Земли.

Первые химические следы жизни возрастом около 3500000000 лет были обнаружены в горных породах Австралии (Пилбара). Возможно, жизнь зародилась именно в горячих источниках, где было много питательных веществ, в том числе и нуклеотидов.

Жизнь в археи развилось до бактерий и цианобактерий. Они вели придонный образ жизни: устилали дно моря тонким слоем слизи.

Катархей

Катархейський эон (др.-греч κατἀρχαῖος — «ниже древнейшего»), 4,6-3,8 миллиардов лет назад, известный как протопланетный этап развития Земли. Охватывает первую половину архея. Земля в то время была космическим телом без атмосферы и гидросферы. В таких условиях никакой жизни появиться не могло.

Во время катархею атмосфера не была плотной. Она состояла из газов и паров воды, появившиеся при столкновении Земли с астероидами.

В связи с тем, что Луна тогда был очень близко (всего на 17 000 километров) к Земле, сутки продолжалась недолго — всего 6:00. Но, по мере удаления Луны, сутки начала увеличиваться.

Эоархей

Охватывает время 4-3,6 млрд лет назад. Возможно, прокариоты появились уже в конце Эоархей. Кроме того, в еоархея относятся древнейшие геологические породы — формация Исуа в Гренландии.

палеоархея

Палеоархея (от др.-греч παλαιός — «старый» и ἀρχαῖος — «старый») продолжался с 3,6 по 3200000000 лет назад. В Австралии найдена древнейшая форма жизни, относится к этой эры — хорошо сохранившиеся остатки бактерий возрастом 3460000000 лет.

мезоархея

Мезоархея (от др.-греч μέσος — «средний» и ἀρχαῖος — «старый») продолжался 3,2-2,8 млрд лет назад. В мезоархеи уже встречаются строматолиты.

неоархей

Неоархей охватывает временной промежуток 2,8-2,5 млрд лет назад. В эту эру появился кислородный фотосинтез, который стал причиной кислородной катастрофы, которая произошла в палеопротерозоя. В этой эре активно развиваются бактерии и водоросли.

протерозойской эон

Охватывает временной промежуток 2500000000 — 543 млн лет назад. Протерозой (греч. Πρότερος — первый, старший, греч. Ζωή — жизнь) ознаменовался возникновением сложных растений, грибов и животных (например, губок). Жизнь в начале протерозоя, как и раньше, было сосредоточено в морях, так как условия на суше были не совсем благоприятными: атмосфера состояла преимущественно из сероводорода, CO 2, N 2, CH 4, и совсем малого количества O 2.

Однако, бактерии, которые жили в то время в морях, начали производить O 2 в качестве побочного продукта, и 2 млрд лет назад количество кислорода уже достигла устойчивого уровня. Но резкое увеличение количества кислорода в атмосфере привело к кислородной катастрофы, которая вызвала изменения органов дыхания у организмов, населявших в то время океаны (анаэробные изменились аэробными) и изменение состава атмосферы (образование озонового слоя). Вследствие ослабления парникового эффекта на Земле наступило длительное гуронское оледенение: температура опускалась до -40 ° С.

Дальнейшие ископаемые остатки первых многоклеточных встречаются уже после оледенения. В то время океаны населяли такие червеобразные животные, как сприггина (Spriggina). Такие животные, возможно, стали предками современных животных.

палеопротерозой

Палеопротерозой — геологическая эра, часть протерозоя, которая началась 2500000000 лет назад и закончилась 1600000000 лет назад. В это время состоялась первая стабилизация континентов. Эволюционировали цианобактерии — тип бактерий, использовал биохимический процесс фотосинтеза для производства энергии и кислорода.

Важнейшее событие раннего палеопротерозоя — кислородная катастрофа. К значительному повышению содержания кислорода в атмосфере почти все формы жизни, которые существовали в то время, были анаэробами, то есть обмен веществ в живых формах зависел от форм клеточного дыхания, не нуждались в кислороде. Кислород в больших количествах является губительным для большинства анаэробных бактерий, поэтому в настоящее время большая часть живых организмов на Земле исчезла. Формы жизни, которые остались, были или невосприимчивыми к действию кислорода, или жили в бескислородной среде.

мезопротерозой

Мезопротерозой — геологическая эра, часть протерозоя, которая началась 1600000000 лет назад и закончилась 1000000000 лет назад.

неопротерозоя

Неопротерозоя — геологическая эра (последняя эра протерозоя), которая началась 1000 млн лет назад и закончилась 542 млн лет назад. С геологической точки зрения характеризуется распадом древнего суперконтинента Родиния как минимум на 8 фрагментов, в связи с чем прекращает свое существование древней суперокеан Мировия. Во время криогению началось масштабное оледенение Земли — лед достигал экватора (Земля-снежок).

До позднего неопротерозою (Эдиакара) относятся древнейшие ископаемые остатки живых организмов, поскольку именно в это время в живых организмов начинает появляться что-то вроде твердой оболочки или скелета.

фанерозой

Фанерозойский эон (др.-греч φανερός ζωή — «явное жизни») начался примерно 543 млн лет назад и продолжается в наше время. В фанерозое появлялись и вымирали самые существа, в том числе гигантские насекомые и динозавры.

палеозойская эра

В начале палеозоя (греч. Πᾰλαιός — давний, греч. Ζωή — жизнь) появились животные с твердым наружным скелетом.

кембрийский период

Охватывает временной промежуток 543-490 млн лет назад. В кембрийский период внезапно появляется огромное разнообразие живых организмов — предков нынешних представителей многих подразделений царства животных (в отложениях, которые предшествовали кембрия, остатки таких организмов отсутствуют). Эта внезапная в геологическом масштабе событие, которое в реальности длилась миллионы лет, известная в науке как кембрийский взрыв.

Ископаемые остатки животных кембрийского периода находят довольно часто и во всем мире. В начале кембрийского периода (около 540 млн лет назад) в некоторых групп животных появляется сложно построенное глаз. Появление этого органа была огромным эволюционным шагом — теперь животные могли видеть окружающий мир. Так, жертвы теперь могли видеть охотников, а охотники — своих жертв.

В кембрийском периоде на суше жизни не существовало. Но океаны были густо населены беспозвоночными, например, губками, трилобитами, аномалокарамы. Время от времени огромные подводные оползни захоранивали группы морских существ под тоннами ила. Благодаря этим сдвигам мы можем наглядно представить себе, каким необычным был животный мир кембрийского периода, ведь в иле прекрасно сохранились в виде окаменелостей даже нежные мягкотелые животные.

В морях позднего кембрийского периода основными группами животных были членистоногие, иглокожие и моллюски. Но самым важным жителем морей того времени была бесчелюстные существо хайкоуихтис — у нее кроме глаз развилась хорда.

ордовикский период

Охватывает промежуток времени 490-443 млн лет назад. Во время ордовика суша оставалась необжитой, за исключением лишайников, которые первыми из растений стали жить на суше. Но основная жизнь развивалось достаточно активно в морях.

Основными жителями ордовикский морей были членистоногие, такие как мегалограпт. Они могли ненадолго выходить на сушу, чтобы отложить икру. Но были и другие жители, например, представитель класса головоногих ортокон камероцерас.

Позвоночные животные в ордовике сформировались еще не до конца. В морях плавали потомки хайкоуихтиса, в которых было образование, напоминавшей позвоночник.

Также в морях ордовикского периода жили представители кишечнополостных, иглокожих, кораллов, губок и других беспозвоночных.

силурийский период

Охватывает промежуток времени 443-417 млн ​​лет назад. В силуре на сушу выходят некоторые растения, например, куксония (Coocsonia), которые достигали в высоту не более 10 см, и некоторые виды лишайников. В некоторых членистоногих развились примитивные легкие, которые позволяли им дышать атмосферным воздухом, например, скорпион бронтоскорпио мог находиться на суше в течение четырех часов.

В морях через миллионы лет формируются огромные коралловые рифы, где находили приют мелкие ракообразные и членистоногие. В этом периоде членистоногие становятся еще больше, например, ракоскорпион птеригот мог достигать 2,5 метров в длину, однако, он был слишком большим, чтобы выползать на сушу.

В силурийских морях появляются полностью сформированы позвоночные животные. В отличие от членистоногих, у позвоночных был костяной хребет, позволявший им лучше маневрировать под водой.

девонский период

Охватывает промежуток времени 417-354 млн лет назад.

В девоне жизнь продолжает активно развиваться на суше и в море. Появляются первые примитивные леса, состоящие в основном из древнейших примитивных древовидных папоротников археоптерисив (Archaeopteris), которые росли в основном на берегах рек и озер.

Основное жизни в раннем девоне было представлено в основном Mesothelae и многоножками, которые дышали всей поверхностью тела и жили в очень влажных местах. Однако, к концу девона в древних артроподов появляется хитиновый панцирь, сокращается количество сегментов тела, четвертая пара лап превращается в усики и челюсти, в некоторых также развились крылья. Так появилась новая эволюционная ветвь — насекомые, которая смогла освоить самые разнообразные уголки планеты.

В середине девона на сушу ступили первые амфибии (например, гинерпетон, ихтиостега). Они не могли жить вдали от воды, так как их кожа была еще очень тонкой и незащищенной от пересыхания. К тому же, амфибии могли размножаться только при наличии воды — икринками. Вне воды потомство амфибии погибло бы: икру высушило бы солнце, ведь она не защищена никакой оболочкой, кроме тонкой пленки.

У рыб развились челюсти, которые позволяли им ловить быстрых жертв. Они начали стремительно увеличиваться в размерах. Уже к концу девона в морях появились первые костные рыбы, такие как гигантская хищная гинерия. Однако наиболее грозными обитателями девонских морей были представители группы плакодерм, такие как дунклеостей и динихтис, достигавшие в длину 8-10 метров.

каменноугольный период

Охватывает промежуток времени от 354-290 млн лет назад. В каменноугольном периоде почти по всей планете климат был жаркий и влажный. В болотистых лесах того времени росли преимущественно хвощи, древовидные папоротники и гигантские лепидодендроны, которые достигали в высоту от 10 до 35 метров, и в диаметре ствола — до одного метра.

Фауна была представлена ​​огромным количеством существ. Большое количество тепла, влаги и кислорода способствовала увеличению размера членистоногих, так, например, артроплевра могла достигать 2,5 метров в длину, а огромная стрекоза меганевра — 75 см в размахе крыльев.

Такие условия способствовали и расцвета амфибий. Они (например, протерогиринус) заняли все прибрежные области, практически окончательно вытеснив двоякодышащих и кистеперых. В каменноугольном периоде амфибии дали начало рептилиям. Первые рептилии были очень маленькими животными, которые напоминали современных ящериц, например, длина петролакозавра не превышала 40 сантиметров в длину. Рептилии могли откладывать яйца на суше — это было большим эволюционным шагом, к тому же их кожа была покрыта плотной чешуей, которая защищала кожу животного от высыхания, а следовательно, они могли спокойно отходить далеко от воды. Наличие таких приспособительных особенностей и определила их дальнейшее эволюционное успех в качестве наземных животных.

В морях каменноугольного периода также было много форм жизни. Акулы и костные рыбы (предки большинства современных рыб) доминировали в толще воды, а морское дно покрывали многочисленные коралловые рифы, которые простирались на многие километры вдоль побережья древних материков.

Конец карбона, около 290 млн лет назад, отметил длительный ледниковый период, который закончился в начале пермского периода. Ледники медленно подбирались к экватору с севера и юга. Многочисленные животные и растения не смогли приспособиться к таким климатическим условиям и вскоре вымерли.

Пермский период

Охватывает промежуток времени 290-248 млн лет назад. Через ледниковый период в конце карбона в пермском периоде климат стал холоднее и суше. Пышные тропические леса, болота изменились бескрайними пустынями и засушливыми равнинами. В таких условиях росли только самые стойкие растения — папоротники и примитивные хвойные.

Вследствие исчезновения болот резко сократилось количество амфибий, поскольку они могли жить только рядом с водой (например, амфибия-рептилиоморф сеймурия). Место амфибий заняли рептилии, поскольку они были хорошо приспособлены к жизни в сухом климате. Рептилии начали быстро увеличиваться в размере и численности, им удалось расселиться по всей суше, они дали начало таким крупным наземным животным, как пеликозавры (например, Диметродон и едафозавры). За холодного климата в таких рептилий развился парус, который помогал им регулировать температуру тела.

В эпоху поздней перми образовался единый суперконтинент — Пангея. В местах с особо сухим и жарким климатом начало образовываться все больше пустынь. В это время пеликозавры дали начало терапсид — звероподобным ящерам. Они отличались от своих предков прежде всего тем, что имели отличную от них строение зубов; во-вторых, эта группа имела гладкие кожные покровы (в процессе эволюции чешуя у них так и не развилась) в-третьих, у некоторых представителей этой группы развились вибрисы (а позже и шерстяной покров). Ряд терапсид включал как кровожадных хищников (например, горгонопсы), так и роющих растительноядных животных (например, дииктодона). Кроме терапсид на суше жили и представители семейства пареязаврив, например, покрытый толстой броней скутозавр.

В конце пермского периода климат стал намного суше, что привело к сокращению площади прибрежных зон с густой растительностью и увеличение площади пустынь. В результате из-за нехватки жизненного пространства, корма и кислорода, который производился растениями, многие виды животных и растений вымерли. Эта эволюционная событие получило название массового пермского вымирания, в процессе которого вымерло 95% всех живых существ. Ученые до сих пор спорят о причинах этого вымирания, и выдвигают некоторые гипотезы:

  1. Падение одного или нескольких метеоритов, или столкновения Земли с астероидом диаметром в несколько десятков километров (одним из доказательств этой теории является наличие 500-километрового кратера в районе Земли Уилкса;
  2. Усиление вулканической активности;
  3. Внезапный выброс метана со дна моря;
  4. Извержение трапов (базальтов), сначала относительно небольших Емейшанських трапов около 260 млн лет назад, затем колоссальных Сибирских трапов 251 млн лет назад. С этим могли быть связаны вулканическая зима, парниковый эффект из-за выброса вулканических газов и другие климатические изменения, которые повлияли на биосферу.

Однако, эволюция на этом не прекратилась: через некоторое время виды живых существ, которые выжили, дали начало новым, еще более удивительным формам жизни.

Мезозойская эра

Во время мезозоя на Земле обитали разнообразные причудливые организмы. Самые известные из них — динозавры. Они доминировали на протяжении 160 млн лет на всех континентах. Они имели самые разнообразные размеры: от совсем крошечного микрораптора, который достигал всего 70 см в длину и веса 0,5 кг, к гигантскому амфицелиаса, достигавший в длину 50 метров, а массы 150 тонн. В то время на Земле было большое разнообразие форм жизни, которые продолжали эволюционировать и совершенствоваться.

триасовый период

Охватывает временной промежуток 248-206 млн лет назад. В начале триасового периода жизни на планете продолжало медленно восстанавливаться после массового вымирания видов в конце пермского периода. Климат большей части земного шара был жарким и сухим, но достаточное количество осадков вполне могла обеспечить достаточно большое разнообразие растений. Наиболее распространенными в триасе были примитивные хвойные, папоротники и гинкговые, ископаемые остатки которых встречаются во всем мире, даже в полярных областях Земли.

Животные, которые пережили пермское массовое вымирание видов, оказались в очень выигрышной ситуации — ведь на планете почти не осталось ни их пищевых конкурентов, ни крупных хищников. Численность растительноядных рептилий начала быстро расти. То же самое произошло и с некоторыми хищниками. Вскоре большинство животных дали начало многочисленным новым и необычным видам рептилий. В раннем триасовом периоде некоторые рептилии вернулись жить в воду от них пошли нотозавры и другие полуводные существа.

В начале триасового периода жил и возможный предок динозавров — еупаркерия. Характерной особенностью еупаркерии от других ящериц было то, что она могла вставать и бегать на задних лапах.

В позднем триасовом периоде (227-206 млн лет назад) на Земле произошли события, которые определили развитие жизни в течение всей следующей части эры динозавров. В результате раскола гигантского суперконтинента Пангеи образовалось несколько материков. До позднего триаса на суше господствовали звероподобные (терапсиды) рептилии, представленные, например, плацериасом и листрозавром, а также несколько других групп причудливых пресмыкающихся, к которым относились танистрофей и протерозух. Но за сравнительно короткое время численность терапсид сильно сократилась (за исключением группы цинодонтов, которые дали начало млекопитающим). Их место заняли рептилии — архозавры, три основные группы которых вскоре стали господствующими. Этими группами животных были динозавры, птерозавры и крокодиломорфы рептилии. Быстро эволюционировали и морские рептилии, предки гигантских ихтиозавров.

Конец триасового периода отметило новое массовое вымирание видов, как и аналогичное событие в конце перми. Его причины остаются загадкой. В свое время ученые связывали его с падением на Землю астероида, оставившего после падения огромный кратер Маникуаган (Канада) диаметром 100 км, но, как оказалось, это событие произошло гораздо раньше.

Юрский период

Охватывает промежуток времени 206-144 млн лет назад. В раннем юрском периоде (206-180 млн лет назад) климат на Земле стал более теплым и влажным. В приполярных районах поднялись хвойные леса, а тропики покрылись зарослями хвойных растений, папоротников и саговников. По мере того, как континенты медленно расходились, в некоторых низменных уголках планеты формировался муссонный климат; образовались большие речные бассейны, которые регулярно затапливались водой. В раннем юрском периоде динозавры и птерозавры быстро увеличиваются в размерах, становятся более многочисленными и разнообразными и начинают расселяться по всему земному шару. Не отстают от них и морские рептилии (ихтиозавры и плезиозавры), а также моллюски (например, аммониты).

В среднем и позднем юрском периоде (180-144 млн лет назад) климат в некоторых тропических частях мира стал сухим. Возможно, изменение климата и была причиной того, что многие динозавры начали быстро превращаться в настоящих гигантов. Среди растительноядных динозавров — завропод — появляются диплодоки, брахиозавры и другие, а среди хищников — теропод — огромный алозавр. Но по суше бродили и представители других групп динозавров (например, стегозавры и отниелия). Крылатые птерозавры были представлены как рыбоядные видами (например, рамфоринхи), так и крошечными насекомоядными рептилиями (например, анурогнатом).

Теплые юрские моря изобиловали планктоном, который был кормом лидзихтисови и другим крупным рыбам. Хищные плезиозавры были представлены длинношеим криптоклидом и гигантским лиоплевродоном; в мелководных морях охотились древние морские крокодиломорфы (например, метриоринх).

меловой период

Охватывает временной промежуток 144-65 млн лет назад. В меловом периоде климат на планете по-прежнему оставался теплым; благодаря большому количеству сезонных дождей почти весь земной шар — от экватора до приполярных областей — была покрыта пышной растительностью. В позднем юрском периоде появились привычные сегодня цветочные (покрытосеменные) растения, а в меловом периоде они стали уже одной из господствующих групп растений на планете. В конце мелового периода цветочные вытеснили во многих регионах хвойные, папоротники и саговники, заявив свои права на господствующее положение в мире растений, которые они окончательно утвердят в кайнозойскую эру.

В результате различия континентов образовывались все новые протоки, моря и океаны, которые усложняли свободное перемещение животных по планете. Медленно на континентах начали появляться собственные виды растений и животных.

Меловой период был эпохой гигантов. В Южной Америке жили Гигантозавр и аргентинозавр — самые наземные животные, которые когда-либо жили на Земле, а в Северной Америке — огромные хищные тираннозавры и рогатые торозавра. Среди динозавров появились и специализированные виды; велоцираптор и протоцератопс, например, приспособились к жизни среди песчаных дюн монгольских пустынь, а лелинозавр — в южной полярной области. Млекопитающие (например, дидельфодон), как по-прежнему не играли в жизни планеты какой-либо существенной роли; они оставались небольшими животными, но их численность (особенно к концу мелового периода) начала заметно увеличиваться.

Большие изменения произошли и в морях. Их бывшие владельцы (ихтиозавры и плиозавры) уступили место быстрым хищным рыбам (например, ксифактинови) и мозазавров — новой группе гигантских рептилий, включавшей, например, тилозавра.

Увеличились размеры крылатых ящеров птерозавров. Орнитохейрус, птеранодон и большие птерозавры преодолевали по воздуху огромные расстояния и, возможно, даже перелетали с континента на континент. В воздухе летали примитивные птицы (например, иберомезорнис) некоторые морские пернатые (как, например, гесперорнис) летать не умели, но имели огромные размеры. Конец мелового периода (примерно 65 млн лет назад) был отмечен новым массовым вымиранием видов, которое стерло с лица Земли около 40% от всех существующих в то время семейств животных. Исчезли птерозавры, аммониты и мозазавры, но самыми знаменитыми жертвами этой катастрофы были, конечно же, динозавры. Едва оправились после этого испытания и много других групп живых существ.

Существуют и другие теории, касающиеся мел-палеогенового вымирания, но их придерживается лишь небольшое количество ученых.

Но, в конце концов, 65 млн лет назад на смену мезозойской эре — «возраста рептилий», пришла кайнозойская эра — «возраст млекопитающих».

кайнозойская эра

Массовое вымирание видов 65 млн лет назад отметило начало новой — кайнозойской эры, которая продолжается и сегодня. В результате катастрофических событий тех далеких времен с лица нашей планеты исчезли все животные, по размеру больше, чем крокодил. А уцелевшие небольшие животные оказались с началом новой эры в совершенно другом мире. В кайнозое продолжалось дрейф (расхождение) континентов. На каждом из них формировались уникальные сообщества растений и животных.

палеогеновый период

Палеогеновый период — геологический период, первый в кайнозое. Начался 65 млн лет назад, закончился — 24600000 лет назад, длился 40400000 лет.

В палеогене климат был равномерным тропическим. Практически вся Европа была покрыта вечнозелеными тропическими лесами, и только в северных областях росли листопадные растения. Во второй половине палеогена климат становится более континентальным, появляются ледяные шапки на полюсах.

В этом периоде начался бурный расцвет млекопитающих. После вымирания большого количества рептилий возникли многочисленные свободные экологические ниши, которые начали занимать новые виды млекопитающих. Были распространены яйцекладущие, сумчатые и плацентарные. В лесах и лесостепях Азии возникла так называемая «индрикотериева фауна».

В воздухе господствуют виялохвости беззубые птицы. Широко распространены крупные бегающие хищные птицы (диатрем). Увеличивается разнообразие цветковых растений и насекомых.

В морях процветают костистые рыбы. Появляются примитивные китообразные, новые группы кораллов, морских ежей, фораминифер — нумулитиды достигают нескольких сантиметров в диаметре, очень много для одноклеточных. Вымирают последние белемниты, начинается расцвет головоногих с редуцированной раковиной, или совсем без нее — осьминогов, каракатиц и кальмаров, которые вместе с белемнитами объединяются в группу колеоидей.

палеоценовую эпоха

Охватывает промежуток времени 65-55 млн лет назад.

С наступлением палеоцена опустела планета начинает медленно восстанавливаться от последствий катастрофы. Первыми преуспели в этом растения. Всего через несколько сотен тысяч лет значительная часть земной суши покрылась непроходимыми джунглями и болотами; густые леса зашумели даже в приполярных областях Земли. Животные, которые пережили массовое вымирание видов, оставались небольшими; они ловко лавировали между стволами деревьев и лазили по ветвям. Крупнейшими животными планеты в то время были птицы. В джунглях Европы и Северной Америки, например, охотился хищник гасторнис, который достигал высоты 2,2 метров.

Вымирание динозавров позволило млекопитающим широко расселиться по планете и занять новые экологические ниши. В конце палеоцена (около 55 млн лет назад) их разнообразие резко увеличилось. На Земле появились предки многих современных групп животных — копытных, слонов, грызунов, приматов, рукокрылых (например, летучих мышей), китов, сирен. Понемногу млекопитающие начинают покорять земной шар.

Эоцен

Охватывает промежуток времени 55-34 млн лет назад. В начале эоцена значительная часть суши все еще была покрыта непроходимыми джунглями. Климат оставался теплым и влажным. По лесной подстилке бегали примитивные млекопитающие (крошечный лошадь пропалеотерий, лептиктидий и др.). На деревьях жила годиноция (один из древнейших приматов), а в Азии жил амбулоцетус — примитивный кит, умел ходить по суше.

Около 43 млн лет назад климат на Земле стал холоднее и суше. На значительной части планеты густые джунгли уступили место редколесью и пыльным равнинам. Жизнь на открытой местности способствовало увеличению размеров млекопитающих.

Азия стала родиной гигантских бронтотерий (например, емболотерия) и массивных плотоядных животных (например, эндрюсарх, который достигал в длину 5,5 метров). В теплых морях плавали примитивные киты (например, базилозавр и дорудон), а на побережье Африки жили меритерий и странный арсинойтерий.

Около 36 млн лет назад начала замерзать расположена у южного полюса Антарктика; ее поверхность медленно покрывалась огромными ледовыми щитами. Климат на планете стал более холодным, а уровень воды в океанах упал. В разных частях света сильно изменился сезонных ритм дождей. Многочисленные животные не смогли приспособиться к этим изменениям, и всего через несколько миллионов лет примерно пятая часть всех видов живых существ, которые жили на Земле, вымерла.

олигоценового эпоха

Охватывает промежуток времени 34-24 млн лет назад. В начале олигоцена климат на планете был сухим и прохладным, что способствовало образованию открытых равнин, полупустынь и кустарниковых зарослей. В результате изменения климата в конце эоцена много древних семейств млекопитающих вымерли. Их место заняли новые виды животных, включая и прямых предков некоторых современных млекопитающих — носорогов, лошадей, свиней, верблюдов и кроликов.

Среди млекопитающих продолжают появляться гигантские вегетарианцы (индрикотерии, например, не уступали по размерам динозаврам — они могли достигать 8 метров в высоту и весить до 15 тонн) и хищники (например, энтелодонты и гиенодоны).

В результате различия континентов Южная Америка и Австралия полностью отделились от остального мира. Со временем на этих «островных» континентах сформировалась уникальная фауна, представленная сумчатыми млекопитающими и другими животными.

Около 25 млн лет назад в Азии образуются первые обширные равнины, поросшие злаками — степи. С тех пор злаки, которые когда-то были несущественным элементом наземных ландшафтов, во многих частях мира постепенно превращаются в господствующий тип растительности, покров наконец пятую часть поверхности суши.

неогеновый период

Неогеновый период начался около 25000000 лет назад, закончился лишь 2 миллиона лет назад. Продолжительность неогена — 23 миллионов лет. Млекопитающие осваивают моря и воздуха — возникают киты и рукокрылые. Плацентарные вытесняют на периферию остальное млекопитающих. Фауна этого периода становится все более похожей на современную. Но есть и отличия — все еще существуют мастодонт, гипарионы, саблезубый тигр. Большие нелетучие птицы играют большую роль, особенно в изолированных, островных экосистемах.

миоценовыми эпоха

Охватывает временной промежуток 24-5 млн лет назад. Чередование засушливых и дождливых сезонов привело к тому, что в миоцене значительная часть суши покрыта бескрайними степями. Поскольку злаки и другие травы перевариваются плохо, у травоядных млекопитающих сформировались новые типы зубов и изменился пищеварительный аппарат, что позволило им извлекать из этого легкодоступного корма максимум питательных веществ.

Степи стали родиной быков, оленей и лошадей. Многие из этих животных держались стадами и кочевали с места на место вслед за дождями. А за стадами травоядных шли следом и хищники.

Другие млекопитающие предпочитали ощипывания листьев деревьев и кустарников. Некоторые из них (например, Дейнотерий и Халикотерий) достигали очень больших размеров.

В миоцене образовались многочисленные горные системы — Альпы, Гималаи, Анды и Скалистые горы. Некоторые из них стали настолько высокими, что изменили характер циркуляции воздуха в атмосфере и начали играть важную роль в формировании климата.

плиоценовыми эпоха

Охватывает промежуток времени 5-2,6 млн лет назад. В плиоцене климат Земли стал еще разнообразнее. Планета разделилась на большое количество климатических регионов — от территорий, покрытых полярной льдом в жарких тропиков.

В поросших злаками степях каждого континента появлялись все новые виды травоядных животных и хищников, которые охотились на них. В восточной и южной частях Африки густые леса уступили открытым саваннам, что заставило первых гоминид (например, афарского австралопитека) спуститься с деревьев и добывать корм на земле.

Около 2500000 лет назад американский континент, примерно в течение 30 млн лет находился в изоляции от остального мира, столкнулся с Северной Америкой. С севера на территорию современной Аргентины проникли смилодон и другие хищники, а гигантские дедикуры, фороракосы и другие представители южноамериканской фауны перебрались в Северную Америку. Это переселение животных получило название «Большой обмен».

Антропогеновое (четвертичный) период

Это кратчайший геологический период, но именно в четвертичном периоде сформировалось большинство современных форм рельефа и произошло много существенных событий в истории Земли (с точки зрения человека), самые важные из которых — ледниковая эпоха и появление человека. Продолжительность четвертичного периода настолько мала, что привычные палеонтологические методы относительного и изотопного определения возраста оказались недостаточно точными и чувствительными. На таком коротком интервале времени используется, прежде всего, радиоуглеродный анализ и другие методы, большинство из которых базируется на распаде короткоживущих изотопов. Специфика четвертичного периода по сравнению с другими геологическими периодами вызвала появление особой ветви геологии — четвертичную.

Четвертичный период делится на плейстоцен и голоцен.

плейстоценовыми эпоха

Охватывает промежуток времени 2600000 — 11,7 тыс. Лет назад. В начале плейстоцена на Земле наступил длительный ледниковый период. В течение двух миллионов лет на планете многократно чередовались очень холодные и относительно теплые отрезки времени. В холодные промежутки, которые продолжались примерно 40000 лет, континенты покрывались ледниками. В промежутках теплее климатом (межледниковых) лед отступала, и уровень они в морях поднимался.

У многих животных холодных регионов планеты (например, у мамонта и шерстистого носорога) появился густой шерстистый покров и толстый слой подкожного жира. На равнинах паслись стада оленей и лошадей, на которых охотились пещерные львы и другие хищники. А около 180 000 лет назад на них начали охотиться и люди — сначала неандерталец, а затем и человек разумный.

Однако многие крупные животных не смогли приспособиться к резким колебаниям климата и вымерли. Около 10 000 лет назад ледниковый период закончился, и климат на Земле стал более теплым и влажным. Это способствовало быстрому увеличению численности человеческой популяции и расселению людей по всему земному шару. Они научились обрабатывать землю и выращивать культурные растения. Сначала маленькие сельскохозяйственные общины разрослись, появились города, а всего через несколько тысячелетий человечество превратилось в мировое сообщество, что использует все достижения высоких технологий. Однако многие виды животных, с которыми люди испокон веков делили планету, оказались на грани исчезновения. Ученые все чаще говорят о том, что по вине человека на Земле развернулось новое массовое вымирание видов.

голоценовом эпоха

Охватывает промежуток времени от 11,7 тыс. Лет назад и до наших дней. Жизнь животных и растений незначительно менялось в течение голоцена, но есть большие перемещения в их распределениях. Многие крупных животных, включая мамонтов и мастодонтов, саблезубых кошек (таких как смилодон и гомотерия) и гигантских ленивцев начали вымирать с позднего плейстоцена по ранней голоцен. В Северной Америке многочисленные животные, которые процветали в других краях (включая лошадей и верблюдов), вымирали. Некоторые объясняют сокращение американской мегафауны прибытия предков американских индейцев, но все же большинство ученых утверждают, что большее влияние оказало изменение климата.

Среди археологических культур того времени можно назвать гамбургскую культуру, культуру федермесер и натуфийской культуру. Возникают древнейшие города мира, например, Иерихон на Ближнем Востоке.

Наука

По подсчетам ученых, жизнь на земле зародилась около 3 миллиардов лет назад : за это время простейшие организмы развились в сложные формы жизни. Однако для ученых до сих пор остается загадкой, как зародилась жизнь на планете, и они выдвинули несколько теорий, объясняющих этот феномен:

1. Электрические искры

В ходе знаменитого эксперимента Миллера-Юри (Miller-Urey Experiment), ученые доказали, что молнии могли способствовать появлению основных веществ, необходимых для зарождения жизни: электрические искры образовывают аминокислоты в атмосфере, состоящей из огромного количества воды, метана, аммиака и водорода. Затем из аминокислот развились более сложные формы жизни. Эту теорию несколько изменили после того, как исследователи выяснили, что атмосфера планеты миллиарды лет назад была бедна водородом. Ученые предположили, что метан, аммиак и водород содержались в вулканических облаках, насыщенных электрическими зарядами.


2. Глина

Химик Александр Грэм Кэрнс-Смит (Alexander Graham Cairns-Smith) из университета Глазго, Шотландия, выдвинул теорию о том, что на заре зарождения жизни в глине содержалось много органических компонентов, находящихся недалеко друг от друга, и что глина способствовала организации этих веществ в структуры, подобные нашим генам.

ДНК хранит информацию о структуре молекул, и генетические последовательности ДНК указывает на то, как аминокислоты должны построиться в белки. Кэрнс-Смит предполагает, что кристаллы глины способствовали организации органических молекул в упорядоченные структуры, а позднее этим стали заниматься сами молекулы, "без помощи" глины.


3. Глубоководные жерла

Согласно этой теории, жизнь зародилась в подводных гидротермальных жерлах, выбрасывающих молекулы, богатые водородом. На их каменистой поверхности эти молекулы могли собраться вместе и стать минеральными катализаторами для реакций, которые и привели к зарождению жизни. Даже сейчас у таких гидротермальных жерл, богатых химической и термальной энергией, обитает довольно большое количество живых существ.


4. Ледяное начало

3 миллиарда лет назад Солнце светило далеко не так ярко, как сейчас, и, соответственно, тепла до Земли доходило меньше. Вполне возможно, что поверхность земли покрывал толстый слой льда, который защищал хрупкие органические вещества , находящиеся в воде под ним, от ультрафиолетовых лучей и космического воздействия. К тому же, холод помог молекулам дольше просуществовать, в результате чего стали возможны реакции, приведшие к зарождению жизни.


5. Мир РНК

ДНК нужны белки для формирования, а белкам для образования нужна ДНК. Как могли они сформироваться друг без друга? Ученые предположили, что в этом процессе участвовала РНК, которая, так же, как и ДНК, хранит информацию. Из РНК, соответственно, образовались белки и ДНК , которые заменили ее в виду своей большей эффективности.

Возник другой вопрос: "Как появилась РНК?". Некоторые считают, что она самопроизвольно появилась на планете, а другие отрицают такую возможность.


6. "Простая" теория

Некоторые ученые предположили, что жизнь развилась не из сложных молекул вроде РНК, а из простых, которые взаимодействовали друг с другом. Они, возможно, находились в простых оболочках, сходных с клеточными мембранами. В результате взаимодействии этих простых молекул появились сложные , которые эффективнее вступали в реакции.


7. Панспермия

В конце концов, жизнь могла зародиться не на нашей планете, а принесена из космоса : в науке этот феномен называется панспермией. У этой теории есть вполне прочная основа: из-за космического воздействия от Марса периодически отделяются обломки камней, которые долетают и до Земли. После того, как ученые обнаружили марсианские метеориты на нашей планете, они предположили, что эти объекты и принесли с собой бактерии. Если верить им, то все мы марсиане . Другие исследователи предположили, что жизнь принесли кометы из других звездных систем. Даже если они правы, то человечество будет искать ответ на другой вопрос: "А как жизнь зародилась в космосе?".