Как решать определение числовой функции. «Определение числовой функции и способы её задания» - Урок

Что такое функция. Определение. Соответствия, при которых каждому элементу одного множества сопоставляется единственный элемент другого множества называются функциями. Пишут: у = f(x), x Є X. Переменную х называют независимой переменной или аргументом. Множество всех допустимых значений независимой переменной является областью определения функции и обозначается D(y). Переменную у – зависимой переменной. Множество всех значений зависимой переменной является областью значений функции и обозначается Е(у).


Способы задания функции Существуют 4 способа задания функции. 1. Табличный способ. Удобен тем, что позволяет найти значения функции имеющихся в таблице значений аргумента без вычислений. Х2345 У Аналитический способ. Функция задается одной или несколькими формулами. Этот способ незаменим для исследования функции, установления ее свойств. У=2 х+5, у= х² -5 х+1, у= |х+5|. 3. Графический способ. Функция задается своей геометрической моделью на координатной плоскости. 4. Описательный способ. Удобно использовать тогда, когда задание другими способами затруднительно.


§3 Свойства функции Монотонность: Возрастание; убывание нули функции (значения аргумента, в которых значение Функции равно нулю) непрерывность периодичность четность нечетность Экстремумы: точка максимума, точка минимума выпуклость Наибольшее и наименьшее значения функции Промежутки знакопостоянства (промежутки, в которых функция принимает только положительные или только отрицательные значения)




О. Функция вида у=к/х, где к 0, называется обратной пропорциональностью. График обратной пропорциональности (гипербола) получается из графика функции у=1/х с помощью растяжения (а при к








Функция у = |х| у=|х |= х, если х 0 -х, если х


0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." class="link_thumb"> 11 Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига. 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига.">


Нахождение области определения функции




Множество значений функции 1.у= 2sin²x-cos2x Решение: 2sin²x-cos2x=2sin²x-(1-2sin²x)=4sin²x-1 0 Sin²x 1, -1 4sin²x-1 3 Ответ: -1 у 3 2. у = |cosx| Решение: -1 cosx 1, 0 |cosx| 1, |cosx| 1 1 Ответ: -1 у 1 3. Функция задана графиком. Укажите множество значений этой функции. E(f)=(-2;2] E(f)= [-3;1] E(f)= (-;4]







Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Числовые функции. Определение и способы задания.

Напомним Если даны числовое множество и правило, позволяющее поставить в соответствие каждому элементу из множества определенное число, то говорят, что задана функция с областью определения: – область определения функции; – независимая переменная или аргумент; – зависимая переменная; множество всех значений, называют областью значений функции и обозначают.

Если дана функция, и на координатной плоскости отмечены все точки вида, где, а, то множество этих точек называют графиком функции, .

Графики некоторых функций прямая

парабола

гипербола

Зная график функции с помощью геометрических преобразований можно построить график функции. Для этого надо сделать параллельный перенос графика функции на вектор, то есть на вправо, если, и влево, если на вверх, если, и вниз, если.

Пример -4 0 1 2 3 4

Задать функцию – указать правило, которое поз- воляет по произвольно выбранному значению вычислить соответствующее значение. Чаще всего это правило связано с формулой (например). Такой способ задания функции называется аналитическим.

Пример Пусть – некоторая линия на координатной плоскости

Тем самым на отрезке задана функция. Такой способ задания функции называют графическим. Заметим, что если функция была задана аналитически и нам удалось построить ее график, то тем самым мы фактически осуществили переход от аналитического способа задания функции к графическому.

Табличный способ задания функции – с по-мощью таблицы, в которой указаны значения функции для конечного множества значений аргумента. Например: 5 7 8 9 10 12 5 7 4 6 5 7 8 9 10 12 5 7 4 6

Словесный способ задания функции – способ, при котором правило задания функции описывается словами.

Тема урока: « Определение числовой функции и способы её задания».

Дидактическая цель. Обобщить и систематизировать имеющиеся у учащихся знания о функциях. Дать определения области определения функции и графика функции, а так же рассмотреть способы задания функции.

Воспитательная цель. Познакомить учащихся с причинно-следственными связями на примере развития понятия функции. Идея зависимости величин восходит к древнегреческой науке. Развитие механики и техники в XVI-XVII вв. потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г.Лейбницем (1646-1716). П.Ферма и Р. Декарт показали, как представлять функции аналитически. Декарт ввел в математику понятие переменной величины. Строгое определение функции дал Ию. Бернулли (1667-1748), а затем его ученик, член Петербургской Академии наук Л.Эйлер (1707-1783) ввел обозначение f(x) и объявил понятие функции центральным понятием анализа. Позднее Ж. Фурье (1768-1783), Н.И. Лобачевский (1792-1856), П. Дирихле (1805-1859) и другие внесли большой вклад в развитие понятия функции. Установление функциональной зависимости между величинами иллюстрирует важные философские категории – причины и следствия.

В процессе построения графиков необходимо обращать внимание на правильность выполнения графика, эстетическое оформление, воспитывать при этом аккуратность, внимание, четкость, учить производительно использовать каждую минутку учебного времени, с целью подготовки к ЕГЭ.

Основные знания и умения. Знать: определения числовой функции, графика функции; способы задания функции. Уметь находить область определения и область значения функции, а также выполнять простейшие преобразования графиков функции: растяжение и сжатие вдоль осей координат, сдвигать, вдоль осей координат, зеркальное отображение относительно оси абсцисс.

Обеспечение занятия

ТСО Компьютер, мультимедийный проектор, экран.

Оснащение ТСО. DVD-диски « Алгебра 7-11», «Алгебра 10-11». Программное обеспечение « Графопостроитель».

Вид занятия . Обобщение и систематизация знаний, умений и навыков.

Мотивация познавательной деятельности учащихся.

При изучении и исследовании разнообразных явлений природы, при решении технических задач приходится рассматривать взаимосвязанные переменные величины. В природе не существует изолированных переменных величин, на связанных с другими физическими величинами. Например, пройденный путь является функцией времени. Многие понятия данной темы имеют большое значение для последующего изучения математики. Функции, их свойства и графика являются и объектом изучения, и той непосредственной средой, в которой строятся все основные понятия «математического анализа».

Последовательность изложения материала

    Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

    Параллельный перенос графика функции вдоль осей координат.

    Растяжение или сжатие графика функции по осям координат.

    Построение графиков функций, аналитическое выражение которых имеет знак модуля.

    Способы задания функции.

I .Повторение опорных знаний учащихся.

Найдите на рисунке и назовите графики функций:

y= ax+b, y= ax 2 +bx+c,

Слайд №1

II Обобщение и систематизация знаний.

1 Основные понятия и определения: функции, области определения функции, области значения функции, графика функции.

Слайд №2

Если даны числовое множество Х и правило f, позволяющее поставить в соответствие каждому элементу х их множества Х определенное число у, то говорят, что задана функция у=f(х) с областью определения Х.

Пишут: у=f(х), х

Для области определения функции используют обозначение D(f).

Переменную х называют независимой переменной или аргументом,

а переменную у – зависимой переменной.

Множество всех значений функции: у=f(х), х называют областью значений функции и обозначают Е(f).

Если дана функция у=f(х) , х и на координатной плоскости хОу отмечены все точки вида (х;у), где х, а у=f(х), то множество этих точек называют графиком функции у=f(х), х.

2 Параллельный перенос графика функции вдоль осей координат.

Слайд №3

Вопрос :

Как параллельно переносить график функции при а>0 и b

Рассмотрим параллельный перенос графика функции вдоль координатных осей на примере функции у=х 2 .

Слайд№4

3 Растяжение или сжатие графика функции по осям координат.

Теперь вспомним как преобразовывается график функции у=f(х), в следующих случаях

у= bf(x), если b>1или 0

y=f(ax), если a>0 или 0

Слайд№5

Как изменятся графики при b>1 и 0

Рассмотрим на примере функции у=
.

Слайд№6

Рассмотрим на примере функции: у=х 2

Слайд№7

4.Построение графиков функций, аналитическое выражение которых имеет знак модуля.

Слайд №8

f (х), при у=
- часть графика верхней полуплоскости и на оси абсцисс без изменения, а вместо части графика в нижней полуплоскости строим симметричную ей относительно оси Ох.

Рассмотрим преобразования графика функции у= f (х), при у= f ( - часть графика в правой полуплоскости и на оси ординат без изменения, а вместо части в левой полуплоскости строим симметричную правой относительно оси Оу.

Слайд №9

5.Способы задания функций.

Работа по учебнику страницы 9, 10 с комментариями учителя.

1. Аналитический способ - задание функции с помощью формулы (или формул). Сюда относится и параметрический способ. Аналитический способ саамы распространенный, основной способ задания функции в математике. Но он недостаточно нагляден и часто требует больших вычислений.

2. Графический способ - задание функции с помощью графика. используется в неуке и технике, причём иногда график бывает единственно доступным способом задания функции, например при пользовании приборами, автоматически записывающими изменение одной величины в зависимости от изменения другой (барограф, термограф, кардиограф и др.)

3.Словесный – задание функции словами.

4. Табличный – задание функции с помощью таблицы. Распространен в науке, технике т т.д. Этот способ определяет функцию не полностью и не дает наглядного изображения характера изменения функции с изменением аргумента.

III Применение знаний при решении примеров и задач.

1. Найти область определение и область значений функции на чертеже

(задания ЕГЭ 2007 года)

Слайд №10

2. Решить в учебнике №1.4(а)

Найдите область определения функции и область значений:

Ответ: D(f)=(-∞;0)
Е(f)= (-∞;3)

3. Решить в учебнике № 1.5(а)

Найдите область определения функции:

Ответ: (-∞;

4. Решить графически уравнение в учебнике №1.16(в) (самостоятельно с последующей проверкой).

На рисунке дан граф соответствия между множествами Х = {а ;b ;с ;d ;е },Y = {1; 2; 3; 4; 5}. Данное соответствие таково, что не у каждого элемента множестваХ есть соответствующий элемент множестваY , но если есть, то он единственный.

А = {а ;b ;с } – множество тех элементов, для которых есть соответствующий элемент в множествеY . Заметим, что каждому элементу множестваА соответствует единственный элемент множестваY .

Определение . Соответствие между множествамиХ иY , где каждому элементу множестваХ соответствует не более одного элемента множестваY , называетсяфункциональнымсоответствиемилифункцией.

Функции обозначают буквами латинского алфавита f ,g ,h и др. и пишут:у =f (х ).

х – независимая переменная или аргумент, все значения, которые принимает независимая переменная – область определения функции.

Пусть дана функция f с областью определенияА Х , гдеХ – множество отправления функцииf . Множество прибытия обозначимY .

Элемент у Y , соответствующий элементух А , называют значением функцииf и пишуту =f (х ).

Определение. Множество всеху Y , которые являются значениями функцииf , называютмножеством значенийфункцииf .

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл.

Пример . Пусть дана функцияf (х ) =. Областью определения функцииf (х ) является множествоR \ {2}.

Способы задания функций

    Аналитическоезадание функции – задание функции с помощью формулыу =f (х ), гдеf (х ) – некоторое выражение в переменнойх .

    Табличноезадание функции – приводится таблица, указывающая значение функции для имеющихся в таблице значениях аргумента. Этот способ часто используется на практике, когда зависимость одной величины от другой находят опытным путем; оказывается удобным, т.к. позволяет найти значение функции для имеющихся в таблице значений аргумента без вычислений.

    Графическоезадание функции. Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.

Свойства функций

Четные и нечетные функции

Определение . Функцияу =f (х ) называетсячетной, если для любого элементах f (–х ) = f (х ).

Определение . Функцияу =f (х ) называетсянечетной, если для любого элементах из области определения функции выполняется равенство f (–х ) = – f (х ).

Из определений следует, что область определения Х как четной, так и нечетной функции должна обладать следующим свойством: еслих Х , то – х Х .

График четной функции симметричен относительно оси ординат, а график нечетной функции симметричен относительно начала координат.

Возрастающие и убывающие функции

Определение . Функцияу =f (х ) называетсявозрастающейна промежуткеХ , еслих 1 ,х 2 Х , таких, чтох 1 <х 2 , выполняется неравенствоf (х 1) < f (х 2).

Определение . Функцияу =f (х ) называетсяубывающейна промежуткеХ , еслих 1 ,х 2 Х , таких, чтох 1 <х 2 , выполняется неравенствоf (х 1) > f (х 2).

Определение . Функция называетсямонотоннойна некотором промежуткеА , если она на этом промежутке возрастает или убывает.

6.1. Определение числовой функции 70

7.1. Сужение функции 72

7.2. Способы задания функции 73

7.3. Явно или неявно заданные функции 73

7.4. Параметрически заданные функции 75

7.5. График функции 77

7.6. Примеры построения графиков функций 78

7.7. Упражнения для самостоятельной работы 83

Вопросы для самопроверки 85

Глоссарий 85

      1. Определение числовой функции

Обозначения: или
или
или
или
.

где x - это независимая переменная, или аргумент;y - это зависимая переменная, или функция.

Если обозначить через

X – множество числовых значений, которые может принимать переменнаяx ,

Y – множество числовых значений, которые принимает переменнаяy ,

то функциональная зависимость между переменными x иy здесь задает отображение числового множестваX на числовое множествоY , при котором каждому элементу
ставится в соответствие единственный элемент множестваY (рис. 40).

Рис. 40

В отличие от более общего определения функции как отображения множеств, состоящих из элементов любой природы, числовая функция задает отображение множества X , элементами которого являются числа, на множествоY , элементами которого тоже являются числа. Кроме того, далее будем считать, что множествоY - это есть множество значений функции, так что отображение
является сюръекцией.

МножествоX задания функции и множествоY значений функции для числовых функций традиционно называютобластью определения функции (ООФ) иобластью значений функции (ОЗФ) .

Значение функции в точке

Если задано отображение множеств функцией
, то элементы множествX иY называются точками. Символом
обозначается при этом как сама функция, так и элемент
, соответствующий элементуx при этой функциональной зависимости.

Если x 0 - это фиксированное значение аргументаx , то значение функции в точкеx 0 обозначается следующими символами:

или
или
или
.

Например,

;



,
.

      1. Сужение функции

Если есть функция
и рассматривается некоторое подмножествоЕ множестваХ , то отображение
называетсясужением функции f на множество Е .

Пример 1 (сужение функций)

1)
,
- это есть сужение функции
,
на множество
;

2) любая последовательность
есть сужение функции
на множество натуральных чисел; например,
– это есть сужение функции
,
на множество.

Наряду с понятием сужения функции существует и понятие расширения функции.

Пример 2 (расширение функций)

1)
; от этой функции можно перейти к её расширению на множество
:
;

2) от функции
можно перейти к её расширению на множество
, если рассматривать её значения на множестве комплексных чисел, где возможно извлечение корня квадратного из отрицательного числа.

      1. Способы задания функции

1.Аналитический способ задания функции - функция задается математической формулой, связывающей аргумент и функцию. По этой формуле для каждого возможного значения аргумента можно вычислить соответствующее значение функции. При этом нужно различать:

    явное задание функции,

    неявное задание функции,

    параметрическое задание функции.

2.Табличный способ задания функции - используется для функций, заданных на дискретном конечном множестве значений аргумента; записывается обычно в виде следующей таблицы:

3.Графический способ задания функции - задается множество точек координатной плоскости, координаты которых являются соответствующими друг другу значениями аргумента и функции.

4.Описательный способ задания функции – функциональная зависимость описывается словами. Например,
, где- этоцелая часть x , которая определяется как наибольшее целое число, не превышающееx .