Кошка шредингера простыми словами. Парадокс кота Шредингера

Наверняка многие сталкивались с этой загадочной формулировкой. А большинство до конца не могли понять, в чем суть дела. Кот Шредингера – это эксперимент, который назван по фамилии создателя, австрийского физика и одного из основоположника квантовой механики. В нашем материале мы просто и кратко рассказываем про смысл эксперимента. Для чего он был нужен?

Эрвин Шредингер – известный физик-теоретик. В 1935 году он решил провести виртуальный эксперимент с котом. Все это, чтобы доказать, что копенгагенская интерпретация суперпозиции (смешения двух состояний) не совсем верна в отношении к квантовой теории.

В чем суть эксперимента?

Шредингер мысленно помещает живого кота в стальную камеру вместе с молотом, флаконом синильной кислоты и очень небольшим количеством радиоактивного вещества. Если хотя бы один атом радиоактивного вещества распадется в течение испытательного периода, механизм реле спустит молот. А вот тот уже перевернет флакон с ядовитым газом и заставит кота умереть.

Для чего Шредингер это придумывает?

В квантовой механике считается, что если за ядром никто и ничто не наблюдает, то он находится в смешанном, неопределенном состоянии. И распавшемся, и не распавшемся сразу. А вот когда появляется наблюдатель, ядро оказывается в одном из состояний. Кстати, эксперимент Шредингера имел цель – выяснить, в какой именно момент «кот одновременно мертвый и живой». А также когда выявляется конкретное состояние. Ученый хочет доказать, что квантовая механика невозможна без тонких деталей. А они определяют, при каких именно условиях случается коллапс волновой функции (изменение состояния). А также определяют, когда объект остается в одном из возможных состояний (никак не в нескольких сразу).

Эрвин Шредингер хотел указать на странное заключение квантовых теоретиков. Они считали, что обычный человек может увидеть истинное состояние материи невооруженным . Копенгагенская интерпретация квантовой физики была доминирующей в то время. Она считала, что атомы или фотоны существуют в нескольких состояниях в один момент (находятся в суперпозиции) и не переходят в определенное, пока они не наблюдаются.

Эксперимент Шредингера гововит о том, что наблюдатель не может знать, распался атом вещества или нет. К тому же наблюдатель не знает, разбился ли флакон и погиб ли кот. В соответствии с копенгагенской интерпретацией, кот будет жив и мертв, пока кто-то не заглянет в коробку. В квантовой механике способность быть живой и мертвой до тех пор, пока ее не наблюдают, называется квантовой неопределенностью или парадоксом наблюдателя. Логика, лежащая в основе парадокса наблюдателя, заключается в том, что наблюдения могут определять результаты.

Шредингер согласился с тем, что суперпозиция существует. Кстати, при его жизни ученые смогли доказать это, изучая интерференцию в световых волнах. Но он задавался вопросом о том, когда на самом деле суперпозиция сменяется определенным состояние. Эксперимент Шредингера заставил людей задаться вопросом. На самом ли деле возможно определить исход жизни кота, открыв коробку (посмотреть на него)?

Но будет кот жив или мертв, даже если коробку не открывать?

Этим парадоксальным мысленным экспериментом Шредингер доказал ошибочность копенгагенской интерпретации в квантовой физике. Эта интерпретация может срабатывать на микроскопическом уровне. Но к макроскопическому миру она не имеет отношения (кот взят как пример макроскопического ). То, что ученые знали о природе материи на микроскопическом уровне и то, что люди наблюдают на макроскопическом уровне, еще полностью не изучено. Роль наблюдателя остается важным вопросом в изучении квантовой физики и является бесконечным источником предположений.

Энциклопедичный YouTube

    1 / 5

    ✪ 🔶 Кот Шредингера

    ✪ Физика - Квантовая теория. Кот Шрёдингера и двойная щель.

    ✪ Кот Шрёдингера

    ✪ Кот Шредингера

    ✪ Кот Шрёдингера мысленный эксперимент в квантовой механике

    Субтитры

    [музыка] Австрийский физик Эрвин Шрёдингер является одним из основателей квантовой механики. Однако он известен благодаря тому, чего никогда не делал - мысленного эксперимента связанного с котом. Он предложил поместить кота в запечатанный контейнер вместе с устройством, имеющим 50% шанс убить его в течение часа. Спустя час, ученому стало интересно в каком же состоянии находится кот? Здравый смысл подсказывает, что тот либо жив, либо мертв. Но Шрёдингер обратил внимание, что согласно квантовой физике, в момент перед открытием контейнера, кот равнозначно жив и мертв, в одно и тоже время. И только после открытия контейнера, мы можем увидеть единственное определенное состояние животного. До этого он пребывает в состоянии неопределенности - наполовину в одном состоянии, наполовину - в другом. Это кажется абсурдным, на что и обратил внимание Шрёдингер. Он обнаружил, что квантовая физика настолько философски противоречива, что забросил теорию, которую сам же помог создать и обратился к работам по биологии. Несмотря на кажущуюся абсурдность, эксперимент Шрёдингера весьма реален. Более того, важность его бесспорна. пребывать в двух состояниях одновременно, Если бы у квантовых объектов не было возможности то и не существовало бы компьютера, с помощью которого вы смотрите это видео. Квантовый феномен Суперпозиции является следствием двойственного, материально-волнового происхождения сущего. Для того, чтобы любой объект имел свойства волны, он должен простираться на определенное расстояние. Тем самым, он займет множество позиций одновременно. Тем не менее, длина волны любого объекта, ограниченного небольшим участком пространства, не может быть однозначно определена и объект существует как множество волн одновременно. Нам недоступны свойства волн повседневных объектов, поскольку длина волны уменьшается только при увеличении импульса. И кот кажется относительно большим и тяжелым. Если взять отдельный атом и увеличить его до размеров Солнечной системы, то длина волны кота, убегающего от физика, была бы так же мала, как и атом внутри такой Солнечной системы. Она слишком мала для обнаружения, поэтому мы никогда не увидим как кот ведёт себя как волна. В то же время микрочастица, такая как электрон, может продемонстрировать впечатляющее доказательство своего двойственного происхождения. Если один за другим направлять электроны сквозь две узких щели в преграде, каждый электрон ведет себя как частица, и в конечном итоге оказывается в определенном месте в каждый конкретный момент. Но если многократно повторять этот эксперимент, отслеживая все отдельные результаты, можно заметить, что электроны образуют рисунок, который характерен для поведение волны. Комбинации полос - областей с множеством электронов, отделенных областями, где их нет вообще. Если заблокировать одну из щелей, полосы исчезнут. Это доказывает, что рисунок является следствием прохождения каждого электрона сквозь обе щели одновременно. Отдельный электрон не определяет, отправиться ему налево или направо, он проходит слева и справа одновременно. Эта Суперпозиция состояний также приводит нас к современным технологиям. Любой электрон, находясь около ядра в любом атоме, существует в форме распределенной, волнообразной орбиты. При сближении двух атомов, электронам не приходится выбирать только один атом, они распределяются между ними. Таким образом формируются химические связи. Любой электрон в любой молекуле связан не только с атомом А или Б, но с А и Б одновременно. При увеличении количества атомов, электроны рассредотачиваются еще дальше, распределяясь между большим количеством атомов одновременно. В твердом теле электроны не связаны с конкретным атомом, они распределяются между ними всеми, распространяясь на больший объем пространства. Эта гигантская Суперпозиция состояний определяет способы, которыми электроны двигаются сквозь материю, будь-то проводник, диэлектрик или полупроводник. Понимание того, как электроны распределяются между атомом, позволяет максимально точно контролировать свойства полупроводниковых материалов, таких как кремний. Правильное комбинирование различных полупроводников позволяет нам создавать транзисторы на миниатюрном уровне - миллионы их приходятся на один компьютерный чип. Такие чипы и их распределенные электроны помогают работать компьютеру, который вы используете для просмотра этого видео. Согласно старой шутке, интернет существует с целью распространения видео о котиках. На самом деле, на базовом уровне, интернет обязан своему существованию Австрийскому физику и его воображаемому коту.

Суть эксперимента

Фактически Хокинг и многие другие физики придерживаются мнения, что «Копенгагенская школа» интерпретации квантовой механики подчёркивает роль наблюдателя безосновательно. Окончательного единства среди физиков по этому вопросу всё ещё не достигнуто.

Распараллеливание миров в каждый момент времени соответствует подлинному недетерминированному автомату в отличие от вероятностного, когда на каждом шаге выбирается один из возможных путей в зависимости от их вероятности.

Парадокс Вигнера

Это усложнённый вариант эксперимента Шрёдингера. Юджин Вигнер ввёл категорию «друзей». После завершения опыта экспериментатор открывает коробку и видит живого кота. Вектор состояния кота в момент открытия коробки переходит в состояние «ядро не распалось, кот жив». Таким образом, в лаборатории кот признан живым. За пределами лаборатории находится друг . Друг ещё не знает, жив кот или мёртв. Друг признает кота живым только тогда, когда экспериментатор сообщит ему исход эксперимента. Но все остальные друзья ещё не признали кота живым, и признают только тогда, когда им сообщат результат эксперимента. Таким образом, кота можно признать полностью живым (или полностью мёртвым) только тогда, когда все люди во вселенной узнают результат эксперимента. До этого момента в масштабе Большой Вселенной кот, согласно Вигнеру, остаётся живым и мёртвым одновременно .

(с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Эксперимент (который в принципе может быть выполнен, хотя работающие системы квантовой криптографии, способные передавать большие объёмы информации, ещё не созданы) также показывает, что «наблюдение» в копенгагенской интерпретации не имеет отношения к сознанию наблюдателя, поскольку в данном случае к изменению статистики на конце кабеля приводит совершенно неодушевлённое ответвление провода.

Была своего рода «вторичность». Сам он редко занимался определенной научной проблемой. Его излюбленным жанром работы был отклик на чье-либо научное изыскание, развитие этой работы или ее критика. Несмотря на то, что сам Шредингер был индивидуалистом по характеру, ему всегда была необходима чужая мысль, опора для дальнейшей работы. Несмотря на этот своеобразный подход, Шредингеру удалось сделать немало открытий.

Биографические данные

Теория Шредингера сейчас известна не только студентам физико-математических факультетов. Она будет интересна всякому, кто испытывает интерес к популярной науке. Эта теория была создана известным физиком Э. Шредингером, который вошел в историю как один из создателей квантовой механики. Ученый родился 12 августа 1887 года в семье владельца фабрики по изготовлению клеенки. Будущий ученый, прославившийся на весь мир своей загадкой, увлекался в детстве ботаникой и рисованием. Первым его наставником был отец. В 1906 году Шредингер начал учебу в Венском университете, во время которой и начал восхищаться физикой. Когда настала Первая мировая война, ученый пошел на службу артиллеристом. В свободное время занимался изучением теорий Альберта Эйнштейна.

К началу 1927 года в науке сложилась драматическая ситуация. Э. Шредингер считал, что основанием теории о квантовых процессах должна служить идея о непрерывности волн. Гейзенберг, напротив, считал, что фундаментом для этой области знаний должна быть концепция о дискретности волн, а также идея о квантовых скачках. Нильс Бор не принимал ни одной из позиций.

Достижения в науке

За создание концепции волновой механики в 1933 году Шредингер получил Нобелевскую премию. Однако, воспитанный в традициях классической физики, ученый не мог мыслить иными категориями и не считал квантовую механику полноценной отраслью знания. Его не могло удовлетворить двойственное поведение частиц, и он пытался свести его исключительно к волновому. В своей дискуссии с Н. Бором Шредингер выразился так: «Если мы планируем сохранить в науке эти квантовые скачки, тогда я вообще жалею, что связал свою жизнь с атомной физикой».

Дальнейшие работы исследователя

При этом Шредингер был не только одним из создателей современной квантовой механики. Именно он был тем ученым, который ввел в научный обиход термин «объектность описания». Это возможность научных теорий описывать реальность без участия наблюдателя. Его дальнейшие исследования были посвящены теории относительности, термодинамическим процессам, нелинейной электродинамике Борна. Также ученым было сделано несколько попыток создать единую теорию поля. Кроме того, Э. Шредингер владел шестью языками.

Самая знаменитая загадка

Теория Шредингера, в которой фигурирует тот самый кот, выросла из критики ученого квантовой теории. Один из ее основных постулатов гласит, что пока за системой не производится наблюдение, она находится в состоянии суперпозиции. А именно, в двух и более состояниях, которые исключают существование друг друга. Состояние суперпозиции в науке имеет следующее определение: это способность кванта, которым может быть также электрон, фотон, или, например, ядро атома, находиться одновременно в двух состояниях или даже в двух точках пространства в тот момент, когда никто за ним не наблюдает.

Объекты в разных мирах

Простому человеку очень сложно понять такое определение. Ведь каждый объект материального мира может быть либо в одной точке пространства, либо в другой. Проиллюстрировать этот феномен можно следующим образом. Наблюдатель берет две коробки, и кладет в одну из них шарик для тенниса. Будет ясно, что в одной коробке он находится, а в другой - нет. Но если в одну из емкостей положить электрон, то верным будет следующее утверждение: эта частица находится одновременно в двух коробках, каким бы парадоксальным это ни казалось. Точно так же электрон в атоме не находится в строго определенной точке в тот или иной момент времени. Он вращается вокруг ядра, располагаясь на всех точках орбиты одновременно. В науке этот феномен называется «электронным облаком».

Что хотел доказать ученый?

Таким образом, поведение маленьких и больших объектов реализуется по совершенно разным правилам. В квантовом мире существуют одни законы, а в макромире - абсолютно другие. Однако нет такой концепции, которая объясняла бы переход от мира материальных предметов, привычных для людей, к микромиру. Теория Шредингера и была создана, для того чтобы продемонстрировать недостаточность исследований в области физики. Ученый хотел показать, что есть наука, целью которой является описание небольших объектов, и есть область знаний, изучающая обычные предметы. Во многом благодаря работам ученого и произошло разделение физики на две области: квантовую и классическую.

Теория Шредингера: описание

Свой знаменитый мысленный эксперимент ученый описал в 1935 году. В его проведении Шредингер опирался на принцип суперпозиции. Шредингер подчеркивал, что пока мы не наблюдаем за фотоном, он может быть как частицей, так и волной; как красным, так и зеленым; как круглым, так и квадратным. Этот принцип неопределенности, который непосредственно вытекает из концепции квантового дуализма, Шредингер и использовал в своей известной загадке про кота. Смысл эксперимента вкратце состоит в следующем:

  • В закрытую коробку помещается кот, а также емкость, в которой содержится синильная кислота и радиоактивное вещество.
  • Ядро в течение часа может распадаться. Вероятность этого составляет 50%.
  • Если атомное ядро распадется, то это будет зафиксировано счетчиком Гейгера. Механизм сработает, и ящик с отравой будет разбита. Кот умрет.
  • Если же распада не произойдет, то кот Шредингера будет жив.

Согласно этой теории, пока не осуществляется наблюдение за котом, он находится одновременно в двух состояниях (мертв и жив), точно так же, как и ядро атома (распавшееся или не распавшееся). Конечно, это возможно только лишь по законам квантового мира. В макромире кот не может быть и живым, и мертвым одновременно.

Парадокс наблюдателя

Чтобы понять суть теории Шредингера, необходимо также иметь представление о парадоксе наблюдателя. Его смысл состоит в том, что объекты микромира могут находиться одновременно в двух состояниях только тогда, когда за ними не производится наблюдение. К примеру, в науке известен так называемый «Эксперимент с 2-мя щелями и наблюдателем». На непрозрачную пластинку, в которой были сделаны две вертикальные щели, ученые направляли пучок электронов. На экране, находившемся за пластиной, электроны рисовали волновую картину. Иными словами, они оставляли черные и белые полосы. Когда же исследователи захотели понаблюдать, каким образом электроны пролетают через щели, то частицы отобразили на экране всего лишь две вертикальные полосы. Они вели себя как частицы, а не как волны.

Копенгагенское объяснение

Современное объяснение теории Шредингера носит название копенгагенского. Исходя из парадокса наблюдателя, оно звучит следующим образом: до тех пор, пока никто не наблюдает за ядром атома в системе, оно находится одновременно в двух состояниях - распавшемся и нераспавшемся. Однако утверждение о том, что кот жив и мертв одновременно, крайне ошибочно. Ведь в макромире никогда не наблюдаются те же явления, что и в микромире.

Поэтому речь идет не о системе «кот-ядро», а о том, что между собой связаны счетчик Гейгера и ядро атома. Ядро может выбрать то или иное состояние в момент, когда производятся измерения. Однако данный выбор имеет место не в тот момент, когда экспериментатор открывает ящик с котом Шредингера. На самом деле, открытие ящика имеет место в макромире. Иными словами, в системе, которая очень далека от атомного мира. Поэтому ядро выбирает свое состояние именно в тот момент, когда оно попадает на детектор счетчика Гейгера. Таким образом, Эрвин Шредингер в своем мысленном эксперименте описал систему недостаточно полно.

Общие выводы

Таким образом, не совсем корректно связывать макросистему с микроскопическим миром. В макромире квантовые законы теряют свою силу. Ядро атома может находиться одновременно в двух состояниях только лишь в микромире. То же самое не может быть сказано относительно кота, поскольку он является объектом макромира. Поэтому только на первый взгляд создается впечатление, что кот переходит из суперпозиции в одно из состояний в момент открытия ящика. В действительности его судьба определяется в тот момент, когда атомное ядро взаимодействует с детектором. Вывод можно сделать такой: состояние системы в загадке Эрвина Шредингера никак не связано с человеком. Оно зависит не от экспериментатора, а от детектора - предмета, который «ведет наблюдение» за ядром.

Продолжение концепции

Теория Шредингера простыми словами описывается так: пока наблюдатель не смотрит на систему, она может находиться одновременно в двух состояниях. Однако еще один ученый - Юджин Вигнер, пошел дальше и решил довести концепцию Шредингера до полного абсурда. "Позвольте! - сказал Вигнер, - А что если рядом с экспериментатором, наблюдающим за котом, стоит его коллега?" Напарник не знает о том, что именно увидел сам экспериментатор в тот момент, когда открыл коробку с котом. Кот Шредингера выходит из состояния суперпозиции. Однако никак не для коллеги наблюдателя. Только в тот момент, когда последнему станет известна судьба кота, животное можно окончательно назвать живым или мертвым. Кроме того, на планете Земля живут миллиарды людей. И самый последний вердикт можно будет вынести только тогда, когда результат эксперимента станет достоянием всех живых существ. Конечно, всем людям можно рассказать судьбу кота и теорию Шредингера кратко, однако это очень долгий и трудоемкий процесс.

Принципы квантового дуализма в физике так и не были опровергнуты мысленным экспериментом Шредингера. В каком-то смысле каждое существо можно назвать ни живым и ни мертвым (находящимся в суперпозиции) до тех пор, пока есть хотя бы один человек, за ним не наблюдающий.

Как объяснил нам Гейзенберг, из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера, которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Теперь про кота. Всем известно, что коты любят прятаться в коробках (). Эрвин Шредингер тоже был в курсе. Более того, с чисто нордическим изуверством он использовал эту особенность в знаменитом мысленном эксперименте. Суть его заключалась в том, что в коробке с адской машиной заперт кот. Машина через реле подсоединена к квантовой системе, например, радиоактивно распадающемуся веществу. Вероятность распада известна и составляет 50%. Адская машина срабатывает когда квантовое состояние системы меняется (происходит распад) и котик погибает полностью. Если предоставить систему "Котик-коробка-адская машина-кванты" самой себе на один час и вспомнить, что состояние квантовой системы описывается в терминах вероятности, то становится понятным, что узнать жив котик или нет, в данный момент времени, наверняка не получится, так же, как не выйдет точно предсказать падение монеты орлом или решкой заранее. Парадокс очень прост: волновая функция, описывающая квантовую систему, смешивает в себе два состояния кота - он жив и мертв одновременно, так же как связанный электрон с равной вероятностью может находится в любом месте пространства, равноудаленного от атомного ядра. Если мы не открываем коробку, мы не знаем точно, как там котик. Не произведя наблюдения (читай измерения) над атомным ядром мы можем описать его состояние только суперпозицией (смешением) двух состояний: распавшегося и нераспавшегося ядра. Кот, находящийся в ядерной зависимости, и жив и мертв одновременно. Вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное?

Копенгагенская интерпретация эксперимента говорит нам о том, что система перестаёт быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение, оно же измерение (коробка открывается). То есть сам факт измерения меняет физическую реальность, приводя к коллапсу волновой функции (котик либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого)! Вдумайтесь, эксперимент и измерения, ему сопутствующие, меняют реальность вокруг нас. Лично мне этот факт выносит мозг гораздо сильнее алкоголя. Небезызвестный Стив Хокинг тоже тяжело переживает этот парадокс, повторяя, что когда он слышит про кота Шредингера, его рука тянется к браунингу. Острота реакции выдающегося физика-теоретика связанна с тем, что по его мнению, роль наблюдателя в коллапсе волновой функции (сваливанию её к одному из двух вероятностных) состояний сильно преувеличена.

Конечно, когда профессор Эрвин в далеком 1935 г. задумывал свое кото-измывательство это был остроумный способ показать несовершенство квантовой механики. В самом деле, кот не может быть жив и мертв одновременно. В результате одной из интерпретаций эксперимента стала очевидность противоречия законов макро-мира (например, второго закона термодинамики - кот либо жив, либо мертв) и микро-мира (кот жив и мертв одновременно).

Вышеописанное применяется на практике: в квантовых вычислениях и в квантовой криптографии. По волоконно-оптическому кабелю пересылается световой сигнал, находящийся в суперпозиции двух состояний. Если злоумышленники подключатся к кабелю где-то посередине и сделают там отвод сигнала, чтобы подслушивать передаваемую информацию, то это схлопнет волновую функцию (с точки зрения копенгагенской интерпретации будет произведено наблюдение) и свет перейдёт в одно из состояний. Проведя статистические пробы света на приёмном конце кабеля, можно будет обнаружить, находится ли свет в суперпозиции состояний или над ним уже произведено наблюдение и передача в другой пункт. Это делает возможным создание средств связи, которые исключают незаметный перехват сигнала и подслушивание.

Еще одной наиболее свежей интерпретацией мысленного эксперимента Шредингера является рассказ Шелдона Купера, героя сериала «Теория большого взрыва» («Big Bang Theory»), который он произнес для менее образованной соседки Пенни. Суть рассказа Шелдона заключается в том, что концепция кота Шредингера может быть применена в отношениях между людьми. Для того чтобы понять, что происходит между мужчиной и женщиной, какие отношения между ними: хорошие или плохие, – нужно просто открыть ящик. А до этого отношения являются одновременно и хорошими, и плохими.

Все мы слышали про знаменитого кота Шредингера, но знаем ли мы, что это за кот такой на самом деле? Давайте разберемся и попытаемся рассказать о знаменитом коте Шредингера простыми словами.

Кот Шредингера – это эксперимент, проведенный Эрвином Шредингером, одним из отцов-основателей квантовой механики. Причем это не обычный физический эксперимент, а мысленный .

Надо признать, что Эрвин Шредингер был человеком с очень богатым воображением.

Итак, что у нас есть в качестве воображаемой основы для проведения эксперимента? Есть кот, помещенный в коробку. В коробке также находится счетчик Гейгера с некоторым очень маленьким количеством радиоактивного вещества. Количество вещества таково, что вероятность распада и нераспада одного атома в течение часа – одинакова. Если атом распадется, запустится специальный механизм, который разобьёт колбу с синильной кислотой, и бедный кот умрет. Если же распада не произойдет, то кот продолжит тихонько сидеть себе в коробке и мечтать о сосисках.

В чем же суть кота Шредингера? Зачем вообще было придумывать такой сюрреалистический опыт?

Согласно результатам эксперимента мы узнаем, жив кот или нет, только когда открываем коробку. С точки зрения квантовой механики кот одновременно (как и атом вещества) находится сразу в двух состояниях – и жив, и мертв одновременно. Это и есть знаменитый парадокс кота Шредингера.

Естественно, такого быть не может. Эрвин Шредингер поставил этот мысленный эксперимент, чтобы показать несовершенство квантовой механики при переходе от субатомных систем к макроскопическим.

Приведем формулировку самого Шредингера:

Можно построить и случаи, в которых довольно бурлеска. Пусть какой-нибудь кот заперт в стальной камере вместе со следующей дьявольской машиной (которая должна быть независимо от вмешательства кота): внутри счётчика Гейгера находится крохотное количество радиоактивного вещества - столь небольшое, что в течение часа может распасться только один атом, но с такой же вероятностью может и не распасться; если же это случится, считывающая трубка разряжается и срабатывает реле, спускающее молот, который разбивает колбочку с синильной кислотой.

Если на час предоставить всю эту систему самой себе, то можно сказать, что кот будет жив по истечении этого времени, коль скоро распада атома не произойдёт. Первый же распад атома отравил бы кота. Пси-функция системы в целом будет выражать это, смешивая в себе или размазывая живого и мёртвого кота (простите за выражение) в равных долях. Типичным в подобных случаях является то, что неопределённость, первоначально ограниченная атомным миром, преобразуется в макроскопическую неопределённость, которая может быть устранена путём прямого наблюдения. Это мешает нам наивно принять «модель размытия» как отражающую действительность. Само по себе это не означает ничего неясного или противоречивого. Есть разница между нечётким или расфокусированным фото и снимком облаков или тумана.

Определенно положительным моментом в данном эксперименте является тот факт, что не одно животное в его ходе не пострадало.

Напоследок, для закрепления материала предлагаем Вам посмотреть видео из старого доброго сериала «Теория Большого Взрыва».

А если у Вас вдруг остались вопросы или преподаватель задал задачку по квантовой механике, обращайтесь к . Вместе мы решим все вопросы гораздо быстрее!