Математическая запись закона радиоактивного распада. Закон радиоактивного распада

Законы радиоактивного распада ядер

Способность ядер самопроизвольно распадаться, испуская частицы, называется радиоактивностью. Радиоактивный распад - статистический процесс. Каждое радиоактивное ядро может распасться в любой момент и закономерность наблюдается только в среднем, в случае распада достаточно большого количества ядер.
Постоянная распада λ - вероятность распада ядра в единицу времени.
Если в образце в момент времени t имеется Nрадиоактивных ядер, то количество ядер dN, распавшихся за время dt пропорционально N.

dN = -λNdt. (13.1)

Проинтегрировав (1) получим закон радиоактивного распада

N(t) = N 0 e -λt . (13.2)

N 0 - количество радиоактивных ядер в момент времени t = 0.
Cреднее время жизни τ –

. (13.3)

Период полураспада T 1/2 - время, за которое первоначальное количество радиоактивных ядер уменьшится в два раза

T 1/2 = ln2/λ=0.693/λ = τln2. (13.4)

Активность A - среднее количество ядер распадающихся в единицу времени

A(t) = λN(t). (13.5)

Активность измеряется в кюри (Ки) и беккерелях (Бк)

1 Ки = 3.7*10 10 распадов/c, 1 Бк = 1 распад/c.

Распад исходного ядра 1 в ядро 2, с последующим его распадом в ядро 3, описывается системой дифференциальных уравнений

(13.6)

гдеN 1 (t) и N 2 (t) -количество ядер, а λ 1 иλ 2 - постоянные распада ядер 1 и 2 соответственно. Решением системы (6) с начальными условиями N 1 (0) = N 10 ; N 2 (0) = 0 будет

, (13.7a)

. (13.7б)

Рисунок 13. 1

Количество ядер 2 достигает максимального значения при .

Если λ 2 < λ 1 (), суммарная активностьN 1 (t)λ 1 + N 2 (t)λ 2 будет монотонно уменьшаться.
Если λ 2 >λ 1 ()), суммарная активность вначале растет за счет накопления ядер 2.
Если λ 2 >> λ 1 , при достаточно больших временах вклад второй экспоненты в (7б) становится пренебрежимо мал, по сравнению со вкладом первой и активности второго A 2 = λ 2 N 2 и первого изотопов A 1 = λ 1 N 1 практически сравняются. В дальнейшем активности как первого так и второго изотопов будут изменяться во времени одинаково.

A 1 (t) = N 10 λ 1 = N 1 (t)λ 1 = A 2 (t) = N 2 (t)λ 2 . (13.8)

То есть устанавливается так называемое вековое равновесие , при котором число ядер изотопов в цепочке распадов связано с постоянными распада (периодами полураспада) простым соотношением.

. (13.9)

Поэтому в естественном состоянии все изотопы, генетически связанные в радиоактивных рядах, обычно находятся в определенных количественных соотношениях, зависящих от их периодов полураспада.
В общем случае, когда имеется цепочка распадов 1→2→...n, процесс описывается системой дифференциальных уравнений

dN i /dt = -λ i N i +λ i-1 N i-1 . (13.10)

Решением системы (10) для активностей с начальными условиями N 1 (0) = N 10 ; N i (0) = 0 будет

(13.12)

Штрих означает, что в произведении, которое находится в знаменателе, опускается множитель с i = m.

Изотопы

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов (см .также АТОМА ЯДРО). Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопаминазываются поэтомуразновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и созданапротонно-нейтронная модель ядра.В результатев науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка. В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И. Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом(илимасс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов. Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов. Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтез. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.


Похожая информация.


Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

§ 15-ж. Закон радиоактивного распада

Появление «ручных» сцинтилляционных счетчиков и, главным образом, счётчиков Гейгера–Мюллера, которые помогли автоматизировать подсчёты частиц (см. § 15-е), привело физиков к важному выводу. Любой радиоактивный изотоп характеризуется самопроизвольным ослабеванием радиоактивности, выражающимся в уменьшении количества распадающихся ядер в единицу времени.

Построение графиков активности различных радиоактивных изотопов приводило учёных к одной и той же зависимости, выражающейся показательной функцией (см. график). По горизонтальной оси отложено время наблюдения, а по вертикальной – количество нераспавшихся ядер. Кривизна линий могла быть различной, однако сама функция, которой выражались описываемые графиками зависимости, оставалась одной и той же:

Эта формула выражает закон радиоактивного распада: количество нераспавшихся с течением времени ядер определяется как произведение начального количества ядер на 2 в степени, равной отношению времени наблюдения к периоду полураспада, взятой с отрицательным знаком.

Как выяснилось в ходе опытов, различные радиоактивные вещества можно охарактеризовать различным периодом полураспада – временем, за которое количество ещё нераспавшихся ядер уменьшается вдвое (см. таблицу).

Периоды полураспада некоторых изотопов некоторых химических элементов. Приведены значения как для естественных, так и для искусственных изотопов.

Йод-129 15 млн лет Углерод-14 5,7 тыс лет
Йод-131 8 дней Уран-235 0,7 млрд лет
Йод-135 7 часов Уран-238 4,5 млрд лет

Период полураспада – общепринятая физическая величина, характеризующая скорость радиоактивного распада. Многочисленные опыты показывают, что даже при очень длительном наблюдении за радиоактивным веществом его период полураспада постоянен, то есть не зависит от числа уже распавшихся атомов. Поэтому закон радиоактивного распада нашёл применение в методе определения возраста археологических и геологических находок.

Метод радиоуглеродного анализа. Углерод – очень распространённый на Земле химический элемент, в состав которого входят стабильные изотопы углерод-12, углерод-13 и радиоактивный изотоп углерод-14, период полураспада которого составляет 5,7 тысяч лет (см. таблицу). Живые организмы, потребляя пищу, накапливают в своих тканях все три изотопа. После прекращения жизни организма поступление углерода прекращается, и с течением времени его содержание убывает естественным путём, за счёт радиоактивного распада. Поскольку распадается только углерод-14, с течением веков и тысячелетий изменяется соотношение изотопов углерода в ископаемых останках живых организмов. Измерив эту «углеродную пропорцию», можно судить о возрасте археологической находки.

Метод радиоуглеродного анализа применим и для геологических пород, а также для ископаемых предметов быта человека, но при условии, что соотношение изотопов в образце не было нарушено за время его существования, например, пожаром или действием сильного источника радиации. Неучёт подобных причин сразу после открытия этого метода приводил к ошибкам на несколько веков и тысячелетий. Сегодня применяются «вековые калибровочные шкалы» для изотопа углерода-14, исходя из его распределения в долгоживущих деревьях (например, в американской тысячелетней секвойе). Их возраст можно подсчитать весьма точно – по годовым кольцам древесины.

Предел применения метода радиоуглеродного анализа в начале XXI века составлял 60 000 лет. Для измерения возраста более древних образцов, например горных пород или метеоритов, используют аналогичный метод, но вместо углерода наблюдают за изотопами урана или других элементов в зависимости от происхождения исследуемого образца.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г. Таким образом, существуют следующие виды радиоактивного распада: α-распад; -распад; - распад; е - захват.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов , которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (порядковый номер элемента). Количество нуклонов в ядре называют массовым числом и обозначают А . Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами . Все изотопы одного химического элемента имеют одинаковыехимические свойства, а физические свойства могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х . Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента.

Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы.

Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распадаλ.

Постоянная распада λ- вероятность того, что ядро данного изотопа распадется за единицу времени.



Обозначим число N ядер радиоактивного распада в момент времени t, dN 1 - число ядер распавшихся за время dt. Поскольку количество ядер в веществе огромно, то выполняется закон больших чисел. Вероятность распада ядра за малое время dt находится по формуле dP = λdt .Частота равна вероятности: d N 1 / N = dP = λdt. d N 1 / N = λdt - формула определяющая количество распавшихся ядер.

Решением уравнения является: , - формула называется законом радиоактивного распада: Число радиоактивных ядер убывает со временем по экспоненциальному закону.

Здесь N- число нераспавшихся ядер к моменту времени t; N о - первоначальное число нераспавшихся ядер; λ - постоянная радиоактивного распада.

На практике используют не постоянную распада λ , а величину, называемую периодом полураспада Т .

Период полураспада (Т) - время, в течение которого распадается половинарадиоактивных ядер.

Закон радиоактивного распада черезпериодполураспада (Т) имеет вид:

Связь между периодом полураспада и постоянной распада определяется формулой: T = ln(2/λ) = 0,69/λ

Периодом полураспада может быть как очень большим, так и очень маленьким.

Для оценки степени активности радиоактивного изотопа используют величину, называемую активностью.

Активность число ядер радиоактивного препарата распадающихся за единицу времени: А = dN расп /dt

За единицу активности в СИ принимают 1 беккерель (Бк) = 1 распад/с - активность препарата, в котором за 1 с происходит 1 распад. Более крупная единица активности - 1 резерфорд (Рд) = Бк. Часто используется внесистемная единица активности - кюри (Ки), равная активности 1 г радия : 1 Ки = 3,7 Бк.

Со временем активность убывает по тому же экспоненциальному закону, по которому распадается сам радионуклид:

= .
На практике для расчетаактивности применяют формулу:

А = = λN = 0,693 N/T.

Если выразим число атомов через массу и малярную массу, тогда формула для расчетаактивности примет вид: А = = 0,693 (μТ)

где - число Авогадро; μ - молярная масса.

>> Закон радиоактивного распада. Период полураспада

§ 101 ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ПЕРИОД ПОЛУРАСПАДА

Радиоактивный распад подчиняется статистическому закону. Резерфорд , исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Об этом говорилось в предыдущем параграфе. Так, активность радона убывает в 2 раза уже через 1 мин. Активность таких элементов, как уран, торий и радий, тоже убывает со временем, но гораздо медленнее. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название период полураспада. Период полураспада Т - это время, в течение которого распадается половина начального числа радиоактивных атомов.

Спад активности, т. е. числа распадов в секунду, в зависимости от времени для одного из радиоактивных препаратов изображен на рисунке 13.8. Период полураспада этого вещества равен 5 сут.

Выведем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t= 0) равно N 0 . Тогда по истечении периода полураспада это число будет равно

Спустя еще один такой же интервал времени это число станет равным:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки