Найти полуоси фокусы и эксцентриситет эллипса. Линии второго порядка

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка . Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической , если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат , поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой») , причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой , которая представляет собой линию первого порядка .

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

Например:

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка . Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка , и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат .

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду .

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой , во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим . Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола .

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Пример 1

Построить эллипс, заданный уравнением

Решение : сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса , которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

В данном случае :


Отрезок называют большой осью эллипса;
отрезок малой осью ;
число называют большой полуосью эллипса;
число малой полуосью .
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы . И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат . И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:


Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса .

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

В нашем случае:

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат .

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на … смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю .

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем , интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Пример 2

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Добавим экшена:

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Скачать с Depositfiles

Лекция № 9. Тема 3 : Линии второго порядка

Пусть в некоторой ДСК задана линия, определяемая уравнением второй степени

где коэффициенты
одновременно не равны нулю. Эта линия назы-вается кривой или линией второго порядка .

Может случиться, что нет точек
с действительными коорди-натами, удовлетворяющими уравнению (1). В этом случае считают, что уравнение (1) определяет мнимую линию второго порядка. Например,
это уравнение мнимой окружности.

Рассмотрим три важных частных случаев уравнения (1).

3.1. Эллипс

Эллипс определяется уравнением

(2)

Коэффициенты а и b называются соответственно большой и малой полуосями, а уравнение (2) – каноническим уравнением эллипса.

Положим
и отметим на оси Ох точки

называемые
фокусами эллипса. Тогда эллипс можно определить как

геометрическое место точек, сумма расстояний от которых до фокусов есть величина постоянная, равная 2а .

у

b

M K

а F 1 O F 2 a x

b

Покажем это. Пусть точка
текущая точка эллипса. В этом случае получаем Тогда должно выполняться равенство

Выражение (3) представим в виде

и возведём в квадрат обе части выражения

Отсюда получаем

Еще раз возведём это выражение в квадрат и воспользуемся соотно-шением
, тогда

(4)

Разделив обе части выражения (4) на
, окончательно получаем каноническое уравнение эллипса

Исследуем уравнение (2). Если в уравнении заменить , то уравнение (2) не изменится. Это означает, что эллипс симметричен относительно координатных осей. Поэтому рассмотрим подробно часть эллипса, находящуюся в первой четверти. Она определяется уравнением
Очевидно, что эллипс проходит через точки
. Выполнив схематическое построение в первой четверти, симметрично отобразим его график во все четверти. Таким образом, эллипс является непрерывной замкнутой кривой. Точки называются вершинами эллипса.

Отношение
называется эксцентриситетом эллипса. Для эллипса
.

Прямые
называются директрисами эллипса.

Справедливо следующее свойство директрис :

Отношение расстояний от фокуса и директрисы для точек эллипса есть величина постоянная, равная эксцентриситету, т.е.

Доказывается аналогично, как и равенство (3).

Замечание 1. Окружность
является частным случаем эллипса. Для неё

3.2. Гипербола

Каноническое уравнение гиперболы имеет вид

т.е. в уравнении (1) нужно положить

Коэффициенты а и b называются соответственно вещественной и мнимой полуосями.

Положив
, отметим на оси Ох точки
на-зываемые
фокусами гиперболы. Тогда гиперболу можно определить как

геометрическое место точек, разность расстояний от которых до фокусов по абсолютной величине равна 2 а , т.е.


у

К М

F 1 —а О а F 2 х


Доказывается аналогично, как и для эллипса. По виду уравнения гиперболы так же заключаем, что её график симметричен относительно осей системы координат. Часть гиперболы, лежащая в первой четверти, имеет уравнение
Из этого уравнения видно, что при достаточно больших х гипербола близка к прямой
. После схематичного построения в первой четверти симметрично отобра-жаем график во все четверти.

Точки
называются вершинами гиперболы. Прямые
называются
асимптотами – это прямые, к которым стремятся ветви гиперболы, не пересекая их.

Отношение называется эксцентриситетом гиперболы. Для гиперболы
.

Прямые называются директрисами гиперболы. Для директрис гиперболы имеет место свойство, аналогичное, как и для директрис эллипса.

Пример. Найти уравнение эллипса, вершины которого находятся в фокусах, а фокусы в вершинах гиперболы
.

По условию
а

Окончательно получаем

10.3. Парабола

Парабола определяется каноническим уравнением
т.е. в уравнении (1) нужно положить

Коэффициент р называется К у

фокальным параметром. М

Отметим на оси Ох точку

называемую фокусом

 эллипс;

 парабола;

 гипербола .

Свойства кривых второго порядка

Эллипс, гипербола, парабола

Если в уравнении F(x , y ) = 0 линии на плоскости функция F(x , y ) есть многочлен некоторой степени от двух переменных, то такая линия называется алгебраической , степень многочлена называется порядком кривой. Например, прямая – алгебраическая линия первого порядка. Рассмотрим линии второго порядка.

К кривым второго порядка относятся эллипс, гипербола и парабола. Эти кривые играют большую роль в прикладных вопросах.

Определение 1.

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух фиксированных точек, принадлежащих этой же плоскости и называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Найдем уравнение эллипса. Для этого возьмем систему координат так, чтобы ось ОХ проходила через фокусы, а ось OY делила расстояние между фокусами пополам. Пусть расстояние между фокусами F 1 и F 2 равно 2с , а сумма расстояний от текущей точки М(х , у ) эллипса до фокусов равна 2а : r 1 + r 2 = 2a , 2a > 2с .

Тогда фокусы имеют координаты F 1 (с , 0) и F 2 (–с , 0), расстояния от т. М(х , у ) до фокусов равны соответственно

r 1 = , r 2 = .

Из определения получаем уравнение эллипса

+ = 2а

Упрощая это уравнение, получим

Полагая здесь а 2 – с 2 = b 2 , получим уравнение

, (1)

которое называется каноническим уравнением эллипса .

Исследуем форму эллипса, используя это уравнение.

1) Нетрудно видеть, что если точка (х , у ) принадлежит эллипсу, то ему принадлежат и точки (–х , у ), (х , –у ) , (–х , –у ), т.е. эллипс симметричен относительно осей координат и относительно начала координат.

2) Запишем уравнение (1) в виде откуда следует, что х Î[–a ; a ], y Î [–b , b ].

3) В силу симметрии достаточно изучить характер линии при х Î.

Когда х растет от 0 до а , убывает от b до 0, т.к. у ¢ = < 0 для всех х Î и отразим его симметрично относительно осей координат и начала координат.

Точки А, В, С, D пересечения эллипса с осями координат называются вершинами эллипса , точка О называется центром эллипса, отрезок АО = ОС = а называется большой полуосью, а ОВ = OD = b малой полуосью эллипса, расстояния r 1 и r 2 от точки эллипса до фокусов называются фокальными радиусами .

Если бы мы расположили фокусы эллипса на оси ОУ, уравнение эллипса имело бы точно такой же вид, как и уравнение (1), только большой полуосью была бы b . В дальнейшем, договоримся, что большая полуось соответствует оси, на которой лежат фокусы эллипса и, наоборот, из уравнения эллипса по большему параметру а или b можно определить, на какой оси координат лежат фокусы эллипса.

На практике по заданному каноническому уравнению построить эллипс можно так: от начала координат влево и вправо по оси ОХ отложить отрезки длиной а , а по оси ОУ вверх и вниз – отрезки длины b . Через полученные точки-вершины провести гладкую замкнутую овальную линию.

Если а = b = , то с = 0, фокусы эллипса сливаются в одну точку – начало координат – и эллипс вырождается в окружность

х 2 +у 2 = а 2

с центром в начале координат и радиусом а .

Определение 2.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний которых до двух заданных точек той же плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Если расположить фокусы гиперболы на оси ОХ так, чтобы начало координат оказалось в середине между ними, обозначить расстояние между фокусами 2с , модуль разности расстояний – 2а , 2a > 2с , то символьное уравнение гиперболы будет иметь вид |r 1 – r 2 | = 2a , а в координатной форме оно запишется так:

½ ½= 2а .

Преобразовав это уравнение так же как в случае уравнения эллипса, и обозначив b 2 = с 2 – а 2 , получим каноническое уравнение гиперболы

, (2).

Исследуя форму гиперболу, находим, что

1) кривая симметрична относительно осей и начала координат, поэтому исследование формы достаточно провести для части кривой, расположенной в первой четверти и являющейся графиком функции , х Î [а , +¥), ;

2) точки пересечения с осью ОХ (–а , 0) и (а , 0) – эти точки называются вершинами гиперболы ; с осью ОУ кривая не пересекается;

3) прямые у = являются асимптотами гиперболы. При изменении х от а до бесконечности функция возрастает от 0 до бесконечности, т.к. у ¢ = > 0 для всех х Î[a , +¥). Кроме того, эта часть кривой выпуклая: у ¢¢= >0 при х Î[a , +¥). Изобразив часть гиперболы в первой четверти в соответствии с этими исследованиями, затем отобразим эту линию симметрично относительно осей и начала координат на остальные четверти, получим искомую гиперболу.


На практике по заданному каноническому уравнению гиперболу строят так.

1. Сначала строят осевой прямоугольник: слева и справа от начала координат на расстоянии а проводят прямые, параллельные оси ОУ, а сверху и снизу на расстоянии b от начала координат – прямые, параллельные оси ОХ.

2. Прямые, на которых лежат диагонали полученного прямоугольника, есть асимптоты гиперболы.

3. Точки пересечения сторон прямоугольника с осью ОХ – вершины гиперболы. От вершин к асимптотам в левой и правой полуплоскости проводят ветви гиперболы.

Точки А(–а , 0) и С(а , 0) называются вершинами гиперболы, точка О (начало координат) – центром гиперболы. Отрезок ОА = ОС = а называется действительной полуосью гиперболы, отрезок ОВ = OD = b мнимой полуосью . Оси координат при этом так же называют соответственно действительной осью (ее гипербола пересекает в двух точках) и мнимой осью (ее гипербола не пересекает). Расстояния r 1 и r 2 от точки гипербол до фокусов называются фокальными радиусами .

Если фокусы гиперболы расположить на оси ОУ, то ее уравнение будет иметь вид

, или , (3).

где а –мнимая полуось, b – действительная. Гиперболы (2) и (3) называются сопряженными . Они имеют одни и те же асимптоты.

Таким образом, по каноническому уравнению гиперболы легко определить, какая из осей является действительной (ось, квадрат переменной которой входит в уравнение со знаком плюс), а какая – мнимой (квадрат соответствующей переменной входит со знаком минус).

Если а = b , гипербола называется равносторонней (равнобочной), ее асимптоты перпендикулярны друг другу.

Определение 3.

Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и от заданной прямой (директрисы), лежащих в одной плоскости.

Найдем уравнение параболы, используя это определение.

Пусть р – расстояние между фокусом F и директрисой D . Расположим систему координат так чтобы директриса была параллельна оси ОУ, фокус находился на оси ОХ, начало координат располагалось посередине между фокусом и директрисой. Пусть М(х , у ) – текущая точка параболы, фокус F( ,0), уравнение директрисы х =– , проекция точки М на директрису – точка К(– , х ). Тогда символьное уравнение параболы |FM| = |MK| в координатной форме примет вид

После преобразований получаем у 2 = 2рх .

Если фокус параболы поместить в точку F(– , 0), а директрисой взять прямую х = , то уравнение приобретет вид у 2 = –2рх . Поэтому каноническим уравнением параболы называют уравнение вида

у 2 = 2рх , (4)

где р – параметр произвольного знака.

Исследуем расположение параболы по ее каноническому уравнению (4).

1) Проходит через начало координат (0, 0).

2) Кривая симметрична относительно оси ОХ: точки (х , у ) и (х , –у ) принадлежат параболе. Ось ОХ при этом называют осью параболы .

3) В силу симметрии исследование достаточно провести при у > 0. Рассмотрим функцию , при р > 0 область определения этой функции х Î. Производные этой функции равны у ¢ = , у ¢¢= .Для р >0 эта функция возрастает при х Î(0, +¥), убывает при х Î(–¥, 0), а в точке (0, 0) имеет минимум. Для р < 0, наоборот, при х Î(0, +¥) убывает, при х Î(–¥, 0) возрастает, в точке (0, 0) – максимум. Точку (0, 0) называют вершиной параболы . При р >0 и при у ¢¢ < 0, значит, кривая выпуклая.

4) По этим исследованиям вырисовывается следующая кривая



Если фокус параболы расположить на оси ОУ, директрису провести параллельно оси ОХ, начало координат расположить по-прежнему посередине между фокусом и директрисой, то получим уравнение параболы в виде

х 2 = 2ру , (5)

которое также называется каноническим уравнением параболы. Эта парабола имеет вершиной начало координат, осью симметрии ось ОУ; при р >0 ветви параболы направлены вверх, при р < 0 – вниз.

Свойства кривых второго порядка

Для всех рассмотренных кривых есть общая характеристика: фокус.

Фокус в переводе с латинского означает очаг . С фокусами кривых второго порядка связаны их оптические свойства

Представим себе, что эллипс, гипербола, парабола вращаются вокруг оси, содержащей фокусы. При этом образуется поверхность, которую называют соответственно эллипсоидом, гиперболоидом, параболоидом. Если реальную поверхность такого вида покрыть (со стороны фокусов) амальгамой, то получится соответственно эллиптическое, гиперболическое, параболическое зеркало. Известные из физики законы отражения света позволяют сделать такие выводы:

1) Если источник света поместить в одном из фокусов эллиптического зеркала, то его лучи, отразившись от зеркала, соберутся в другом фокусе.

Этим свойством пользовались фокусники: помещали источник света в одном фокусе эллиптического зеркала, в другом – воспламеняющееся вещество, которое загоралось без видимых причин, что поражало зрителей. Поэтому слово «фокус» получило тот смысл, в котором мы привыкли его употреблять.

2) Если источник света поместить в фокусе параболического зеркала, то его лучи, отразившись, пойдут параллельно оси параболы. На этом основано устройство прожектора.

3) Если источник света поместить в одном из фокусов гиперболического зеркала, то его лучи пойдут так, как если бы они исходили из второго фокуса.

Наряду с фокусами, характерными компонентами кривых второго порядка являются директрисы и эксцентриситет.

Определение 4.

Прямая D называется директрисой кривой, если отношение расстояния d от любой точки кривой до L к расстоянию r от этой точки до фокуса F кривой есть величина постоянная. Величина называется эксцентриситетом кривой.

Эллипс имеет две директрисы D 1 и D 2 , расположенные вне эллипса, и перпендикулярные большой оси (параллельные малой) эллипса.

У гиперболы также две директрисы, расположены они между ветвями гиперболы перпендикулярно действительной оси (параллельно мнимой оси).

Уравнения директрис эллипса и гиперболы имеют вид , где а – большая или действительная полуось; директриса и фокус, расположенные по одну сторону от центра кривой, называются соответствующими друг другу. Постоянным является отношение расстояний от точки кривой до соответствующих друг другу фокусов и директрис.

У параболы один фокус и одна директриса, перпендикулярная оси параболы. Уравнения директрис в зависимости от расположения фокуса имеют вид .

Эксцентриситет кривой второго порядка характеризует форму этой кривой. Для эллипса эксцентриситет e < 1, для гиперболы e >1, у параболы e = 1, у окружности e = 0. Если а – большая или действительная полуось, с – половина фокусного расстояния, то эксцентриситет равен . Зависимость формы кривой второго порядка с одними и теми же фокусом и директрисой от эксцентриситета показана на рисунке.

Лекция 8. Линии второго порядка.

План лекции

8.1. Окружность, исследование уравнения окружности.

8.2. Вывод канонического уравнения эллипса.

8.3. Гипербола и парабола, их канонические уравнения.

8.4. Линии второго порядка. Приведение кривых второго порядка к каноническому виду.

8.5. Полярное уравнение кривой второго порядка.

Окружностью называется множество всех точек плоскости, равноудаленных от данной точки (центра окружности) на расстояние, равное радиусу окружности.

Рисунок 8.1.Окружность.

Пусть С (а,в ) – центр окружности, r – радиус окружности, M (x,y ) – произвольная точка окружности (Рисунок 8.1). По определению окружности . Выразим это равенство в координатах: . Возведем обе части в квадрат:

. (8.1)

Таким образом, координаты любой точки, лежащей на окружности, удовлетворяют уравнению (8.1). Покажем, что координаты точки, не лежащей на окружности, не удовлетворяют уравнению (8.1).

Действительно, если точка М - внутри окружности, то расстояние , т.е. , а если точка M - вне окружности, то , т.е. . Следовательно, уравнению (8.1) удовлетворяют координаты всех точек, лежащих на окружности, и не удовлетворяют координаты точек, не лежащих на окружности. Поэтому уравнение (81) и есть уравнение окружности.

Если в уравнении (8.1) раскрыть скобки, то получим уравнение

где , , .

Если , то уравнение (8.2) определяет окружность.

Если , то уравнение (8.2) определяет точку .

Если , то уравнение (8.2) не имеет геометрического смысла. В этом случае говорят о мнимой окружности.

Рисунок 8.2.Окружность, имеющая

каноническое уравнение

Уравнение (8.1) можно упростить, если поместить начало новой системы координат в центр окружности (Рисунок 8.2). Тогда ее уравнение будет иметь вид:

Это уравнение называется каноническим уравнением окружности , т.е. уравнением самого простого вида.

Эллипсом называется множество всех точек плоскости, сумма расстояний которых до двух данных точек F 1 и F 2 , называемых фокусами, есть величина постоянная (ее обозначают ) и большая, чем расстояние между фокусами.

центром эллипса , т.к. относительно этой точки эллипс симметричен.

Длина |F 1 F 2 | называется фокусным расстоянием , обозначим ее , а половина этого расстояния называется полуфокусным расстоянием , оно равно с .

Примем центр эллипса за начало координат, за ось абсцисс примем прямую, проходящую через фокусы (Рисунок 8.3).

Рисунок 8.3. Эллипс

Тогда координаты фокусов будут F 1 (-c;0), F 2 (c;0). Всякий отрезок, соединяющий две точки эллипса, если он проходит через центр, называется диаметром эллипса . Наибольший диаметр проходит через фокусы, этот диаметр A 1 A 2 называется большой осью эллипса . Длина большой оси эллипса |A 1 A 2 |=2a . Действительно, по определению эллипса |F 1 A 2 |+|F 2 A 2 |=2a , но |F 1 A 2 |=|OA 2 |+c , |F 2 A 2 |=|OA 2 |-c . Тогда получаем 2|OA 2 |=2a, или |OA 2 |=a . Аналогично |A 1 O|=a , следовательно, |A 1 A 2 |=2a . Число а называется большой полуосью . Наименьший диаметр эллипса перпендикулярен наибольшему, его называют малой осью эллипса и обозначают через 2b , так что |B 1 B 2 |=2b . Число b называется малой полуосью . Концы осей, т.е. точки A 1 ,A 2 ,B 1 ,B 2 называются вершинами эллипса. Основное свойство эллипса применимо и для вершин В 1 и В 2 . Например, для вершины В 2 получим |F 1 B 2 |+|F 2 B 2 |=2a , а т.к. |F 1 B 2 |=|F 2 B 2 | , то 2|F 2 B 2 |=2a , или |F 2 B 2 |=a . Тогда из прямоугольного ∆OF 2 B 2 получаем важное соотношение:

(8.4)

Форма эллипса при заданном а зависит только от расстояния между фокусами, т.е. от с . При сближении фокусов и при совпадении их с началом координат эллипс постепенно обратится в окружность. Наоборот, если фокусы отодвигаются от начала координат, эллипс постепенно сплющивается и вырождается в прямолинейный отрезок A 1 A 2 . Степень сжатия эллипса определяется его эксцентриситетом , который определяется дробью:

Для эллипса эксцентриситет может изменяться от 0 до 1, причем для окружности , для эллипса, выродившегося в прямолинейный отрезок, .

Для получения канонического уравнения эллипса возьмем произвольную точку эллипса М(x,y). Тогда по определению |MF 1 |+|MF 2 |=2a . Выразим это равенство в координатах:

Для упрощения уравнения (8.6) придется дважды его возводить в квадрат и приводить подобные члены. В результате будет получено уравнение

или после деления на –

Построение эллипса, согласно его определению, можно осуществить посредством нити длиной , закрепленной концами в фокусах. Зацепив нить острием карандаша, и двигая его так, чтобы нить всё время была в натянутом состоянии, мы заставим острие вычертить эллипс.

Гиперболой называется множество всех точек плоскости, абсолютная величина разности расстояний которых до двух данных точек и , называемых фокусами, есть величина постоянная (её обозначают ) и меньшая расстояния между фокусами ().

Середина расстояния между фокусами называется центром гиперболы , так как относительно этой точки гипербола симметрична. Длина - называется фокусным расстоянием , а половина этого расстояния полуфокусным расстоянием . Удобно центр гиперболы принять за начало координат, а за ось абсцисс принять прямую, проходящую через фокусы (Рисунок 8.4).

Всякий отрезок, соединяющий две точки гиперболы и проходящий через центр, называется диаметром гиперболы . Наименьший диаметр лежит на оси абсцисс; этот диаметр называется действительной осью гиперболы, причем . Действительно по определению гиперболы , но , , тогда , или . Аналогично , следовательно, .

Число называется действительной полуосью , точки и называются вершинами гиперболы . Отношение называется эксцентриситетом гиперболы , причем для гиперболы .

Рисунок 8.4. Гипербола

Пусть - произвольная точка гиперболы. Тогда по определению , или в координатной форме

Уравнение (8.8) в результате преобразований, аналогичных проводимым при выводе уравнения эллипса, может быть сведено к виду:

.

Обозначая , получаем каноническое уравнение гиперболы :

Прямые являются асимптотами гиперболы . Это прямые, к которым гипербола приближается в бесконечности, но не пересекает их. С геометрической точки зрения - ордината асимптоты, восстановленной из вершины гиперболы. Для построения асимптот гиперболы целесообразно предварительно построить прямоугольник со сторонами и , параллельными координатным осям и с центром в начале координат (такой прямоугольник называется основным прямоугольником гиперболы). Точки и определяют мнимую ось гиперболы .



Если в уравнении (8.9) , то гипербола называется равнобочной . Ее асимптоты образуют прямой угол. Если за оси принять асимптоты, то уравнение примет вид . Таким образом, равнобочная гипербола является графиком обратной пропорциональности.

Заметим, что уравнение

(8.10)

тоже определяет гиперболу, у которой действительная ось расположена на оси , а мнимая ось – на оси .

Параболой называется множество всех точек плоскости, равноудаленных от данной точки (называемой фокусом параболы) и от данной прямой (называемой директрисой параболы).

Для вывода канонического уравнения параболы проведем ось прямоугольной системы координат через фокус перпендикулярно директрисе, начало координат поместим на равных расстояниях от фокуса и директрисы (Рисунок 8.5). Расстояние от фокуса до директрисы обозначим через (оно называется параметром параболы). Тогда , а директриса задается уравнением . Пусть - произвольная точка параболы. Опустим перпендикуляр на директрису . Тогда по определению . Выразим это условие в координатах:

.

Рисунок 8.5. Парабола.

Возводя в квадрат и приводя подобные, получаем каноническое уравнение параболы :

Вершиной параболы называется точка пересечения параболы с ее осью симметрии. Ось симметрии параболы называется осью параболы. Парабола, определяемая уравнением (8.11), имеет ось, совпадающую с осью .

Заметим, что уравнение определяет параболу, симметричную относительно оси .

Между эллипсом, гиперболой и параболой имеется близкое родство. Это объясняется тем, что все они - линии второго порядка. Все эти линии могут быть получены при пересечении прямого кругового конуса с плоскостью, поворачивающейся вокруг оси, выбранной, например, перпендикулярно к оси конуса (Рисунок 8.6). Пока наклон мал, в сечении получается эллипс. При увеличении наклона эллипс удлиняется, его эксцентриситет растет. Когда плоскость наклонена к оси конуса так же, как образующие, в сечении получается парабола. Наконец, когда плоскость будет пересекать обе половины конуса, в сечении будет гипербола. По этой причине эллипс, гиперболу и параболу иногда называют коническими сечениями.

Рисунок 8.6. Родство кривых второго порядка.

Родство между указанными линиями обусловлено тем, что все они задаются уравнением второй степени, а поэтому и носят общее название линий (или кривых ) второго порядка .

Общим уравнением линий второго порядка называется уравнение вида

. (8.12)

Путем преобразования координат это уравнение можно привести к каноническому виду. Осуществим поворот осей координат на угол по формулам:

(8.13)

Угол выберем таким, чтобы получилось уравнение, не содержащее произведение координат. Для этого подставляем (8.13) в (8.12) и приравниваем коэффициент при к . В результате получаем уравнение для определения угла поворота:

. (8.15)

Формула (8.15) определяет 4 возможных значения для любое из которых позволяет привести уравнение (8.12) к виду:

(8.16)

Если , то уравнение (8.16) может быть приведено к виду:

которое с помощью параллельного переноса начала координат

сводится к каноническому виду.

Если , т.е. или , то уравнение (8.16) может быть приведено к виду.