Окислительные свойства в периоде. Закономерности и изменения свойств оксидов

Тема: «Изменение свойств элементов и их соединений в зависимости от положения в Периодической системе»

Тип урока: усвоение новых знаний.

Цели урока:

Обучающая: закрепить знание причины изменения свойств элементов на основании положения в системе; научить обоснованно объяснять и сравнивать свойства элементов, а также образованных ими простых и сложных веществ; научить давать полную характеристику химического элемента в ПСХЭ.

Развивающая: продолжить формирование умений сравнивать, обобщать, прогнозировать и объяснять свойства веществ, устанавливать причинно-следственные связи, делать выводы, уметь выделять главное из общего. Совершенствование коммуникативных умений и информационно-познавательной компетентности, развивать самостоятельность и творчество при решении практических задач.

Воспитательная: воспитание ответственного отношения к учёбе, трудолюбия, работоспособности, правильной самооценки, умение работать в коллективе, осуществление экологического, гигиенического и нравственного воспитания, формирование здорового образа жизни.

Ход урока

    Организационный момент (1 мин)

    Актуализация знаний (10 мин)

Проверка знаний учащихся.

    Порядковый номер показывает…

    Номер периода показывает…

    Номер группы показывает…

    Положение элемента в ПСХЭ (период, группа).

    Строение атома кислорода.

Химический диктант по вариантам : предполагает быструю работу, используя ПСХЭ Д.И. Менделеева.

1. Указать элемент, в атоме которого:

    а) 25 протонов (марганец) б) 13 электронов (алюминий)

    а) 41 протон (ниобий) б) 20 электронов (кальций)

2. Назвать два элемента, в атоме которых:

    три энергетических уровня (любой элемент третьего периода)

    пять энергетических уровней (любой элемент пятого периода)

3. Определить два элемента, в атоме которых на последнем энергетическом уровне:

    4 валентных электронов (любой элемент четвертой группы главной подгруппы)

    7 валентных электронов (любой элемент седьмой группы главной подгруппы)

4. Указать место положения элементов в ПСХЭ: период и группа.

    а) № 37 (рубидий) б) № 30 (цинк)

    а) № 24 (хром) б) № 50 (олово)

5. Привести строение атома с порядковым номером

    14 (кремний 2; 8; 4)

    16 (сера 2; 8; 6)

Проверка.

II. Изучение нового материала (32 мин)

План изложения

1. Причины изменения свойств элементов на основании положения в ПСХЭ:

а) в периодах (малых, больших);

б) группах, главных подгруппах;

2. Изменение свойств химических элементов и образованных ими соединений:

а) в периодах;

б) группах, главных подгруппах.

3. Значение Периодического закона и Периодической системы химических элементов Д.И. Менделеева.

4. План характеристики химического элемента на основании его положения в ПСХЭ.

Формулировка Периодического закона Д. И. Менделеева.

Раздать таблицы!

(20 мин) В чем же причины изменения свойств химических элементов? Каковы причины периодичности? Чтобы ответить на данные вопросы сравним атомы элементов:

а ) Na – Al - P

б ) Na – K - Rb

1. Какой заряд ядра данных атомов, что с ним происходит?

2. Определить количество электронов на внешнем энергетическом уровне. Что наблюдается?

3. Сколько энергетических уровней в атомах данных элементов, что наблюдается?

4. Как Вы считаете, что же происходит с атомным радиусов, вследствие данных изменений?

а) к концу периода;

б) к концу группы, главной подгруппы.

Ответ:

а) к концу периода атомный радиус уменьшается вследствие усиленного взаимопритяжения ядра атома и электронов внешнего энергетического уровня (работа с таблицей).

б) к концу группы, главной подгруппы атомный радиус возрастает т. к. увеличивается количество энергетических уровней в атоме.

5. Сказываются ли такие изменения атомных радиусов в периодах и группах, главных подгруппах на способность атомов отдавать электроны, или их присоединениях?

Энергия ионизации – энергия, необходимая для отрыва слабо связанного электрона от атома.

Металличность – способность легко отдавать электроны.

Неметалличность – способность легко принимать электроны.

Ответ: При уменьшении атомного радиуса ослабевает способность атомов отдавать электроны, усиливается способность принимать электроны. К концу периода атомы элементов легче принимают электроны, что обеспечивает проявление неметалличности. При увеличении атомного радиуса возрастает способность атомов отдавать электроны. К концу группы, главной подгруппы атомы элементов легче отдают электроны, что обеспечивает проявление металличности.

6. Электроотрицательность – способность атомов элементов в соединениях оттягивать на себя электронную плотность. Самый электроотрицательный элемент – фтор.

Элетроотрицательность при движении в периодах слева направо увеличивается, в группах сверху вниз – уменьшается.

7. В чем же причина периодичностного изменения свойств элементов?

Причиной периодичности и является изменение строения внешнего, а также предвнешнего энергетического уровня; повторение числа электронов внешнего (предвнешнего) энергетического уровня.

Периодичность изменения свойств элементов сказывается и на свойствах простых веществ, образованных ими и на свойствах более сложных соединений: оксидов и гидроксидов.

Свойство

По периоду слева направо

По группе сверху вниз

Заряд ядра

Число валентных электронов

Число энергетических уровней

Атомный радиус (самый маленький атомный радиус имеет F фтор)

Энергия ионизации (самая высокая энергия ионизации у Fr франция)

Металлические свойства, восстановительная активность (самый сильный металл - Fr франций)

Неметаллические свойства, окислительная активность (самый сильный неметалл - F фтор)

Электроотрицательность (самый электроотрицательный элемент - F фтор)

Основные свойства оксидов и гидроксидов (относительно Fr франция)

Кислотные свойства оксидов и гидроксидов (относительно F фтора)

На данном уроке мы познакомимся с планом характеристики химического элемента по его положению в ПСХЭ.

В данной характеристике учащиеся показывают свои знания периодического закона Периодической системы и умения ими пользоваться правильно.

(12 мин) План характеристики химического элемента по его положению в ПСХЭ Д.И. Менделеева

1. Название элемента, химический знак, порядковый номер, относительная атомная масса; номер периода (большой или малый), номер группы, подгруппа (главная или побочная).

2. Строение атома элемента:

а) заряд ядра атома; количество протонов, нейтронов в ядре атома; количество электронов в атоме;

б) электронная формула атома и электронно-графическое изображение; семейство s-, р-, d-, f-элементов.

3. Металлический или неметаллический элемент.

4. Высшая валентность.

5. Высший оксид, характер высшего оксида (основный, кислотный, амфотерный); химические свойства высшего оксида (предложить несколько уравнений реакций).

6. Высший гидроксид, характер гидроксида (основание, кислота); химические свойства гидроксида (составить несколько уравнений реакций).

7. Летучее водородное соединение (для неметаллов).

В качестве примера для закрепления учащимися знаний можно предложить характеристики металлического (магния) и неметаллического (серы) элементов.

III. Домашнее задание (2 мин)

    Учить записи в тетради.

    Дидактические материалы стр. 41 вариант 1.

    Дайте характеристика по 7 пунктам элементам с порядковыми номерами: 3, 6.

    Хомченко 6.36, 6.37.

Свойства химических элементов зависят от числа электронов на внешнем энергетическом уровне атома (валентных электронов). Количество электронов на внешнем уровне химического элемента равно номеру группы в коротком варианте Периодической системы. Таким образом, в каждой подгруппе химические элементы имеют сходное электронное строение внешнего уровня, а значит и сходные свойства.

Энергетические уровни атомов стремятся оказаться завершенными, т. к. в этом случае они обладают повышенной устойчивостью. Внешние уровни устойчивы, когда обладают восемью электронами. У инертных газов (элементов VIII группы) внешний уровень завершен. Поэтому они практически не вступают в химические реакции. Атомы других элементов стремятся присоединить или отдать внешние электроны, чтобы оказаться в устойчивом состоянии.

Когда атомы отдают или принимают электроны, они становятся заряженными частицами ионами. Если атом отдает электроны, то становится положительно заряженным ионом - катионом. Если принимает, то отрицательно заряженным - анионом.

У атомов щелочных металлов на внешнем электронном уровне находится только один электрон. Поэтому их проще отдать один, чем принимать 7 других для завершения. При этом они легко его отдают, поэтому считаются активными металлами. В результате катионы щелочных металлов имеют электронное строение схожее с инертными газами в предыдущем периоде.

Атомы элементов металлов имеют на внешнем уровне не более 4 электронов. Поэтому в соединениях они обычно их отдают, превращаясь в катионы.

Атомы неметаллов, особенно галогенов, имеют больше внешних электронов. А для завершения внешнего уровня им недостает меньше. Поэтому им проще присоединить электроны. В результате в соединениях с металлами они чаще являются анионами. Если же соединение образуют два неметалла, то более электроотрицательных оттягивает на себя электроны. У такого атома недостающих электронов меньше, чем у другого.

Кроме стремления к тому, чтобы внешний электронный уровень был устойчивым, в периодах есть другая закономерность. В периодах слева направо, т. е. с увеличением порядкового номера, радиус атомов уменьшается (за исключением первого периода), несмотря на то, что масса возрастает. В результате электроны к ядру притягиваются сильнее, и атом труднее их отдает. Таким образом возрастают неметаллические свойства в периодах.

Однако в подгруппах радиус атомов увеличивается сверху вниз. Как следствие, сверху вниз увеличиваются металлические свойства, атомы легче отдают внешние электроны.

Таким образом, наибольшие металлические свойства наблюдаются у самого нижнего элемента слева (франций Fr), а наибольшие неметаллические - у самого верхнего справа (фтор F, галогены инертны).

    Современная формулировка Периодического закона : свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов (порядкового номера).

    Периодическими свойствами являются, например, радиус атома, энергия ионизации, сродство к электрону, электроотрицательность атома, а также некоторые физические свойства элементов и соединений (температуры плавления и кипения, электропроводность и т.д.).

    Выражением Периодического закона является

    периодическая система элементов .

    Наиболее распространен вариант короткой формы периодической системы, в котором элементы разделены на 7 периодов и 8 групп.

    В настоящее время получены ядра атомов элементов до номера 118. Название элемента с порядковым номером 104 – резерфордий (Rf), 105 – дубний (Db), 106 – сиборгий (Sg), 107 – борий (Bh), 108 – хассий (Hs), 109 – мейтнерий (Mt), 110 - дармштадтий (Ds), 111 - рентгений (Rg), 112 - коперниций (Cn).
    24 октября 2012 года в Москве в Центральном доме ученых РАН состоялась торжественная церемония присвоения 114-му элементу имя "флеровий" (Fl), а 116-му - "ливерморий" (Lv).

    Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные – большими.

    В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства, поскольку с ростом положительного заряда ядер атомов возрастает число электронов на внешнем электронном слое и наблюдается уменьшение радиусов атомов.

    В нижней части таблицы помещаются 14 лантаноидов и 14 актиноидов. В последнее время лантан и актиний стали причислять соответственно к лантаноидам и актиноидам.

    Группы делятся на подгруппы – главные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ – особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

    Сверху вниз в главных подгруппах усиливаются металлические свойства и ослабевают неметаллические.

    Номер группы, как правило, указывает на число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних слоёв. Это является основным различием в свойствах элементов главных и побочных подгрупп.

    Периодическая система и электронные формулы атомов

    Для предсказания и объяснения свойств элементов необходимо уметь записывать электронную формулу атома.

    В атоме, находящемся в основном состоянии , каждый электрон занимает свободную орбиталь с наиболее низкой энергией. Энергетическое состояние определяется, прежде всего, температурой. Температура на поверхности нашей планеты такова, что атомы находятся в основном состоянии. При высоких температурах основными уже будут другие состояния атомов, которые называются возбуждёнными .

    Последовательность расположения энергетических уровней в порядке возрастания энергии известна из результатов решения уравнения Шредингера:

    1s < 2s < 2p < 3s < Зр < 4s 3d < 4p < 5s 4d < 5p < 6s 5d 4f < 6p.

    Рассмотрим электронные конфигурации атомов некоторых элементов четвертого периода (рис. 6.1).

    Рис. 6.1. Распределение электронов по орбиталям некоторых элементов четвёртого периода

    Следует отметить существование некоторых особенностей в электронном строении атомов элементов четвёртого периода: у атомов Сr и С u на 4 s -оболочке находятся не два электрона, а один, т. е. происходит “провал” внешнего s-электрона на предшествующую d-оболочку.

    Электронные формулы атомов 24 Cr и 29 Cu можно представить следующим образом:

    24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 ,

    29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

    Физическая причина “нарушения” порядка заполнения связана с разной проникающей способностью электронов во внутренние слои, а также особой устойчивостью электронных конфигураций d 5 и d 10 , f 7 и f 14 .

    Все элементы подразделяются на четыре типа

    :

    1. У атомов s-элементов заполняются s-оболочки внешнего слоя ns. Это первые два элемента каждого периода.

    2. У атомов р-элементов электронами заполняются р-оболочки внешнего уровня np. К ним относятся последние 6 элементов каждого периода (кроме первого и седьмого).

    3. У d-элементов заполняется электронами d-подуровень второго снаружи уровня (n-1)d. Это элементы вставных декад больших периодов, расположенных между s- и p-элементами.

    4. У f-элементов заполняется электронами f-подуровень третьего снаружи уровня (n-2)f. Это - лантаноиды и актиноиды.

    Изменение кислотно-основных свойств соединений элементов по группам и периодам периодической системы
    (схема Косселя)

    Для объяснения характера изменения кислотно-основных свойств соединений элементов Коссель (Германия, 1923 г.) предложил использовать простую схему, основанную на предположении о том, что в молекулах существует чисто ионная связь и между ионами имеет место кулоновское взаимодействие. Схема Косселя описывает кислотно-основные свойства соединений, содержащих связи Э–Н и Э–О–Н, в зависимости от заряда ядра и радиуса образующего их элемента.

    Схема Косселя для двух гидроксидов металлов (для молекул LiOH и KOH) показана на рис. 6.2. Как видно из представленной схемы, радиус иона Li + меньше радиуса иона К + и ОН - -группа связана прочнее с ионом лития, чем с ионом калия. В результате КОН будет легче диссоциировать в растворе и основные свойства гидроксида калия будут выражены сильнее.

    Рис. 6.2. Схема Косселя для молекул LiOH и KOH

    Аналогичным образом можно проанализировать схему Косселя для двух оснований CuOH и Cu(OH) 2 . Поскольку радиус иона Cu 2+ меньше, а заряд – больше, чем у иона Cu + , ОН - -группу будет прочнее удерживать ион Cu 2+ .
    В результате основание
    Cu(OH) 2 будет более слабым, чем CuOH.

    Таким образом, сила оснований возрастает при увеличении радиуса катиона и уменьшении его положительного заряда .

    Схема Косселя для двух бескислородных кислот HCl и HI показана на рис. 6.3.

    Рис. 6.3. Схема Косселя для молекул HCl и HI

    Поскольку радиус хлорид-иона меньше, чем иодид-иона, ион Н + прочнее связан с анионом в молекуле хлороводородной кислоты, которая будет слабее, чем иодоводородная кислота. Таким образом, сила бескислородных кислот возрастает с увеличением радиуса отрицательного иона.

    Сила кислородсодержащих кислот изменяется противоположным образом. Она увеличивается с уменьшением радиуса иона и с увеличением его положительного заряда. На рис. 6.4 представлена схема Косселя для двух кислот HClO и HClO 4 .

    Рис. 6.4. Схема Косселя для HClO и HClO 4

    Ион С1 7+ прочно связан с ионом кислорода, поэтому протон легче будет отщепляться в молекуле НС1О 4 . В то же время связь иона С1 + с ионом О 2- менее прочная, и в молекуле НС1О протон будет сильнее удерживаться анионом О 2- . В результате HClO 4 является более сильной кислотой, чем HClO.

    Таким образом, увеличение степени окисления элемента и уменьшение радиуса иона элемента усиливают кислотный характер вещества. Наоборот, уменьшение степени окисления и увеличение радиуса иона усиливают основные свойства веществ.

    Примеры решения задач

    Составить электронные формулы атома циркония и ионов
    O 2– , Al 3+ , Zn 2+ . Определить, к какому типу элементов относятся атомы Zr, O, Zn, Al .

      40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 ,

      O 2– 1s 2 2s 2 2p 6 ,

      Zn 2+ 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 ,

      Al 3+ 1s 2 2s 2 2p 6 ,

    Zr – d-элемент , O – р -элемент , Zn – d-элемент , Al – р -элемент .

    Расположить атомы элементов в порядке увеличения их энергии ионизации: K, Mg, Be, Ca. Ответ обосновать.

    Решение. Энергия ионизации – энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра, в главных подгруппах сверху вниз она уменьшается, так как увеличивается расстояние от электрона до ядра.

    Таким образом, величина энергии ионизации атомов этих элементов увеличивается в ряду K, Ca, Mg, Be.

    Расположить атомы и ионы в порядке возрастания их радиусов: Ca 2+ , Ar, Cl – , K + , S 2– . Ответ обосновать.

    Решение. Для ионов, содержащих одинаковое число электронов (изоэлектронных ионов), радиус иона будет увеличиваться с уменьшением положительного и возрастанием отрицательного его заряда. Следовательно, радиус возрастает в ряду Ca 2+ , K + , Ar, Cl – , S 2– .

    Определите, как меняются радиусы ионов и атомов в рядах Li + , Na + , K + , Rb + , Cs + и Na, Mg, Al, Si, P, S.

    Решение. В ряду Li + , Na + , K + , Rb + , Cs + радиус ионов увеличивается, так как возрастает число электронных слоев у ионов одинакового знака со сходным электронным строением.

    В ряду Na, Mg, Al, Si, P, S радиус атомов уменьшается, так как при одинаковом числе электронных слоев в атомах увеличивается заряд ядра, а, значит и притяжение ядром электронов.

    Сравнить силу кислот H 2 SO 3 и H 2 SeO 3 и оснований Fe(OH) 2 и Fe(OH) 3 .

    Решение. Согласно схеме Косселя H 2 SO 3 более сильная кислота, чем H 2 SeO 3 , так как радиус иона Se 4+ больше радиуса иона S 4+ , значит, связь S 4+ – О 2– является более прочной, чем связь Se 4+ – О 2– .

    Согласно схеме Косселя Fe(OH)

    2 более сильное основание, поскольку радиус иона Fe 2+ больше, чем иона Fe 3+ . К тому же заряд иона Fe 3+ больше, чем у иона Fe 2+ . В результате связь Fe 3+ – О 2– является более прочной, чем Fe 2+ – О 2– и ион ОН – легче отщепляется в молекуле Fe(OH) 2 .

    Задачи для самостоятельного решения

    6.1. Составить электронные формулы элементов с зарядом ядра +19, +47, +33 и находящихся в основном состоянии. Указать, к какому типу элементов они относятся. Какие степени окисления характерны для элемента с зарядом ядра +33?


    6.2. Составить электронную формулу иона Cl – .

в периодах слева направо:

· радиус атомов уменьшается;
· электроотрицательность элементов увеличивается;
· количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
· высшая степень окисления увеличивается (равна номеру группы);
· число электронных слоев атомов не изменяется;
· металлические свойства уменьшается;
· неметаллические свойства элементов увеличивается.

Изменение некоторых характеристик элементов в группе сверху вниз:
· заряд ядер атомов увеличивается;
· радиус атомов увеличивается;
· число энергетических уровней (электронных слоев) атомов увеличивается (равно номеру периода);
· число электронов на внешнем слое атомов одинаково (равно номеру группы);
· прочность связи электронов внешнего слоя с ядром уменьшается;
· электроотрицательность уменьшается;
· металличность элементов увеличивается;
· неметалличность элементов уменьшается.

Элементы, которые находятся в одной подгруппе, являются элементами-аналогами, т.к. они имеют некоторые общие свойства (одинаковую высшую валентность, одинаковые формы оксидов и гидроксидов и др.). Эти общие свойства объясняются строением внешнего электронного слоя.

Подробнее про закономерности изменения свойств элементов по периодам и группам

Кислотно — основные свойства гидроксидов зависят от того, какая из двух связей в цепочке Э −О − Н является менее прочной.
Если менее прочна связь Э−О, то гидроксид проявляет основные свойства, если О−Н − кислотные.
Чем менее прочны эти связи, тем больше сила соответствующего основания или кислоты. Прочность связей Э−О и О−Н в гидроксиде зависит от распределения электронной плотности в цепочке Э−О− H. На последнюю наиболее сильно влияют степень окисления элемента и ионный радиус. Увеличение степени окисления элемента и уменьшение его ионного радиуса, вызывают смещение электронной плотности к атому
элемента в цепочке Э ← О ←Н. Это приводит к ослаблению связи О−Н и усилению связи Э−О. Поэтому основные свойства гидроксида ослабевают, а кислотные − усиливаются.


Дмитрий Иванович Менделеев открыл периодический закон, согласно которому свойства элементов и образуемых ими изменяются периодически. Данное открытие было графически отображено в таблице Менделеева. По таблице очень хорошо и наглядно видно, как свойства элементов изменяются по периоду, после чего повторяются в следующем периоде.

Для решения задания №2 ЕГЭ по химии нам всего лишь нужно понять и запомнить, какие свойства элементов в каких направлениях изменяются и как.

Всё это отображено на рисунке ниже.

Слева направо растут электроотрицательность, неметаллические свойства, высшие степени окисления и т.д. А металлические свойства и радиусы уменьшаются.

Сверху вниз наоборот: растут металлические свойства и радиусы атомов, а электроотрицательность падает. Высшая степень окисления, соответствующая количеству электронов на внешнем энергетическом уровне, в этом направлении не меняется.

Разберём на примерах.

Пример 1. В ряду элементов Na→Mg→Al→Si
А) уменьшаются радиусы атомов;
Б) уменьшается число протонов в ядрах атомов;
В) увеличивается число электронных слоёв в атомах;
Г) уменьшается высшая степень окисления атомов;

Если посмотреть в таблицу Менделеева, то мы увидим, что все элементы данного ряда находятся в одном периоде и перечислены в том порядке, как они стоят в таблице с лева направо. Что бы ответить на вопрос такого рода нужно просто знать несколько закономерностей изменений свойств в периодической таблице. Так слева направо по периоду металлические свойства падают, неметаллические растут, электроотрицательность растёт, энергия ионизации растёт, радиус атомов уменьшается. По группе сверху вниз металлические и восстановительные свойства растут, электроотрицательность падает, энергия ионизации уменьшается, радиус атомов растёт.

Если вы были внимательны, то уже поняли, что в данном случае уменьшаются радиусы атомов. Ответ А.

Пример 2. В порядке усиления окислительных свойств элементы расположены в ряду:
А. F→O→N
Б. I→Br→Cl
В. Cl→S→P
Г. F→Cl→Br

Как вы знаете, в периодической таблице Менделеева окислительные свойства растут слева направо по периоду и снизу вверх по группе. В варианте Б как раз приведены элементы одной группы в порядке снизу вверх. Значит Б подходит.

Пример 3. Валентность элементов в высшем оксиде увеличивается в ряду:
А. Cl→Br→I
Б. Cs→K→Li
В. Cl→S→P
Г. Al→C→N

В высших оксидах элементы проявляют свою высшую степень окисления, которая будет совпадать с валентностью. А высшая степень окисления растёт слева направо по таблице. Смотрим: в первом и втором вариантах нам даны элементы, находящиеся в одних группах, там высшая степень окисления и соответственно валентность в оксидах не меняется. Cl→S→P – расположены справа налево, то есть у них наоборот валентность в высшем оксиде будет падать. А вот в ряду Al→C→N элементы расположены слева – направо, валентность в высшем оксиде увеличивается у них. Ответ: Г

Пример 4. В ряду элементов S→Se→Te
А) увеличивается кислотность водородных соединений;
Б) увеличивается высшая степень окисления элементов;
В) увеличивается валентность элементов в водородных соединениях;
Г) уменьшается число электронов на внешнем уровне;

Сразу смотрим на расположение этих элементов в таблице Менделеева. Сера, селен и теллур находятся в одной группе, одной подгруппе. Приведены в порядке сверху вниз. Смотрим еще раз на диаграмму выше. Сверху вниз в периодической таблице растут металлические свойства, растут радиусы, падает электроотрицательность, энергия ионизации и неметаллические свойства, количество электронов на внешнем уровне не меняется. Вариант Г сразу исключаем. Если число внешних электронов не меняется, то валентные возможности и высшая степень окисления тоже не меняется, Б и В - исключаем.

Остаётся вариант А. Проверяем для порядка. По схеме Косселя сила безкислородных кислот возрастает с уменьшением степени окисления элемента и увеличением радиуса его иона. Степень окисления у всех трёх элементов одинаковая в водородных соединениях, а вот радиус сверху вниз растёт, значит и сила кислот растёт.
Ответ – А.

Пример 5. В порядке ослабления основных свойств оксиды расположены в ряду:
А. Na 2 O→K 2 O→Rb 2 O
Б. Na 2 O→MgO→Al 2 O 3
В. BeO→BaO→CaO
Г. SO 3 →P 2 O 5 →SiO 2

Основные свойства оксидов ослабевают синхронно с ослабление металлических свойств элементов их образующих. А Ме- свойства ослабевают слева направо или снизу вверх. Na, Mg и Al как раз располагаются слева направо. Ответ Б.