Основания их классификация химические свойства. Основания

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 135.

Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

2. ОСНОВАНИЯ

Основания это сложные вещества, состоящие из атомов металлов и одной или нескольких гидроксогрупп (ОН -).

С точки зрения теории электролитической диссоциации это электролиты (вещества, растворы или расплавы которых проводят электрический ток), диссоциирующие в водных растворах на катионы металлов и анионы только гидроксид - ионов ОН - .

Растворимые в воде основания называются щелочами. К ним относятся основания, которые образованы металлами 1-й группы главной подгруппы (LiOH , NaOH и другие) и щелочноземельными металлами (Са (ОН) 2 , Sr (ОН) 2 , Ва (ОН) 2). Основания, образованные металлами других групп периодической системы в воде практически не растворяются. Щелочи в воде диссоциируют полностью:

NaOH ® Na + + OH - .

Многокислотные основания в воде диссоциируют ступенчато:

Ba ( OH) 2 ® BaOH + + OH - ,

Ba ( OH) + Ba 2+ + OH - .

C тупенчатой диссоциацией оснований объясняется образование основных солей.

Номенклатура оснований.

Основания называются следующим образом: сначала произносят слово «гидроксид », а затем металл, который его образует. Если металл имеет переменную валентность, то она указывается в названии.

КОН – гидроксид калия;

Ca ( OH ) 2 – гидроксид кальция;

Fe ( OH ) 2 – гидроксид железа ( II );

Fe ( OH ) 3 – гидроксид железа ( III );

При составлении формул оснований исходят из того, что молекула электронейтральна . Гидроксид – ион всегда имеет заряд (–1). В молекуле основания их число определяется положительным зарядом катиона металла. Гидрокогруппа заключается в круглые скобки, а выравнивающий заряды индекс ставится справа внизу за скобками:

Ca +2 (OH ) – 2 , Fe 3+( OH ) 3 - .

по следующим признакам:

1. По кислотности (по числу групп ОН - в молекуле основания): однокислотные – NaOH , KOH , многокислотные – Ca (OH ) 2 , Al (OH ) 3 .

2. По растворимости: растворимые (щелочи) – LiOH , KOH , нерастворимые – Cu (OH ) 2 , Al (OH ) 3 .

3. По силе (по степени диссоциации):

а) сильные (α = 100 %) – все растворимые основания NaOH , LiOH , Ba (OH ) 2 , малорастворимый Ca (OH ) 2 .

б) слабые (α < 100 %) – все нерастворимые основания Cu (OH ) 2 , Fe (OH ) 3 и растворимое NH 4 OH .

4. По химическим свойствам: основные – Са (ОН) 2 , Na ОН; амфотерные – Zn (ОН) 2 , Al (ОН) 3 .

Основания

Это гидроксиды щелочных и щелочноземельных металлов (и магния), а также металлов в минимальной степени окисления (если она имеет переменное значение).

Например: NaOH , LiOH , Mg ( OH ) 2 , Ca (OH ) 2 , Cr (OH ) 2 , Mn (OH ) 2 .

Получение

1. Взаимодействие активного металла с водой:

2Na + 2H 2 O → 2NaOH + H 2

Ca + 2H 2 O → Ca(OH) 2 + H 2

Mg + 2 H 2 O Mg( OH ) 2 + H 2

2. Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → 2NaOH,

CaO + H 2 O → Ca(OH) 2 .

3. Промышленным способом получения щелочей является электролиз растворов солей:

2NaCI + 4H 2 O 2NaOH + 2H 2 + CI 2

4. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

Na 2 SO 4 + Ba (OH) 2 → 2NaOH + BaSO 4

MgSO 4 + 2NaOH → Mg(OH) 2 + Na 2 SO 4.

Физические свойства

Все основания являются твердыми веществами. В воде нерастворимы , кроме щелочей. Щелочи – это белые кристаллические вещества, мылкие на ощупь, вызывающие сильные ожоги при попадании на кожу. Поэтому они называются «едкими». При работе со щелочами необходимо соблюдать определенные правила и использовать индивидуальные средства защиты (очки, резиновые перчатки, пинцеты и др.).

Если щелочь попала на кожу необходимо промыть это место большим количеством воды до исчезновения мылкости, а затем нейтрализовать раствором борной кислоты.

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид –

ионов ОН - .

1. Изменение цвета индикаторов:

фенолфталеин – малиновый

лакмус – синий

метиловый оранжевый – желтый

2. Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O,

Растворимое

Cu( OH) 2 + 2HCI → CuCI 2 + 2H 2 O.

Нерастворимое

3. Взаимодействие с кислотными оксидами:

2 NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействие с амфотерными оксидами и гидроксидами :

а) при плавлении:

2 NaOH + AI 2 O 3 2 NaAIO 2 + H 2 O ,

NaOH + AI(OH) 3 NaAIO 2 + 2H 2 O.

б ) в растворе :

2NaOH + AI 2 O 3 +3H 2 O → 2Na[ AI(OH) 4 ],

NaOH + AI(OH) 3 → Na.

5. Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):

2NaOH + Zn + 2H 2 O → Na 2 [ Zn(OH) 4 ] + H 2

2NaOH + Si + H 2 O → Na 2 SiO 3 + 2H 2

6. Взаимодействие с растворимыми солями с образованием осадков:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4 ,

Ba ( OH) 2 + K 2 SO 4 → BaSO 4 + 2KOH.

7. Малорастворимые и нерастворимые основания разлагаются при нагревании:

Ca( OH) 2 CaO + H 2 O,

Cu( OH) 2 CuO + H 2 O.

голубой цвет черный цвет

Амфотерные гидроксиды

Это гидроксиды металлов ( Be (OH ) 2 , AI (OH ) 3 , Zn (OH ) 2) и металлов в промежуточной степени окисления (С r (OH ) 3, Mn (OH ) 4).

Получение

Амфотерные гидроксиды получают взаимодействием растворимых солей со щелочами взятых в недостатке или эквивалентном количестве, т.к. в избытке они растворяются:

AICI 3 + 3NaOH → AI(OH) 3 +3NaCI.

Физические свойства

Это твердые вещества, практически нерастворимые в воде. Zn ( OH ) 2 – белый, Fe (ОН) 3 – бурый цвет.

Химические свойства

Амфотерные гидроксиды проявляют свойства оснований и кислот, поэтому взаимодействуют как с кислотами, так и с основаниями.

1. Взаимодействие с кислотами с образованием соли и воды:

Zn( OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды:

AI( OH) 3 + NaOH Na,

Fe 2 (SO 4) 3 + 3H 2 O,

2Fe( OH) 3 + Na 2 O 2NaFeO 2 + 3H 2 O.

Лабораторная работа № 2

Получение и химические свойства оснований

Цель работы : ознакомиться с химическими свойствами оснований и способами их получения.

Посуда и реактивы : пробирки, спиртовка. Набор индикаторов, магниевая лента, растворы солей алюминия, железа, меди, магния; щелочь(NaOH , К OH ), дистиллированная вода.

Опыт № 1. Взаимодействие металлов с водой.

В пробирку налить 3–5 см 3 воды и опустить в нее несколько кусочков мелко нарезанной магниевой ленты. Нагреть на спиртовке 3–5 мин, охладить и добавить туда 1–2 капли раствора фенолфталеина. Как изменился цвет индикатора? Сравнить с пунктом 1 на с. 27. Написать уравнение реакции. Какие металлы взаимодействуют с водой?

Опыт № 2. Получение и свойства нерастворимых

оснований

В пробирки с разбавленными растворами солей MgCI 2, FeCI 3 , CuSO 4 (5–6 капель) внести по 6–8 капель разбавленного раствора щелочи NaOH до образования осадков. Отметить их окраску. Записать уравнения реакций.

Разделить полученный синий осадок Cu (OH ) 2 на две пробирки. В одну из них добавить 2–3 капли разбавленного раствора кислоты, в другую _ столько же щелочи. В какой пробирке наблюдалось растворение осадка? Написать уравнение реакции.

Повторить этот опыт с двумя другими гидроксидами , полученными по обменным реакциям. Отметить наблюдаемые явления, записать уравнения реакций. Сделать общий вывод о способности оснований взаимодействовать с кислотами и щелочами.

Опыт№ 3. Получение и свойства амфотерных гидроксидов

Повторить предыдущий опыт с раствором соли алюминия ( AICI 3 или AI 2 (SO 4 ) 3). Наблюдать образование белого творожистого осадка гидроксида алюминия и растворение его при прибавлении как кислоты, так и щелочи. Записать уравнения реакций. Почему гидроксид алюминия обладает свойствами как кислоты, так и основания? Какие еще амфотерные гидроксиды вы знаете?