Площадь по точкам формула. Теорема Пика

Старкова Кристина, ученица 8Б класса

В работе рассмотрена теорема Пика и ее доказательство.

Рассмотрены задачи на нахождение площади многоугольников

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

АДМИНИСТРАЦИИ ЧАЙКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

ПЕРМСКОГО КРАЯ

VI МУНИЦИПАЛЬНАЯ КОНФЕРЕНЦИЯ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ
УЧАЩИХСЯ

Муниципальное автономное общеобразовательное учреждение

«средняя общеобразовательная школа №11»

СЕКЦИЯ: МАТЕМАТИКА

Применение формулы Пика

Учащаяся 8 «Б» класса

МАОУ СОШ №11Чайковский

Руководитель:Батуева Л,Н.,

Учитель математики МАОУ СОШ№11

г. Чайковский

2012 год

I. Введение……………………………………………………. 2

II. Формула Пика

2.1.Решетки.Узлы………………………………………… .4

2.2.Триангуляция многоугольника………………………5

2.3. Доказательство теоремы Пика………………………6

2.4 Исследование площадей многоугольников…………9

2.5. Вывод…………………………………………………..12

III.Геометрические задачи с практическим содержанием…13

IV. Заключение………………………………………………..14

V. Список используемой литературы………………………..16

  1. Введение

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встал вопрос есть ли задачи, отличные от задач рассмотренных в учебники геометрии. Это задачи на клетчатой бумаге. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно – измерительных материалах ЕГЭ и ГИА, решила обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

Мы определили:

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

  1. Цель исследования: Вывести и проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

Для достижения поставленной цели предусматриваем решение следующих задач:

  1. Подобрать необходимую литературу
  2. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  3. Проанализировать и систематизировать полученную информацию
  4. Найти различные методы и приёмы решения задач на клетчатой бумаге
  5. Создать электронную презентацию работы для представления собранного материала одноклассникам

многообразие задач на бумаге в клеточку, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении

  1. Гипотеза :. Площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по формуле планиметрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

II. Формула Пика

2.1.Решетки.Узлы.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты; множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

Внутренние узлы многоугольника - красные.

Узлы на гранях многоугольника - синие.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

2.2.Триангуляция многоугольника

Любой многоугольник с вершинами в узлах сетки может быть триангулирован – разбит на «простые» треугольники.

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Рис. 1.37

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n – 2 (это разбиение – триангуляция с вершинами в вершинах n -угольника).

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный - любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница - связная ломаная без самопересечений, и он имеет ненулевую площадь).

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

2.3. Доказательство теоремы Пика.

Пусть В - число целочисленных точек внутри многоугольника, Г - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика : S=В+Г2-1

Пример. Для многоугольника на рисунке В=23 (желтые точки), Г=7, (синие точки, не забудем о вершинах!), поэтому квадратных единиц.

Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем В=0, Г=4 и .

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и . Имеем в этом случае,В=(а-1)(b-1) , Г=2a+2b, тогда по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и , рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая В=а-1)b-1 , 2 Г= Г=2a+2b 2 +с-1 и получаем, что 4)Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной. Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением . Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим B=MT=BM+BT+c-2 - число внутренних целочисленных точек нового многоугольника, Г=Г(М)+Г(T)-2(с-2)-2 - число граничных точек нового многоугольника. Из этих равенств получаем: BM+BT+c-2 , Г=Г(М)+Г(T)-2(с-2)-2 . Так как мы предположили, что теорема верна для и для по отдельности, то S(MT)+S(M)+S(T)=(В(М)+ ГМ2 -1)+В(T)+ ГT2 -1)=(В(М)+ В(T))+( ГМ2+ГT2)-2 =Г(MT)-(c-2)+ B(MT)+2(c-2)+22 -2= Г(MT)+ B(MT)2-1 .Тем самым, формула Пика доказана.

2.4 Исследование площадей многоугольников.

2) На клетчатой бумаге с клетками размером 1 см х 1 см изображен

треугольник.Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=12ah

Sтр.ABD=1/2 AD ∙ BD=1/2 ∙ 2 ∙ 1=1

Sтр.BDC=1/2 DC ∙ BD=1/2 ∙ 3 ∙ 1=1,5

Sтр.ABC=Sтр.BDC-Sтр.ABD=

1,5-1=0,5

S= В+Г2-1

Г=3 ;В=0.

S=0+3/2-1=0,5

3)На клетчатой бумаге с клетками размером 1 см х 1 см изображен четырех- угольник. Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=a∙b

Sкв.KMNE=7 ∙ 7=49

Sтр.AKB=1/2 ∙ KB ∙ AK=1/2 ∙ 4 ∙ 4=8

Sтр.AKB=Sтр.DCE=8

Sтр.AND= 1/2 ∙ ND ∙ AN=1/2 ∙ 3 ∙ 3=4,5

Sтр.AND=Sтр.BMC=4,5

Sпр.= Sкв.KMNE- Sтр.AKB- Sтр.DCE- Sтр.AND- Sтр.BMC=49-8-8-4,5-4,5=24

S= В+Г2-1

Г=14;В=19.

S=18+14/2-1=24

4)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 7 ∙1= 3,5

S2= 12a∙ b=1/2 ∙ 7 ∙ 2=7

S3= 12a∙ b=1/2 ∙ 4 ∙ 1=2

S4= 12a∙ b=1/2 ∙ 5 ∙ 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3.5-7-2-2,5-1=32см²

S= В+Г2-1

Г=5;В=31.

S=31+ 42 -1=32см²

5)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах.

S= a ∙b

a=36+36=62

b=9+9=32

S= 62∙32 =36 см 2

S= В+Г2-1

Г=18, В=28

S=28+ 182 -1=36см 2

6)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S=4,5+18+4,5=27 см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

7)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S4= 12a∙ b=1/2 ∙ 6 ∙ 6=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

8)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 2 ∙ 4=4

S2= 12ah =1/2 ∙ 4 ∙ 4=8

S3= 12ah =1/2 ∙ 8 ∙ 2=8

S4= 12ah =1/2 ∙ 4 ∙ 1=2

Sпр.= a∙ b=6 ∙ 8=48

S5=48-4-8-8-2=24 см²

S= Г+В2-1

Г=16;В=17.

S=17+ 162 -1=24 см²

Вывод

  1. Сравнив результаты в таблицах и доказав теорему Пика,я пришла к выводу,что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле планиметрии

Итак, моя гипотеза оказалась верной

III.Геометрические задачи с практическим содержанием.

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 9 . Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

Решение.

Рис. 10 В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача 10 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

Рис. 11 1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Заключение

В процессе исследования я изучила справочную, научно-популярную литературу, научилась работать в программе Notebook. Узнала, что

Задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные н задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

Литература

1.Геометрия на клетчатой бумаге. Малый МЕХмат МГУ.

2.Жарковская Н. М., Рисс Е. А . Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

3.Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011

4.В.В.Вавилов, А.В.Устинов.Многоугольники на решетках.М.МЦНМО,2006.

5.Мтематические этюды. etudes.ru

6.Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.Геометрия.7-9 классы.М. Просвещение,2010

Библиографическое описание: Татьяненко А. А., Татьяненко С. А. Вычисление площадей фигур, изображенных на клетчатой бумаге // Юный ученый. — 2016. — №3..03.2019).





При подготовке к основному государственному экзамену я встретился с заданиями, в которых требуется вычислить площадь фигуры, изображенной на клетчатом листе бумаги. Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой трапецию, параллелограмм или треугольник. Достаточно хорошо знать формулы вычисления площадей этих фигур, посчитать количество клеточек и вычислить площадь. Если фигура представляет собой некоторый произвольный многоугольник, то здесь необходимо использовать особые приемы. Меня заинтересовала данная тема. И естественно возникли вопросы: где в повседневной жизни могут возникнуть задачи на вычисление площадей на клетчатой бумаге? В чем особенность таких задач? Существуют ли другие методы или же универсальная формула для вычисления площадей геометрических фигур, изображенных на клетчатой бумаге?

Изучение специальной литературы и интернет источников, показало, что существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако, в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата. Более того, мною проведен опрос друзей и одноклассников (в двух формах: при личной беседе и в социальных сетях), в котором приняли участие 43 учащихся школ города Тобольска. Данный опрос показал, что всего один человек (учащийся 11 класса) знаком с формулой Пика для вычисления площадей.

Пусть задана прямоугольная система координат. В этой системе рассмотрим многоугольник, который имеет целочисленные координаты. В учебной литературе точки с целочисленными координатами называются узлами. Причем многоугольник не обязательно должен быть выпуклым. И пусть требуется определить его площадь.

Возможны следующие случаи.

1. Фигура представляет собой треугольник, параллелограмм, трапецию:

1) подсчитывая клеточки нужно найти высоту, диагонали или стороны, которые требуются для вычисления площади;

2) подставить найденные величины в формулу площади.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 1 с размером клетки 1см на 1 см.

Рис. 1. Треугольник

Решение. Подсчитываем клеточки и находим: . По формуле получаем: .

2 Фигура представляет собой многоугольник

Если фигура представляет собой многоугольник то возможно использовать следующие методы.

Метод разбиения:

1) разбить многоугольник на треугольники, прямоугольники;

2) вычислить площади полученных фигур;

3) найти сумму всех площадей полученных фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом разбиения.

Рис. 2. Многоугольник

Решение. Способов разбиения существует множество. Мы разобьем фигуру на прямоугольные треугольники и прямоугольник как показано на рисунке 3.

Рис. 3. Многоугольник. Метод разбиения

Площади треугольников равны: , , , площадь прямоугольника - . Складывая площади всех фигур получим:

Метод дополнительного построения

1) достроить фигуру до прямоугольника

2) найти площади полученных дополнительных фигур и площадь самого прямоугольника

3) из площади прямоугольника вычесть площади всех «лишних» фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом дополнительного построения.

Решение. Достроим нашу фигуру до прямоугольника как показано на рисунке 4.

Рис. 4. Многоугольник. Метод дополнения

Площадь большого прямоугольника равна , прямоугольника, расположенного внутри - , площади «лишних» треугольников - , , тогда площадь искомой фигуры .

При вычислении площадей многоугольников на клетчатой бумаге возможно использовать еще один метод, который носит название формула Пика по фамилии ученого ее открывшего.

Формула Пика

Пусть у многоугольника, изображённого на клетчатой бумаге только целочисленные вершины. Точки у которых обе координаты целые называются узлами решетки. Причем, многоугольник может быть как выпуклым, так и невыпуклым.

Площадь многоугольника с целочисленными вершинами равна , где B - количество целочисленных точек внутри многоугольника, а Г - количество целочисленных точек на границе многоугольника.

Например, для многоугольника, изображенного на рисунке 5.

Рис. 5. Узлы в формуле Пика

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см по формуле Пика.

Рис. 6. Многоугольник. Формула Пика

Решение. По рисунку 6: В=9, Г=10, тогда по формуле Пика имеем:

Ниже приведены примеры некоторых задач, разработанных автором на вычисление площадей фигур, изображенных на клетчатой бумаге.

1. В детском саду дети сделали аппликации родителям в подарок (рис.7). Найдите площадь аппликации. Размер каждой клетки равен 1см 1см.

Рис. 7. Условие задачи 1

2. Один гектар еловых насаждений может задерживать в год до 32 т пыли, сосновых - до 35 т, вяза - до 43 т, дуба - до 50 т. бука - до 68 т. Посчитайте, сколько тонн пыли задержит ельник за 5 лет. План ельника изображен на рисунке 8 (масштаб 1 см. - 200 м.).

Рис. 8. Условие задачи 2

3. В орнаментах хантов и манси, преобладают геометрические мотивы. Часто встречаются стилизованные изображения животных. На рисунке 9 изображен фрагмент мансийского орнамента «Заячьи ушки». Вычислите площадь закрашенной части орнамента.

Рис. 9. Условие задачи 3

4. Требуется покрасить стену заводского здания (рис. 10). Рассчитайте требуемое количество водоэмульсионной краски (в литрах). Расход краски: 1 литр на 7 кв. метров Масштаб 1см - 5м.

Рис. 10. Условие задачи 4

5. Звездчатый многоугольник - плоская геометрическая фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения. Особого внимания заслуживает пятиконечная звезда - пентаграмма. Пентаграмма - это символ совершенства, ума, мудрости и красоты. Это простейшая форма звезды, которую можно изобразить одним росчерком пера, ни разу не оторвав его от бумаги и при этом ни разу же не пройдя дважды по одной и той же линии. Нарисуйте пятиконечную звездочку не отрывая карандаша от листа клетчатой бумаги, так, чтобы все углы получившегося многоугольника находились в узлах клетки. Вычислите площадь полученной фигуры.

Проанализировав математическую литературу и разобрав большое количество примеров по теме исследования, я пришел к выводу, что выбор метода вычисления площади фигуры на клетчатой бумаге зависит от формы фигуры. Если фигура представляет собой треугольник, прямоугольник, параллелограмм или трапецию, то удобно воспользоваться всем известными формулами для вычисления площадей. Если фигура представляет собой выпуклый многоугольник, то возможно использовать как метод разбиения, так и дополнения (в большинстве случаях удобнее - метод дополнения). Если фигура представляет собой невыпуклый или звездчатый многоугольник, то удобнее применить формулу Пика.

Поскольку формула Пика является универсальной формулой для вычисления площадей (если вершины многоугольника находятся в узлах решетки), то ее можно использовать для любой фигуры. Однако, если многоугольник занимает достаточно большую площадь (или клетки мелкие), то велика вероятность допустить ошибку в подсчетах узлов решетки. Вообще, в ходе исследования, я пришел к выводу, что при решении подобных задач в ОГЭ лучше воспользоваться традиционными методами (разбиения или дополнения), а результат проверить по формуле Пика.

Литература:

  1. Вавилов В. В., Устинов А. В. Многоугольники на решетках. - М.: МЦНМО, 2006. - 72 с.
  2. Васильев И. Н. Вокруг формулы Пика// Научно-популярный физико-математический журнал «Квант». - 1974. - № 12. Режим доступа: http://kvant.mccme.ru/1974/12/vokrug_formuly_pika.htm
  3. Жарковская Н., Рисс Е. Геометрия клетчатой бумаги. Формула Пика. // Первое сентября. Математика. - 2009. -№ 23. - с.24,25.

Формула Пика

1. Введение

2. Формула Пика. Доказательство I .

Доказательство II .

Доказательство Ш.

3. Задачи.

4. Формула площади многоугольника через координаты вершин.

5. Задачи.

6. Литература

Формула Пика.

1. Введение.

В истории черпаем мы мудрость,

в поэзии - остроумие,

в математике - проницательность.

Ф. Бэкон

Сюжет будет разворачиваться на обычном листке клетчатой бумаги.

Линии, идущие по сторонам клеток, образуют сетку, а вершины клеток - узлы этой сетки. Нарисуем на листе многоугольник с вершинами в узлах и найдём его площадь.

Искать её можно по - разному. Например, можно разрезать многоугольник на достаточно простые фигуры, найти их площади и сложить.

Но тут нас ждёт много хлопот. Фигура легко разбивается на прямоугольники, трапеции, и треугольники, и её площадь вычисляется без усилий.

Хотя многоугольник и выглядит достаточно просто, для вычисления его площади придется изрядно потрудиться. А если бы многоугольник выглядел более причуд­ливо? Оказывается, площади многоугольни­ков, вершины которых расположены в узлах сетки, можно вычислять гораздо проще: есть формула, связывающая их площадь с коли­чеством узлов, лежащих внутри и на границе многоугольника. Эта замечательная и простая формула называется формулой Пика.

2. Формула Пика.

Вершины многоугольника (не обязательно выпуклого) расположены в узлах целочисленной решетки. Внутри его лежит В узлов решетки, а на границе Г узлов. Докажем, что его площадь равна В + – 1 (формула Пика).

Доказательство I .

Рассмотрим многоугольник, вершины которого находятся в узлах целочисленной решётки, то есть имеют целочисленные координаты.

Многоугольник разобьём на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах.

Обозначим:

n – число сторон многоугольника,

m – количество треугольников с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах,

В – число узлов внутри многоугольника,

Г – число узлов на сторонах, включая вершины.

Площади всех этих треугольников одинаковы и равны .

Следовательно, площадь многоугольника равна
.

180 0 m .

Теперь найдём эту сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 360 0 .

Тогда сумма углов с вершинами во всех внутренних узлах равна 360 0 В.

Общая сумма углов при узлах на сторонах, но не в вершинах равна 180 0 (Г – n ).

Сумма углов при вершинах многоугольника равна 180 0 (n – 2) .

Общая сумма углов всех треугольников равна 360 0 В + 180 0 (Г – n ) + 180 0 (n – 2).

Таким образом, 180 0 m = 360 0 В + 180 0 (Г – n ) + 180 0 (n – 2),

180 0 m = 360 0 В + 180 0 Г – 180 0 n + 180 0 n – 180 0 ·2,

180 0 m = 360 0 В + 180 0 Г– 360 0 ,

= В + – 1 ,

откуда получаем выражение для площади S многоугольника:

S = В + – 1 ,

известное как формула Пика.

На рисунке: В = 24, Г = 9, следовательно, S = 24 + – 1 = 27,5.

Найдём площадь первого многоугольника по формуле Пика:

В = 28 (зеленые точки);

Г = 20 (синие точки).

Получаем, S =
= 37 кв.ед.

Доказательство II .

Каждому многоугольнику M с вершинами в узлах целочисленной решетки поставим в соответствие число f (M) =
, где суммирование ведётся по всем узлам решётки, принадлежащим M, а угол определяется следующим образом: =
для внутренней точки многоугольника, =
для граничной точки, отличной от вершины, и – угол при вершине, если данный узел – вершина. Легко видеть, что f (M) =
+
= В + – 1. Остаётся проверить, что число f (M) равно площади многоугольника M.

Пусть многоугольник M разрезан на многоугольники M 1 и M 2 с вершинами в узлах решетки. Тогда f (M) = f (M 1) + f (M 2), поскольку для каждого узла углы складываются. Поэтому если формула Пика верна для двух из многоугольников M, M 1 и M 2 , то она верна и для третьего.

Если M - прямоугольник со сторонами p и q , направленными по линиям решетки, то

f (M) = (p – 1)(q – 1) +
= pq.

В этом случае формула Пика справедлива. Разрезав прямоугольник M диагональю на треугольники M 1 и M 2 и воспользовавшись тем, что f (M) = f (M 1) + f (M 2) и f (M 1) = f (M 2), легко доказать справедливость формулы Пика для любого прямоугольного треугольника с катетами, направленными по линиям решетки. Отрезав несколько таких треугольников от прямоугольника, можно получить любой треугольник.

Для завершения доказательства формулы Пика остается заметить, что любой многоугольник можно разрезать на треугольники непересекающимися диагоналями.

Доказательство Ш.

Связь между площадью фигуры и количе­ством узлов, попавших в эту фигуру, особенно ясно видна в случае прямоугольника.

Пусть ABCD - прямоугольник с вершинами в узлах и сторонами, идущими по линиям сетки.

Обозначим через В количество узлов, лежа­щих внутри прямоугольника, а через Г - ко­личество узлов на его границе. Сместим сетку на пол клетки вправо и полклетки вниз.

Тогда территорию прямоугольника можно «распределить» между узлами следующим образом: каждый из В узлов «контролирует» целую клетку смещенной сетки, каждый из Г – 4 гра­ничных неугловых узла – половину клетки, а каждая из угловых точек – четверть клетки. Поэтому площадь прямоугольника S равна

Итак, для прямоугольников с вершинами в узлах и сторонами, идущими по линиям сетки, мы установили формулу

Докажем, что эта формула верна не только для прямоугольников, но и для произвольных многоугольников с вершинами в узлах сетки.

Обозначим через S м площадь многоуголь­ника М с вершинами в узлах, а через П м – величину
, где
В м – число узлов внутри М, а Г м - число узлов на границе. Тогда формулу Пика можно записать в виде
.

Доказательство формулы разобьем на не­сколько шагов.

Шаг 1.

Если многоугольник М с вершина­ми в узлах сетки разрезан на 2 многоугольни­ка М 1 и М 2 , также имеющих вершины только в узлах сетки, то
. Пусть многоугольник
М разрезан на много­угольники М 1 и М 2 с вершинами в узлах отрез­ком АВ. Все узлы, кроме тех, которые попадают на отрезок АВ, дают одинаковый вклад в левую и правую части формулы. Рассмотрим узлы, лежащие на отрезке АВ.

Если такой узел лежит между А и В (на­пример, С), то для многоугольника М он внутренний, а для многоугольников М 1 и М 2 – граничный. Поэтому его вклад в П м равен 1, а в каждое из выражений
и
– по 0,5, то есть вклады такого узла в
П м и
равны.

Рассмотрим узлы А и В. Они граничные как для М , так и для М 1 , М 2 .

Поэтому вклад каждого из этих узлов в П м равен 0,5 а в
- единице. Значит, суммарный вклад узлов А и В в П м равен 1, что на 1 меньше, чем их вклад в
. Но
, а .

Из общего «вклада» всех узлов П м вычи­тается 1, а из
вычитается 2, и это компенсирует разницу вкладов узлов А и В.

Итак,
.

Шаг 2.

Если многоугольник М с вершинами в узлах сетки разрезан на два многоугольника М 1 и М 2 (тоже с вершинами в узлах) и формула верна для каких-то двух из многоугольников М, М 1 , М 2 , то она верна и для третьего многоугольника.

Пусть, например, она верна для М 1 и М 2 , то есть
. Тогда (по первому шагу)
, но (по перво­му шагу) последнее выражение равно П м , а равенство
и есть формула Пика.

Шаг 3.

Докажем формулу Пика для пря­моугольного треугольника с вершинами в узлах сетки и катетами, лежащими на линиях сетки.

Треугольник АВС достроим до прямоуголь­ника ABCD .

Для прямоугольников формула Пика верна: S ABCD = П ABCD . Согласно первому шагу П ABCD = П ABC + П ACD , П ABC = П ACD , так что П ABCD = 2П ABC . Но S ABCD = 2 S ABC . Поэтому S ABC = П ABC .

Шаг 4.

Формула Пика верна для произволь­ного треугольника с вершинами в узлах сетки.

Рассмотрев рисунок, легко понять: любой такой треугольник можно получить, «отрезав» от некоторого прямоугольника со сторонами, идущими по линиям сетки, несколько прямо­угольников и прямоугольных треугольников с катетами на линиях сетки. А так как формула Пика верна для прямоугольников и прямоугольных треугольников, то (вспомним шаг 2) она верна и для исходного треугольника.

Мы доказали, что если многоугольник мож­но разрезать на треугольники с вершинами в узлах сетки, то для него верна формула Пика.

3. Задачи.

Найдите площади фигур:

1
.



B = 9

Г = 4

B = 9

Г = 5

Нарисуем на клетчатой бумаге какой-нибудь многоугольник. Например, такой, как показан на рисунке 1.

Попробуем теперь рассчитать его площадь. Как это сделать? Наверное, проще всего разбить его на прямоугольные треугольники и прямоугольники, площади которых уже нетрудно вычислить и сложить полученные результаты. Использованный мною способ несложен, но очень громоздок, кроме того он годится не для всяких многоугольников.

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный -- любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница -- связная ломаная без самопересечений, и он имеет ненулевую площадь). Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема Пика. Пусть -- число целочисленных точек внутри многоугольника, -- количество целочисленных точек на его границе, -- его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке 1 (желтые точки), (синие точки, не забудьте о вершинах!), поэтому квадратных единиц.

Доказательство теоремы Пика. Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем и

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и. Имеем в этом случае и, по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и, рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая и получаем, что

Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки 2 и 3). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной.

Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением. Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим

Число внутренних целочисленных точек нового многоугольника,

Число граничных точек нового многоугольника.

Из этих равенств получаем

Так как мы предположили, что теорема верна для и для по отдельности, то

Тем самым, формула Пика доказана.

Эту формулу открыл австрийский математик Пик Георг Александров (1859 - 1943 г.г.) в 1899 году. Кроме этой формулы Георг Пик открыл теоремы Пика, Пика - Жюлиа, Пика - Невалины, доказал неравенство Шварца - Пика. В Приложении 1 можно увидеть рассмотренные мною нестандартные задачи на применение формулы Пика.

При помощи формулы Пика можно находить площадь фигуры, построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В задачах, которые будут на ЕГЭ, есть целая группа заданий, в которых дан многоугольник, построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки - один квадратный сантиметр.

Просмотр содержимого презентации


Георг Пик

Георг Александр Пик,

австрийский математик

(10.08.1859 - 13.07.1942)


Формула была открыта в 1899 г.

Площадь искомой фигуры можно найти по формуле:

  • М – количество узлов на границе треугольника (на сторонах и вершинах):
  • N – количество узлов внутри треугольника;

* Под «узлами» имеется ввиду пересечение линий.


Найдём площадь треугольника:


Отметим узлы:

1 клетка = 1 см

  • M = 15 (обозначены красным)
  • N = 34 (обозначены синим)

Найдём площадь параллелограмма:


Отметим узлы:

  • M = 18 (обозначены красным)
  • N = 20 (обозначены синим)

Найдём площадь трапеции:


Отметим узлы:

  • M = 24 (обозначены красным)
  • N = 25 (обозначены синим)

Найдём площадь многоугольника:


Отметим узлы:

  • M = 14 (обозначены красным)
  • N = 43 (обозначены синим)



Отметим узлы:

  • M = 11 (обозначены красным)
  • N = 5 (обозначены синим)

Решите самостоятельно:

1. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах.




4. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1см х 1 см. Ответ дайте в квадратных сантиметрах .



Опишем около неё прямоугольник:

  • Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:


Ответы:

задания

Вариант 1

Вариант 2

Вариант 3

Вариант 4