Растворение веществ в воде связано. Факторы, влияющие на растворимость веществ

Растворимость - это способность веществ растворяться в воде. Одни вещества очень хорошо растворяются в воде, некоторые даже в неограниченных количествах. Другие - лишь в небольших количествах, а третьи - вообще почти не растворяются. Поэтому вещества делят на растворимые, малорастворимые и практически нерастворимые.

К растворимым относятся такие вещества, которые в 100 г воды растворяются в количестве больше 1 г (NaCl, сахар, HCl, KNO 3). Малорастворимые вещества растворяются в количестве от 0,01 г до 1 г в 100 г воды (Ca(OH) 2 , CaSO 4). Практически нерастворимые вещества не могут раствориться в 100 г воды в количестве больше 0,01 г (металлы, CaCO 3 , BaSO 4).

При протекании химических реакций в водных растворах могут образовываться нерастворимые вещества, которые выпадают в осадок или находятся во взвешенном состоянии, делая раствор мутным.

Существует таблица растворимости в воде кислот, оснований и солей, где отражено является ли соединение растворимым. Все соли калия и натрия, а также все нитраты (соли азотной кислоты) хорошо растворимы в воде. Из сульфатов (солей серной кислоты) малорастворим сульфат кальция, нерастворимы сульфаты бария и свинца. Хлорид свинца малорастворим, а хлорид серебра нерастворим.

Если в клетках таблицы растворимости стоит черточка, это значит, что соединение реагирует с водой, в результате чего образуются другие вещества, т. е. соединение в воде не существует (например, карбонат алюминия).

Все твердые вещества, даже хорошо растворимые в воде, растворяются лишь в определенных количествах. Растворимость веществ выражают числом, которое показывает наибольшую массу вещества, которая может раствориться в 100 г воды при определенных условиях (обычно имеется в виду температура). Так при 20 °C в воде растворяется 36 г поваренной соли (хлорида натрия NaCl), более 200 г сахара.

С другой стороны, вообще нерастворимых веществ нет. Любое практически нерастворимое вещество хотя бы в очень незначительных количествах, но растворяется в воде. Например, мел растворяется в 100 г воды при комнатной температуре в количестве 0,007 г.

Большинство веществ с повышением температуры лучше растворяются в воде. Однако NaCl почти одинаково растворим при любой температуре, а Ca(OH)2 (известь) лучше растворяется при более низкой температуре. На основе зависимости растворимости веществ от температуры строят кривые растворимости.

Если в растворе при данной температуре еще можно растворить какое-то количество вещества, то такой раствор называют ненасыщенным. Если же достигнут придел растворимости, и больше вещества растворить нельзя, то говорят, что раствор насыщенный.

Когда охлаждают насыщенный раствор, то растворимость вещества понижается, и, следовательно, оно начинает выпадать в осадок. Часто вещество выделяется в виде кристаллов. Для разных солей кристаллы имеют свою форму. Так кристаллы поваренной соли имеют кубическую форму, у калийной селитры они похожи на иголки.

По растворимости в воде все вещества делятся на три группы: 1) хорошо растворимые, 2) малорастворимые и 3) практически нерастворимые. Последние называют также нерастворимыми веществами. Однако следует отметить, что абсолютно нерастворимых веществ нет. Если опустить в воду стеклянную палочку или кусочек золота или серебра, то они в ничтожно малых количествах все же растворяются в воде. Стекло, металлы, некоторые соли - это примеры практически нерастворимых в воде веществ (твердые вещества). К ним следует также отнести керосин, растительное масло (жидкие вещества), благородные газы (газообразные вещества).

Примером малорастворимых в воде веществ могут служить гипс, сульфат свинца (твердые вещества), диэтиловый эфир, бензол (жидкие вещества), метан, азот, кислород (газообразные вещества).

Многие вещества в воде растворяются весьма хорошо. Примером таких веществ могут служить сахар, медный купорос, гидроксид натрия (твердые вещества), спирт, ацетон (жидкие вещества), хлороводород, аммиак (газообразные вещества).

Из приведенных примеров следует, что растворимость, прежде всего, зависит от природы веществ. Кроме того, она зависит также от температуры и давления. Сам процесс растворения обусловлен взаимодействием частиц растворимого вещества и растворителя; это самопроизвольный процесс.

По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. С другой стороны, по относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.

Отношение массы вещества, образующего насыщенный раствор при данной температуре, к массе растворителя называют растворимостью (7.3.1.) этого вещества, или коэффициентом растворимости(7.3.2.):

(7.3.1), (7.3.2).

Понятие растворимости бессмысленно для полностью растворимых веществ друг в друге (этиловый спирт – вода).

Зависимость растворимости веществ от температуры и природы растворителя. Растворимость веществ существенно зависит от природы растворяемого вещества и растворителя, температуры и давления. Еще в середине прошлого тысячелетия опытным путем было установлено правило, согласно которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или ковалентно-полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в первую очередь в воде. И наоборот, растворимость кислорода в бензоле, например, на порядок выше, чем в воде, так как молекулы О 2 и С 6 Н 6 неполярны.


Для подавляющего большинства твердых тел растворимость увеличивается с повышением температуры.

Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы соли, то образуется пересыщенный раствор. Пересыщенным называют раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор неустойчив, и при изменении условий (при встряхивании или внесении в раствор затравки для кристаллизации) выпадает осадок, над которым остается насыщенный раствор.

В отличие от твердых тел растворимость газов в воде с повышением температуры уменьшается, что обусловлено непрочностью связи между молекулами растворенного вещества и растворителя. Другой важной закономерностью, описывающей растворимость газов в жидкостях, является закон Генри: Растворимость газа прямо пропорциональна его давлению над жидкостью.

Растворимость — это свойство вещества образовывать с различными растворителями гомогенные смеси. Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет этого вещества. В связи с этим растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в его насыщенном растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы. Поэтому, когда поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl. И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag + (водн.) + Cl — (водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для будет выглядеть следующим образом:

K = [ Cl — ]

Такая константа называется произведением растворимости ПР , при условии, что концентрации выражаются в моль/л.

ПР = [ Cl — ]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.
Следует отличать понятие растворимости и произведения растворимости. Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ. Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению . Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P ,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

На следующем рисунке приведены кривые зависимости растворимости некоторых газов в воде от температуры при постоянном давлении газа над раствором (1 атм)

Как видно, растворимость газов уменьшается с ростом температуры, в отличие от большинства ионных соединений, растворимость которых растет с увеличением температуры.

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры. Это следует из уже известного нам : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, - то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье, при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический , то повышение температуры приводит к уменьшению растворимости.


зависимость растворимости ионных соединеий от Температуры

Известно, что существуют растворы жидкостей в жидкостях . Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично. Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний - насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается. Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими жидкостями будет пропорционально растворимости в каждой из них. Т.е. согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К,

где С 1 и С 2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Категории ,

Растворы играют ключевую роль в природе, науке и технике. Вода – основа жизни, всегда содержит растворенные вещества. Пресная вода рек и озер содержит мало растворенных веществ, в то время как морская вода содержит около 3,5% растворенных солей.

Первичный океан (во время зарождения жизни на Земле), по предположениям, содержал всего 1% растворенных солей.

«Именно в этой среде впервые развивались живые организмы, из этого раствора они черпали ионы и молекулы, которые необходимы для их дальнейшего роста и развития… Со временем живые организмы развивались и преображались, поэтому они смогли оставить водную среду и перебраться на сушу и затем подняться в воздух. Они получили эти способности, сохранив в своих организмах водный раствор в виде жидкостей, которые содержат жизненно важный запас ионов и молекул» – именно такими словами описывает роль растворов в природе знаменитый американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри каждого из нас, в каждой клетке нашего организма – содержатся воспоминания о первичном океане, месте в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В любом живом организме постоянно течет по сосудам – артериям, венам и капиллярам – необычный раствор, который составляет основу крови, массовая доля солей в нем такая же, как в первичном океане, – 0,9%. Сложные физико-химические процессы, протекающие в организме человека и животного, также взаимодействуют в растворах. Процесс усвоения пищи связан с переводом высокопитательных веществ в раствор. Природные водные растворы напрямую связаны с процессами почвообразования, снабжением растений питательными веществами. Такие технологические процессы в химической и многих других отраслях промышленности, например производство удобрений, металлов, кислот, бумаги, происходят в растворах. Современная наука занимается изучением свойств растворов. Давайте выясним, что же такое раствор?

Растворы отличаются от других смесей тем, что частицы составных частей располагаются в них равномерно, и в любом микрообъеме подобной смеси состав будет одинаков.

Именно поэтому под растворами понимали однородные смеси, которые состоят из двух или более однородных частей. Такое представление исходило из физической теории растворов.

Приверженцы физической теории растворов, которой занимались Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии.

Д. И. Менделеев и сторонники химической теории считали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Таким образом, будет точнее определить раствор как однородную систему, которая состоит из частиц растворенного вещества, растворителя, а также продуктов их взаимодействия.

Вследствие химического взаимодействия растворенного вещества с водой образуются соединения – гидраты. Химическое взаимодействие обычно сопровождается тепловыми явлениями. К примеру, растворение серной кислоты в воде проходит с выделением такого колоссального количества тепла, что раствор может закипеть, именно поэтому кислоту льют в воду, а не наоборот. Растворение таких веществ как хлорид натрия, нитрат аммония, сопровождается поглощением тепла.

М. В. Ломоносов доказал, что растворы превращаются в лед при более низкой температуре, чем растворитель.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.