Способы определения координат центра тяжести. Определение координат центра тяжести плоских фигур

6.1. Общие сведения

Центр параллельных сил
Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


Рис.6.2

Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

Отсюда находим координату центра параллельных сил zc :

Для определения координаты xc составим выражение момента сил относительно оси Oz .

Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

6.2. Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
Точка С в данном случае носит название центра тяжести площади .
Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

6.3. Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


Рис.6.3

Ответ: x c =17.0см; y c =18.0см.

3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


Рис.6.4

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


Рис. 6.5

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
Согласно формуле для центра тяжести линии:

6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



Рис.6.6

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

6.4. Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

Таблица 6.1

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где α - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где α - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Инструкция

Попробуйте определить центр тяжести плоской фигуры опытным путем. Возьмите новый незаточенный карандаш, поставьте его вертикально. Сверху на него поместите плоскую фигуру. Отметьте на фигуре точку, в которой она устойчиво держится на карандаше. Это и будет центр тяжести вашей фигуры . Вместо карандаша использовать просто вытянутый вверх указательный палец. Но это , ведь надо добиться того, чтобы палец стоял ровно, не раскачивался и не дрожал.

Для демонстрации того, что полученная точка и есть центр масс, проделайте в ней иголкой дырочку. Проденьте в отверстие нитку, на одном из концов завяжите узелок − так, чтобы нитка не выскакивала. Держась за другой конец нитки, подвесьте тело на ней. Если центр тяжести верно, фигура расположится ровно, параллельно полу. Ее бока не будут раскачиваться.

Найдите центр тяжести фигуры геометрическим путем. Если у вас дан треугольник, постройте в нем . Эти отрезки соединяют вершины треугольника с серединой противоположной стороны. Точка станет центром масс треугольника. Чтобы найти срединную точку стороны, можно даже сложить фигуру пополам, но учтите, что при этом нарушится однородность фигуры .

Сравните результаты, полученные геометрическим и опытным путем. Сделайте о ходе эксперимента. Небольшие погрешности считаются нормой. Объясняются они неидеальностью фигуры , неточностью приборов, человеческим фактором (мелкими огрехами в работе, несовершенством человеческого глаза и т.д.).

Источники:

  • Вычисление координат центра тяжести плоской фигуры

В однородном гравитационном поле центр тяжести совпадает с центром масс. В геометрии понятия «центр тяжести» и «центр масс» также эквивалентны, поскольку существование гравитационного поля не рассматривается. Центр масс называется еще центром инерции и барицентром (от греч. barus − тяжелый, kentron − центр). Он характеризует движение тела или системы частиц. Так, при свободном падении тело вращается вокруг своего центра инерции.

Инструкция

Пусть система состоит из двух одинаковых точек. Тогда , очевидно, располагается посередине между ними. Если точки с координатами x1 и x2 имеют разные массы m1 и m2, то координата центра масс x(c)=(m1·x1+m2·x2)/(m1+m2). В зависимости от выбранного «нуля» системы отсчета, координаты могут быть и отрицательными.

Точки на плоскости имеют две координаты: x и y. При задании в пространстве добавляется еще третья координата z. Чтобы не расписывать каждую координату в отдельности, удобно рассматривать радиус-вектор точки: r =x·i +y·j +z·k , где i ,j ,k − орты координатных осей.

Пусть теперь система состоит из трех точек с массами m1, m2 и m3. Их радиус-векторы, соответственно, r1 , r2 и r3 . Тогда радиус-вектор их центра тяжести r(c) =(m1·r1 +m2·r2 +m3·r3 )/(m1+m2+m3).

Если система состоит из произвольного точек, тогда радиус-вектор, по определению, находится по формуле:
r(c) =∑m(i)·r(i) /∑m(i). Суммирование производится по индексу i (записывается снизу от знака суммы ∑). Здесь m(i) − некоторого i-го системы, r(i) − его радиус-вектор.

Если тело однородно по массе, сумма переходит в интеграл. Разбейте мысленно тело на бесконечно маленькие кусочки массой dm. Поскольку тело однородно, массу каждого кусочка можно записать как dm=ρ·dV, где dV − элементарный объем этого кусочка, ρ − плотность (одинакова по всему объему однородного тела).

Интегральное суммирование массы всех кусочков даст массу всего тела: ∑m(i)=∫dm=M. Итак, получается r(c) =1/M·∫ρ·dV·dr . Плотность, постоянную величину, можно вынести из-под знака интеграла: r(c) =ρ/M·∫dV·dr . Для непосредственного интегрирования понадобится установить конкретную функцию между dV и dr , которая зависит от параметров фигуры.

К примеру, центр тяжести отрезка (длинного однородного стержня) находится посередине. Центр масс сферы и шара располагается в центре. Барицентр конуса находится на высоты осевого отрезка, считая от основания.

Центр можно определить и опытным путем. Вырежьте из листа плотной бумаги или картона любую фигуру (например, тот же треугольник). Попробуйте установить ее на кончике вертикально вытянутого пальца. То место на , для которого получится это сделать, и будет являться центром инерции тела.

Источники:

  • «Механика», Д.В. Сивухин, 2006.
  • Определение координат центра тяжести судна

В обыденном смысле центр тяжести воспринимают как точку, к которой можно приложить равнодействующую всех сил, действующих на тело. Самый простой пример - это детские качели в виде обычной доски. Без всяких вычислений любой ребенок подберет опору доски так, чтобы уравновесить (а может, и перевесить) на качелях тяжелого мужчину. В случае сложных тел и сечений без точных расчетов и соответствующих формул не обойтись. Даже если получаются громоздкие выражения, главное - не пугаться их, а помнить, что исходно речь идет о практически элементарной задаче.

Инструкция

Рассмотрите простейший рычаг (см. рис 1), находящийся в положении равновесия. Расположите на горизонтальной оси с абсциссой х₁₂ и поместите на краях материальные точки масс m₁ и m₂. Считайте их координаты по оси 0х известными и равными х₁ и х₂. Рычаг находится в положении равновесия, если моменты сил веса Р₁=m₁g и P₂=m₂g равны. Момент равен произведению силы на ее плечо, которое можно найти как длину перпендикуляра опущенного из точки приложения силы на вертикаль х=х₁₂. Поэтому, в соответствии с рисунком 1, m₁gℓ₁= m₂gℓ₂, ℓ₁=х₁₂-х₁, ℓ₂=х₂-х₁₂. Тогда m₁(х₁₂-х₁)=m₂(х₂-х₁₂). Решите это уравнение и получите х₁₂=(m₁x₁+m₂x₂)/(m₁+m₂).

Для выяснения ординаты y₁₂ примените те же самые рассуждения и выкладки, как и на шаге 1. По-прежнему следуйте иллюстрации, приведенной на рисунке 1, где m₁gh₁= m₂gh₂, h₁=y₁₂-y₁, h₂=y₂-y₁₂. Тогда m₁(y₁₂-y₁)=m₂(y₂-y₁₂). Результат - у₁₂=(m₁у₁+m₂у₂)/(m₁+m₂). Далее считайте, что вместо системы из двух точек имеется одна точка М₁₂(x12,у12) общей массы (m₁+m₂).

К системе из двух точек добавьте еще одну массу (m₃) с координатами (х₃, у₃). При вычислении следует по-прежнему считать, что имеете дело с двумя точками, где вторая из них имеет массу (m₁+m₂) и координаты (x12,у12). Повторяя уже для этих двух точек все действия шагов 1 и 2, придете к центра трех точек x₁₂₃=(m₁x₁+m₂x₂+m₃x₃)/(m₁+m₂+m₃), у₁₂₃=(m₁у₁+m₂у₂+m₃y₃)/(m₁+m₂+m₃). Далее добавляйте четвертую, пятую и так далее точки. После многократного повторения все той же процедуры убедитесь, что для системы n точек координаты центра тяжести вычисляются по формуле (см. рис. 2). Отметьте для себя тот факт, что в процессе работы ускорение свободного падения g сокращалось. Поэтому координаты центра масс и тяжести совпадают.

Представьте себе, что в рассматриваемом сечении расположена некоторая область D, поверхностная плотность которой ρ=1. Сверху и снизу фигура ограничена графиками кривых у=φ(х) и у=ψ(х), х є [а,b]. Разбейте область D вертикалями x=x₍i-1₎, x=x₍i₎ (i=1,2,…,n) на тонкие полоски, такие, что их можно приблизительно считать прямоугольниками с основаниями ∆хi (см. рис. 3). При этом середину отрезка ∆хi считайте положите совпадающим с абсциссой центра масс ξi=(1/2). Высоту прямоугольника считайте приблизительно равной [φ(ξi)-ψ(ξi)]. Тогда ордината центра масс элементарной площади ηi=(1/2)[φ(ξi)+ψ(ξi)].

В силу равномерного распределения плотности считайте, что центр масс полоски совпадет с ее геометрическим центром. Соответствующая элементарная масса ∆mi=ρ[φ(ξi)-ψ(ξi)]∆хi=[φ(ξi)-ψ(ξi)]∆хi сосредоточена в точке (ξi,ηi). Наступил момент обратного перехода от массы, представленной в дискретной форме, к непрерывной. В соответствии с формулами вычисления координат (см. рис. 2) центра тяжести образуются интегральные суммы, проиллюстрированные на рисунке 4а. При предельном переходе при ∆xi→0 (ξi→xi) от сумм к определенным интегралам, получите окончательный ответ (рис. 4b). В ответе масса отсутствует. Равенство S=M следует понимать лишь как количественное. Размерности здесь отличны друг от друга.

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.

Допустим, например, что однородное тело имеет плоскость симметрии. Тогда этой плоскостью оно разбивается на две такие части, веса которых и равны друг другу, а центры тяжести находятся на одинаковых расстояниях от плоскости симметрии. Следовательно, центр тяжести тела как точка, через которую проходит равнодействующая двух равных и параллельных сил будет действительно лежать в плоскости симметрии. Аналогичный результат получается и в случаях, когда тело имеет ось или центр симметрии.

Из свойств симметрии следует, что центр тяжести однородного круглого кольца, круглой или прямоугольной пластины, прямоугольного параллелепипеда, шара и других однородных тел, имеющих центр симметрии, лежит в геометрическом центре (центре симметрии) этих тел.

2. Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по формулам (59) - (62). При этом число слагаемых в каждой из сумм будет равно числу частей, на которые разбито тело.

Задача 45. Определить координаты центра тяжести однородной пластины, изображенной на рис. 106. Все размеры даны в сантиметрах.

Решение. Проводим оси х, у и разбиваем пластину на три прямоугольника (линии разреза показаны на рис. 106). Вычисляем координаты центров тяжести каждого из прямоугольников и их площади (см. таблицу).

Площадь всей пластины

Подставляя вычисленные величины в формулы (61), получаем:

Найденное положение центра тяжести С показано на чертеже; точка С оказалась вне пластины.

3. Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известныу

Задача 46. Определить положение центра тяжести круглой пластины радиуса R с вырезом радиуса (рис. 107). Расстояние

Решение. Центр тяжести пластины лежит на линии так как эта линия является осью симметрии. Проводим координатные оси. Для нахождения координаты дополняем площадь пластины до полного круга (часть 1), а затем вычитаем из полученной площади площадь вырезанного круга (часть 2). При этом площадь части 2, как вычитаемая, должна браться со знаком минус. Тогда

Подставляя найденные значения в формулы (61), получаем:

Найденный центр тяжести С, как виднм, лежнт левее точки

4. Интегрирование. Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают сначала на произвольные малые объемы для которых формулы (60) принимают вид

где - координаты некоторой точки, лежащей внутри объема Затем в равенствах (63) переходят к пределу, устремляя все к нулю, т. е. стягивая эти объемы в точки. Тогда стоящие в равенствах суммы обращаются в интегралы, распространенные на весь объем тела, и формулы (63) дают в пределе:

Аналогично для координат центров тяжести площадей и линий получаем в пределе из формул (61) и (62):

Пример применения этих формул к определению координат центра тяжести рассмотрен в следующем параграфе.

5. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации (самолет, паровоз и т. п.) можно определять экспериментально. Один из возможных экспериментальных методов (метод подвешивания) состоит в том, что тело подвешивают на нити или тросе за различные его точки. Направление нити, на которой подвешено тело, будет каждый раз давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела. Другим возможным способом экспериментального определения центра тяжести является метод взвешивания. Идея этого метода ясна из рассмотренного ниже примера.

Примечание. Центр тяжести симметричной фигуры находится на оси симметрии.

Центр тяжести стержня находится на середине высоты. При решении задач используются следующие методы:

1. метод симметрии: центр тяжести симметричных фигур нахо­дится на оси симметрии;

2. метод разделения: сложные сечения разделяем на несколько простых частей, положение центров тяжести которых легко опреде­лить;

3. метод отрицательных площадей: полости (отверстия) рас­сматриваются как часть сечения с отрицательной площадью.

Примеры решения задач

Пример1. Определить положение центра тяжести фигуры, представленной на рис. 8.4.

Решение

Разбиваем фигуру на три части:

Аналогично определяется у С = 4,5 см.

Пример 2. Найти положение центра тяжести симметричной стержневой фермы ADBE (рис. 116), размеры которой таковы: АВ = 6м, DE = 3 м и EF = 1 м.

Решение

Так как ферма симметричная, то ее центр тяжести лежит на оси симметрии DF. При выбранной (рис. 116) системе коор­динатных осей абсцисса центра тяжести фермы

Неизвестной, следовательно, является лишь ордината у С центра тя­жести фермы. Для ее определения разбиваем ферму на отдельные части (стержни). Длины их определяются из соответствующих треугольников.

Из ΔAEF имеем

Из ΔADF имеем

Центр тяжести каждого стержня лежит в его середине, координаты этих центров легко определяются из чертежа (рис. 116).

Найденные длины и ординаты центров тяжести отдельных частей фермы заносим в таблицу и по формуле

определяем ординату у с центра тяжести данной плоской фермы.

Следовательно, центр тяжести С всей фермы лежит на оси DF симметрии фермы на расстоянии 1,59 м от точки F.

Пример 3. Определить координаты центра тяжести составного сечения. Сечение состоит из листа и прокатных профилей (рис. 8.5).

Примечание. Часто рамы сваривают из разных профилей, создавая необходимую конструкцию. Таким образом, уменьшается расход металла и образуется конструкция высокой прочности.

Для стандартных прокатных профилей собственные геометри­ческие характеристики известны. Они приводятся в соответствую­щих стандартах.

Решение

1. Обозначим фигуры номерами и выпишем из таблиц необхо­димые данные:

1 - швеллер № 10 (ГОСТ 8240-89); высота h = 100 мм; ширина полки b = 46 мм; площадь сечения А 1 = 10,9 см 2 ;

2 - двутавр № 16 (ГОСТ 8239-89); высота 160 мм; ширина полки 81 мм; площадь сечения А 2 - 20,2 см 2 ;

3 - лист 5x100; толщина 5 мм; ширина 100мм; площадь сечения A 3 = 0,5 10 = 5 см 2 .

2. Координаты центров тяжести каждой фигуры можно опреде­лить по чертежу.

Составное сечение симметрично, поэтому центр тяжести нахо­дится на оси симметрии и координата х С = 0.

3. Определение центра тяжести составного сечения:

Пример 4. Определить координаты центра тяжести сечения, по­казанного на рис. 8, а. Сечение состоит из двух уголков 56x4 и швеллера № 18. Выполнить проверку правильности определения положения центра тяжести. Указать его положение на сечении.

Решение

1. : два уголка 56 х 4 и швеллер № 18. Обозначим их 1, 2, 3 (см. рис. 8, а).

2. Укажем центры тяжести каждого профиля, используя табл. 1 и 4 прил. I, и обозначим их С 1 , С 2 , С 3 .

3. Выберем систему координатных осей. Ось у совместим с осью симметрии, а ось х проведем через центры тяжести уголков.

4. Определим координаты центра тяжести всего сечения. Так как ось у совпадает с осью симметрии, то она проходит через центр тяжести сечения, поэтому х с = 0. Координату у с опреде­лим по формуле

Пользуясь таблицами приложения, определим площади каждого профиля и координаты центров тяжести:

Координаты у 1 и у 2 равны нулю, так как ось х проходит через центры тяжести уголков. Подставим полученные значения в формулу для определения у с :

5. Укажем центр тяжести сечения на рис. 8, а и обозначим его буквой С. Покажем расстояние у С = 2,43 см от оси х до точ­ки С.

Поскольку уголки симметрично расположены, имеют одина­ковую площадь и координаты, то А 1 = А 2 , у 1 = у 2 . Поэтому фор­мула для определения у С может быть упрощена:

6. Выполним проверку. Для этого ось х проведем по нижнему краю полки уголка (рис. 8, б). Ось у оставим, как в первом ре­шении. Формулы для определения х С и у С не изменяются:

Площади профилей останутся такими же, а координаты центров тяжестей уголков и швеллера изменятся. Выпишем их:

Находим координату центра тяжести:

По найденным координатам х с и у с наносим на рисунок точ­ку С. Найденное двумя способами положение центра тяжести находится в одной и той же точке. Проверим это. Разница между координатами у с, найденными при первом и втором решении, составляет: 6,51 - 2,43 = 4,08 см.

Это равно расстоянию между осями х при первом и втором решении: 5,6 - 1,52 = 4,08 см.

Ответ: у с = 2,43 см, если ось х проходит через центры тяже­сти уголков, или у с = 6,51 см, если ось х проходит по нижнему краю полки уголка.

Пример 5. Определить координаты центра тяжести сечения, изображенного на рис. 9, а. Сечение состоит из двутавра № 24 и швеллера №.24а. Показать положение центра тяжести на сече­нии.

Решение

1. Разобьем сечение на профили проката : двутавр и швеллер. Обозначим их цифрами 1 и 2.

3. Укажем центры тяжести каждого профиля С 1 и С 2 , ис­пользуя таблицы приложений.

4. Выберем систему осей координат. Ось х совместим с осью симметрии, а ось у проведем через центр тяжести двутавра.

5. Определим координаты центра тяжести сечения. Координа­та у с = 0, так как ось х совпадает с осью симметрии. Координату х с определим по формуле

По табл. 3 и 4 прил. I и схеме сечения определим

Подставим числовые значения в формулу и получим

5. Нанесем точку С (центр тяжести сечения) по найденным значениям х с и у с (см. рис. 9, а).

Проверку решения необходимо выполнить самостоятельно при положении осей, как показано на рис. 9, б. В результате ре­шения получим х с = 11,86 см. Разница между значениями х с при первом и втором решении равна 11,86 - 6,11 = 5,75 см, что равно расстоянию между осями у при тех же решениях b дв /2 = 5,75 см.

Ответ: х с = 6,11 см, если ось у проходит через центр тяжести двутавра; х с = 11,86 см, если ось у проходит через левые крайние точки двутавра.

Пример 6. Железнодорожный кран опирается на рельсы, расстояние меж­ду которыми АВ = 1,5м (рис. 1.102). Сила тяжести тележки крана G r = 30 кН, центр тяжести тележки находится в точке С, лежащей на линии KL пересечения плоскости симметрии тележки с плоскостью рисунка. Сила тяжести лебедки крана Q л = 10 кН приложена в точке D. Сила тяжести противовеса G„=20 кН приложена в точке Е. Сила тяжести стрелы G c = 5 кН приложена в точке Н. Вылет крана относительно линии KL равен 2 м. Определить коэффициент устойчивости крана в ненагруженном состоянии и какой груз F можно поднять этим краном при условии, что коэффициент устойчивости должен быть не менее двух.

Решение

1. В ненагруженном состоянии у крана возникает опасность опро­кидывания при повороте вокруг рельса А. Следовательно, относительно точки А момент устойчивости

2. Опрокидывающий момент относительно точки А создается силой тяжести противове­са, т. е.

3. Отсюда коэффициент устойчивости крана в ненагруженном состоянии

4. При нагрузке стрелы крана грузом F возникает опасность опрокидывания крана с поворотом около рельса В. Следовательно, от­носительно точки В момент устойчивости

5. Опрокидывающий момент относитель­но рельса В

6. По условию задачи эксплуатация крана разрешается при коэффициенте устойчивости k B ≥ 2 , т. е.

Контрольные вопросы и задания

1. Почему силы притяжения к Земле, действующие на точки тела, можно принять за систему параллельных сил?

2. Запишите формулы для определения положения центра тя­жести неоднородных и однородных тел, формулы для определения положения центра тяжести плоских сечений.

3. Повторите формулы для определения положения центра тя­жести простых геометрических фигур: прямоугольника, треугольни­ка, трапеции и половины круга.

4.
Что называют статическим моментом площади?

5. Вычислите статический момент данной фигуры относительно оси Ox. h = 30 см; b = 120 см; с = 10 см (рис. 8.6).

6. Определите координаты центра тяжести заштрихованной фи­гуры (рис. 8.7). Размеры даны в мм.

7. Определите координату у фигуры 1 составного сечения (рис. 8.8).

При решении воспользоваться справочными данными таблиц ГОСТ «Сталь горячекатанная» (см. Приложение 1).

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .