Углерод имеет молекулярное строение. Свободный углерод

Углерод (С) - шестой элемент периодической таблицы Менделеева с атомным весом 12. Элемент относится к неметаллам и имеет изотоп 14 С. Строение атома углерода лежит в основе всей органической химии, т. к. все органические вещества включают молекулы углерода.

Атом углерода

Положение углерода в периодической таблице Менделеева:

  • шестой порядковый номер;
  • четвёртая группа;
  • второй период.

Рис. 1. Положение углерода в таблице Менделеева.

Опираясь на данные из таблицы, можно заключить, что строение атома элемента углерода включает две оболочки, на которых расположено шесть электронов. Валентность углерода, входящего в состав органических веществ, постоянна и равна IV. Это значит, что на внешнем электронном уровне находится четыре электрона, а на внутреннем - два.

Из четырёх электронов два занимают сферическую 2s-орбиталь, а оставшиеся два - 2p-орбиталь в виде гантели. В возбуждённом состоянии один электрон с 2s-орбитали переходит на одну из 2p-орбиталей. При переходе электрона с одной орбитали на другую затрачивается энергия.

Таким образом, возбуждённый атом углерода имеет четыре неспаренных электрона. Его конфигурацию можно выразить формулой 2s 1 2p 3 . Это даёт возможность образовывать четыре ковалентные связи с другими элементами. Например, в молекуле метана (СН 4) углерод образует связи с четырьмя атомами водорода - одна связь между s-орбиталями водорода и углерода и три связи между p-орбиталями углерода и s-орбиталями водорода.

Схему строения атома углерода можно представить в виде записи +6C) 2) 4 или 1s 2 2s 2 2p 2 .

Рис. 2. Строение атома углерода.

Физические свойства

Углерод встречается в природе в виде горных пород. Известно несколько аллотропных модификаций углерода:

  • графит;
  • алмаз;
  • карбин;
  • уголь;
  • сажа.

Все эти вещества отличаются строением кристаллической решётки. Наиболее твёрдое вещество - алмаз - имеет кубическую форму углерода. При высоких температурах алмаз превращается в графит с гексагональной структурой.

Рис. 3. Кристаллические решётки графита и алмаза.

Химические свойства

Атомное строение углерода и его способность присоединять четыре атома другого вещества определяют химические свойства элемента. Углерод реагирует с металлами, образуя карбиды:

  • Са + 2С → СаС 2 ;
  • Cr + C → CrC;
  • 3Fe + C → Fe 3 C.

Также реагирует с оксидами металлов:

  • 2ZnO + C → 2Zn + CO 2 ;
  • PbO + C → Pb + CO;
  • SnO 2 + 2C → Sn + 2CO.

При высоких температурах углерод реагирует с неметаллами, в частности с водородом, образуя углеводороды:

С + 2Н 2 → СН 4 .

С кислородом углерод образует углекислый газ и угарный газ:

  • С + О 2 → СО 2 ;
  • 2С + О 2 → 2СО.

Угарный газ также образуется при взаимодействии с водой:

C + H 2 O → CO + H 2 .

Концентрированные кислоты окисляют углерод, образуя углекислый газ:

  • 2H 2 SO 4 + C → CO 2 + 2SO 2 + 2H 2 O;
  • 4HNO 3 + C → CO 2 + 4NO 2 + 2H 2 O.

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 75.

Характеристика элемента

6 С 1s 2 2s 2 2p 2



Изотопы: 12 С (98,892 %); 13 С (1,108%); 14 С (радиоактивный)



Кларк в земной коре 0,48 % по массе. Формы нахождения:


в свободном виде (каменный уголь, алмазы);


в составе карбонатов (СаСO 3 , МgСO 3 и др.);


в составе горючих ископаемых (уголь, нефть, газ);


в виде СO 2 - в атмосфере (0,03 % по объему);


в Мировом океане - в виде анионов НСO 3 - ;


в составе живой материи (-18 % углерода).


Химия соединений углерода - это, в основном, органическая химия. В курсе неорганической химии изучаются следующие С-содержащие вещества: свободный углерод, оксиды (СО и СO 2), угольная кислота, карбонаты и гидрокарбонаты.

Свободный углерод. Аллотропия.

В свободном состоянии углерод образует 3 аллотропные модификации: алмаз, графит и искусственно получаемый карбин. Эти видоизменения углерода различаются кристаллохимическим строением и физическими характеристиками.

Алмаз

В кристалле алмаза каждый атом углерода связан прочными ковалентными связями с четырьмя другими, размещенными вокруг него на одинаковых расстояниях.


Все атомы углерода находятся в состоянии sp 3 -гибридизации. Атомная кристаллическая решетка алмаза имеет тетраэдрическое строение.


Алмаз - бесцветное, прозрачное, сильно преломляющее свет вещество. Отличается самой большой твердостью среди всех известных веществ. Алмаз хрупкий, тугоплавкий, плохо проводит тепло и электрический ток. Небольшие расстояния между соседними атомами углерода (0,154 нм) обусловливают довольно большую плотность алмаза (3,5 г/см 3).

Графит

В кристаллической решетке графита каждый атом углерода находится в состоянии sp 2 -гибридизации и образует три прочные ковалентные связи с атомами углерода, расположенными в том же слое. В образовании этих связей участвуют по три электрона каждого атома, углерода, а четвертые валентные электроны образуют л-связи и являются относительно свободными (подвижными). Они обусловливают электро- и теплопроводность графита.


Длина ковалентной связи между соседними атомами углерода в одной плоскости равна 0,152 нм, а расстояние между атомами С в различных слоях больше в 2,5 раза, поэтому связи между ними слабые.


Графит - непрозрачное, мягкое, жирное на ощупь вещество серо-черного цвета с металлическим блеском; хорошо проводит тепло и электрический ток. Графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки.


Разупорядоченная структура мелкокристаллического графита лежит в основе строения различных форм аморфного углерода, важнейшими из которых являются кокс, бурые и каменные угли, сажа, активированный (активный) уголь.

Карбин

Эту аллотропную модификацию углерода получают каталитическим окислением (дегидрополиконденсацией) ацетилена. Карбин - цепочечный полимер, имеющий две формы:


С=С-С=С-... и...=С=С=С=


Карбин обладает полупроводниковыми свойствами.

Химические свойства углерода

При обычной температуре обе модификации углерода (алмаз и графит) химически инертны. Мелкокристаллические формы графита - кокс, сажа, активированный уголь - более реакционноспособны, но, как правило, после их предварительного нагревания до высокой температуры.

С - активный восстановитель:

1. Взаимодействие с кислородом


С + O 2 = СO 2 + 393,5 кДж (в избытке O 2)


2С + O 2 = 2СО + 221 кДж (при недостатке O 2)


Сжигание угля - один из важнейших источников энергии.


2. Взаимодействие с фтором и серой.


С + 2F 2 = CF 4 тетрафторид углерода


С + 2S = CS 2 сероуглерод


3. Кокс - один из важнейших восстановителей, используемых в промышленности. В металлургии с его помощью получают металлы из оксидов, например:


ЗС + Fe 2 O 3 = 2Fe + ЗСО


С + ZnO = Zn + СО


4. При взаимодействии углерода с оксидами щелочных и щелочноземельных металлов восстановленный металл, соединяясь с углеродом, образует карбид. Например: ЗС + СаО = СаС 2 + СО карбид кальция


5. Кокс применяется также для получения кремния:


2С + SiO 2 = Si + 2СО


6. При избытке кокса образуется карбид кремния (карборунд) SiC.


Получение «водяного газа» (газификация твердого топлива)


Пропусканием водяного пара через раскаленный уголь получают горючую смесь СО и Н 2 , называемую водяным газом:


С + Н 2 О = СО + Н 2


7. Реакции с окисляющими кислотами.


Активированный или древесный уголь при нагревании восстанавливает анионы NO 3 - и SO 4 2- из концентрированных кислот:


С + 4HNO 3 = СO 2 + 4NO 2 + 2Н 2 О


С + 2H 2 SO 4 = СO 2 + 2SO 2 + 2Н 2 О


8. Реакции с расплавленными нитратами щелочных металлов


В расплавах KNO 3 и NaNO 3 измельченный уголь интенсивно сгорает с образованием ослепительного пламени:


5С + 4KNO 3 = 2К 2 СO 3 + ЗСO 2 + 2N 2

С - малоактивный окислитель:

1. Образование солеобразных карбидов с активными металлами.


Значительное ослабление неметаллических свойств у углерода выражается в том, что функции его как окислителя проявляются в гораздо меньшей степени, чем восстановительные функции.


2. Только в реакциях с активными металлами атомы углерода переходят в отрицательно заряженные ионы С -4 и (С=С) 2- , образуя солеобразные карбиды:


ЗС + 4Al = Аl 4 С 3 карбид алюминия


2С + Са = СаС 2 карбид кальция


3. Карбиды ионного типа - очень нестойкие соединения, они легко разлагаются под действием кислот и воды, что свидетельствует о неустойчивости отрицательно заряженных анионов углерода:


Аl 4 С 3 + 12Н 2 О = ЗСН 4 + 4Аl(ОН) 3


СаС 2 + 2Н 2 О = С 2 Н 2 + Са(ОН) 2


4. Образование ковалентных соединений с металлами


В расплавах смесей углерода с переходными металлами образуются карбиды преимущественно с ковалентный типом связи. Молекулы их имеют переменный состав, а вещества в целом близки к сплавам. Такие карбиды отличаются высокой устойчивостью, они химически инертны по отношению к воде, кислотам, щелочам и многим другим реагентам.


5. Взаимодействие с водородом


При высоких Т и Р, в присутствии никелевого катализатора, углерод соединяется с водородом:


С + 2НН 2 → СНН 4


Реакция очень обратима и не имеет практического значения.

ОПРЕДЕЛЕНИЕ

Углерод - шестой элемент Периодической таблицы. Обозначение - С от латинского «carboneum». Расположен во втором периоде, IVА группе. Относится к неметаллам. Заряд ядра равен 6.

Углерод находится в природе как в свободном состоянии, так и в виде многочисленных соединений. Свободный углерод встречается в виде алмаза и графита. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти. В земной коре встречаются в огромных количествах соли угольной кислоты, особенно карбонат кальция. В воздухе всегда имеется диоксид углерода. Наконец, растительные и животные организмы состоят из веществ, в образовании которых участие принимает углерод. Таким образом, этот элемент - один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0,1% (масс.).

Атомная и молекулярная масса углерода

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии углерод существует в виде одноатомных молекул С, значения его атомной и молекулярной масс совпадают. Они равны 12,0064.

Аллотропия и аллотропные модификации углерода

В свободном состоянии углерод существует в виде алмаза, кристаллизующегося в кубической и гексагональной (лонсдейлит) системе, и графита, принадлежащего к гексагональной системе (рис. 1). Такие формы углерода, как древесный уголь, кокс или сажа имеют неупорядоченную структуру. Также есть аллотропные модификации, полученные синтетическим путем - это карбин и поликумулен - разновидности углерода, построенные из линейных цепных полимеров типа -C= C- или = C = C= .

Рис. 1. Аллотропные модификации углерода.

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

Изотопы углерода

В природе углерод существует в виде двух стабильных изотопов 12 С (98,98%) и 13 С (1,07%). Их массовые числа равны 12 и 13 соответственно. Ядро атома изотопа углерода 12 С содержит шесть протонов и шесть нейтронов, а изотопа 13 С - такое же количество протонов и пять нейтронов.

Существует один искусственный (радиоактивный) изотоп углерода 14 Сс периодом полураспада равным 5730 лет.

Ионы углерода

На внешнем энергетическом уровне атома углерода имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 2 .

В результате химического взаимодействия углерод может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

С 0 -2e → С 2+ ;

С 0 -4e → С 4+ ;

С 0 +4e → С 4- .

Молекула и атом углерода

В свободном состоянии углерод существует в виде одноатомных молекул С. Приведем некоторые свойства, характеризующие атом и молекулу углерода:

Сплавы углерода

Наиболее известные сплавы углерода во всем мире - это сталь и чугун. Сталь - это сплав железа с углеродом, содержание углерода в котором не превышает 2%. В чугуне (тоже сплав железа с углеродом) содержание углерода выше - от 2-х до 4%.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем оксида углерода (IV) выделится (н.у.) при обжиге 500 г известняка, содержащего 0,1 массовую долю примесей.
Решение Запишем уравнение реакции обжига известняка:

CaCO 3 = CaO + CO 2 -.

Найдем массу чистого известняка. Для этого сначала определим его массовую долю без примесей:

w clear (CaCO 3) = 1 — w impurity = 1 - 0,1 = 0,9.

m clear (CaCO 3) = m(CaCO 3) ×w clear (CaCO 3);

m clear (CaCO 3) = 500 ×0,9 = 450 г.

Рассчитаем количество вещества известняка:

n(CaCO 3) = m clear (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 450 / 100 = 4,5 моль.

Согласно уравнению реакции n(CaCO 3) :n(CO 2) = 1:1, значит

n(CaCO 3) = n(CO 2) = 4,5 моль.

Тогда, объем выделившегося оксида углерода (IV) будет равен:

V(CO 2) = n(CO 2) ×V m ;

V(CO 2) = 4,5 × 22,4 = 100,8 л.

Ответ 100,8 л

ПРИМЕР 2

Задание Сколько потребуется раствора, содержащего 0,05 массовых долей, или 5% хлороводорода, для нейтрализации 11,2 г карбоната кальция?
Решение Запишем уравнение реакции нейтрализации карбоната кальция хлороводородом:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 -.

Найдем количество вещества карбоната кальция:

M(CaCO 3) = A r (Ca) + A r (C) + 3×A r (O);

M(CaCO 3) = 40 + 12 + 3×16 = 52 + 48 = 100 г/моль.

n(CaCO 3) = m (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 11,2 / 100 = 0,112 моль.

Согласно уравнению реакции n(CaCO 3) :n(HCl) = 1:2, значит

n(HCl) = 2 ×n(CaCO 3) = 2 ×0,224 моль.

Определим массу вещества хлороводорода, содержащуюся в растворе:

M(HCl) = A r (H) + A r (Cl) = 1 + 35,5 = 36,5 г/моль.

m(HCl) = n(HCl) ×M(HCl) = 0,224 × 36,5 = 8,176 г.

Рассчитаем массу раствора хлороводорода:

m solution (HCl) = m(HCl)× 100 / w(HCl);

m solution (HCl) = 8,176 × 100 / 5 = 163,52 г.

Ответ 163,52 г

Углерод в периодической системе элементов располагается во втором периоде в группе IVA. Электронная конфигурация атома углерода ls 2 2s 2 2p 2 . При его возбуждении легко достига­ется электронное состояние, при котором на четырех внешних атомных орбиталях находятся четыре неспаренных электрона:

Это объясняет, почему углерод в соединениях обычно четы­рехвалентен. Равенство в атоме углерода числа валентных элек­тронов числу валентных орбиталей, а также уникальное соотношение заряда ядра и радиуса атома сообщают ему способность одинаково легко присоединять и отдавать электроны в зависимо­сти от свойств партнера (разд. 9.3.1). Вследствие этого для углерода характерны различные степени окисления от -4 до +4 и легкость гибридизации его атомных орбиталей по типу sp 3 , sp 2 и sp 1 при образовании химических связей (разд. 2.1.3):

Все это дает углероду возможность образовывать ординарные, двойные и тройные связи не только между собой, но и с ато­мами других элементов-органогенов. Молекулы, образующиеся при этом, могут иметь линейное, разветвленное и циклическое строение.

Вследствие подвижности общих электронов -МО, образован­ных с участием атомов углерода, происходит их смещение в сто­рону атома более электроотрицательного элемента (индуктивный эффект), что приводит к полярности не только этой связи, но и молекулы в целом. Однако углерод, благодаря среднему значению электроотрицательности (0Э0 = 2,5), образует с атомами других элементов-органогенов слабополярные связи (табл. 12.1). При наличии в молекулах систем сопряженных связей (разд. 2.1.3) происходит делокализация подвижных электронов -МО и неподеленных электронных пар с выравниванием электронной плот­ности и длин связей в этих системах.

С позиции реакционной способности соединений большую роль играет поляризуемость связей (разд. 2.1.3). Чем больше поляризуемость связи, тем выше ее реакционная способность. Зависимость поляризуемости углеродсодержащих связей от их природы отражает следующий ряд:

Все рассмотренные данные о свойствах углеродсодержащих связей свидетельствуют о том, что углерод в соединениях образу­ет, с одной стороны, достаточно прочные ковалентные связи ме­жду собой и с другими органогенами, а с другой стороны - об­щие электронные пары этих связей достаточно лабильны. В ре­зультате этого может происходить как увеличение реакционной способности этих связей, так и стабилизация. Именно эти осо­бенности углеродсодержащих соединений и делают углерод орга­ногеном номер один.

Кислотно-основные свойства соединений углерода. Оксид углерода(4) является кислотным оксидом, а соответствующий ему гидроксид - угольная кислота Н2СО3 - слабой кислотой. Молекула оксида углерода(4) неполярна, и поэтому он плохо растворяется в воде (0,03 моль/л при 298 К). При этом вначале в ратворе образуется гидрат СО2 Н2О, в котором СО2 находится в полости ассоциата из молекул воды, а затем этот гидрат медлен­но и обратимо превращается в Н2СО3. Большая часть растворен­ного в воде оксида углерода(4) находится в виде гидрата.

В организме в эритроцитах крови под действием фермента каррбоангидразы равновесие между гидратом CO2 Н2О и Н2СО3 устанавливается очень быстро. Это позволяет пренебречь нали­чием СО2 в виде гидрата в эритроците, но не в плазме крови, где нет карбоангидразы. Образующаяся Н2СО3 диссоциирует в физиологических условиях до гидрокарбонат-аниона, а в более щелочной среде - до карбонат-аниона:

Угольная кислота существует только в растворе. Она образует два ряда солей - гидрокарбонаты (NаНСОз, Са(НС0 3)2) и карбонаты (Nа2СОз, СаСОз). В воде гидрокарбонаты растворя­ются лучше, чем карбонаты. В водных растворах соли угольной кислоты, особенно карбонаты, легко гидролизуются по аниону, создавая щелочную среду:

Такие вещества, как питьевая сода NaHC03 ; мел СаСОз, белая магнезия 4MgC03 * Mg(OH)2 * Н2О, гидролизующиеся с образонанием щелочной среды, применяются в качестве антацидных (нейтрализующих кислоты) средств для снижения повы­шенной кислотности желудочного сока:

Совокупность угольной кислоты и гидрокарбонат-иона (Н2СО3, НСО3(-)) образует гидрокарбонатную буферную систему (разд. 8.5) -славную буферную систему плазмы крови, которая обеспечива­ет постоянство рН крови на уровне рН = 7,40 ± 0,05.


Наличие в природных водах гидрокарбонатов кальция и магния обуславливает их временную жесткость. При кипяче­нии такой воды ее жесткость устраняется. Это происходит из-за гидролиза аниона HCO3(-)), термического разложения угольной кислоты и осаждения катионов кальция и магния в виде нерас­творимых соединений СаС0 3 и Mg(OH) 2:

Образование Mg(OH) 2 вызвано полным гидролизом по ка­тиону магния, протекающему в этих условиях из-за меньшей растворимости Mg(0H)2 по сравнению с MgC0 3 .

В медико-биологической практике кроме угольной кислоты приходится сталкиваться с другими углеродсодержащими кисло­тами. Это прежде всего большое множество различных органи­ческих кислот, а также синильная кислота HCN. С позиции кислотных свойств сила этих кислот различна:

Эти различия обусловлены взаимным влиянием атомов в мо­лекуле, природой диссоциирующей связи и устойчивостью аниона, т. е. его способностью к делокализации заряда.

Синильная кислота, или циановодород, HCN - бес­цветная, легколетучая жидкость (Т кип = 26 °С) с запахом горь­кого миндаля, смешивающаяся с водой в любых соотношениях. В водных растворах ведет себя как очень слабая кислота, соли которой называются цианидами. Цианиды щелочных и щелоч­ноземельных металлов растворимы в воде, при этом они гидролизуются по аниону, из-за чего их водные растворы пахнут синильной кислотой (запах горького миндаля) и имеют рН >12:


При длительном воздействии СО2, содержащегося в воздухе, цианиды разлагаются с выделением синильной кислоты:

В результате этой реакции цианид калия (цианистый калий) и его растворы при длительном хранении теряют свою токсич­ность. Цианид-анион - один из самых сильных неорганиче­ских ядов, поскольку он является активным лигандом и легко образует устойчивые комплексные соединения с ферментами, содержащими в качестве ионовкомплексообразователей Fe 3+ и Сu2(+) (разд. 10.4).

Окислительно-восстановительные свойства. Поскольку уг­лерод в соединениях может проявлять любые степени окисле­ния от -4 до +4, то в ходе реакции свободный углерод может и отдавать и присоединять электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств второго реагента:


При взаимодействии сильных окислителей с органическими веществами может протекать неполное или полное окисление атомов углерода этих соединений.

В условиях анаэробного окисления при недостатке или в от­сутствие кислорода атомы углерода органического соединения в зависимости от содержания кислородных атомов в этих соедине­ниях и внешних условий могут превратиться в С0 2 , СО, С и даже СН 4 , а остальные органогены превращаются в Н2О, NH3 и H2S.

В организме полное окисление органических соединений кислородом в присутствии ферментов оксидаз (аэробное окис­ление) описывается уравнением:

Из приведенных уравнений реакций окисления видно, что в органических соединениях степень окисления изменяют только атомы углерода, а атомы остальных органогенов при этом со­храняют свою степень окисления.

При реакциях гидрирования, т. е. присоединения водорода (восстановителя) по кратной связи, образующие ее атомы углерода понижают свою степень окисления (выступают окислителями):

Органические реакции замещения с возникновением новой межуглеродной связи, например в реакции Вюрца, также явля­ются окислительно-восстановительными реакциями, в которых атомы углерода выступают окислителями, а атомы металла -восстановителями:

Подобное наблюдается в реакциях образования металлорганических соединений:


В то же время в реакциях алкилирования с возникновением новой межуглеродной связи роль окислителя и восстановителя играют атомы углерода субстрата и реагента соответственно:

В результате реакций присоединения полярного реагента к субстрату по кратной межуглеродной связи один из атомов уг­лерода понижает степень окисления, проявляя свойства окис­лителя, а другой - повышает степень окисления, выступая вос­становителем:

В этих случаях имеет место реакция внутримолекулярного окисления-восстановления атомов углерода субстрата, т. е. про­цесс дисмутации, под действием реагента, не проявляющего окислительно-восстановительных свойств.

Типичными реакциями внутримолекулярной дисмутации ор­ганических соединений за счет их атомов углерода являются ре­акции декарбоксилирования аминокислот или кетокислот, а так­же реакции перегруппировки и изомеризации органических со­единений, которые были рассмотрены в разд. 9.3. Приведенные примеры органических реакций, а также реакции из разд. 9.3 убедительно свидетельствуют, что атомы углерода в органических соединениях могут быть и окислителями, и восстановите­лями.

Атом углерода в соединении - окислитель, если в ре­зультате реакции увеличивается число его связей с атомами менее электроотрицательных элементов (во­дород, металлы), потому что, притягивая к себе общие электроны этих связей, рассматриваемый атом углеро­да понижает свою степень окисления.

Атом углерода в соединении - восстановитель, если в результате реакции увеличивается число его связей с атомами более электроотрицательных элементов (С, О, N, S), потому что, отталкивая от себя общие элек­троны этих связей, рассматриваемый атом углерода повышает свою степень окисления.

Таким образом, многие реакции в органической химии вслед­ствие окислительно-восстановительной двойственности атомов углерода являются окислительно-восстановительными. Однако, в отличие от подобных реакций неорганической химии, пере­распределение электронов между окислителем и восстановите­лем в органических соединениях может сопровождаться лишь смещением общей электронной пары химической связи к ато­му, выполняющему роль окислителя. При этом данная связь может сохраняться, но в случаях сильной ее поляризации она может и разорваться.

Комплексообразующие свойства соединений углерода. У ато­ма углерода в соединениях нет неподеленных электронных пар, и поэтому лигандами могут выступать только соединения угле­рода, содержащие кратные связи с его участием. Особенно активны в процессах комплексообразования -электроны тройной по­лярной связи оксида углерода(2) и аниона синильной кислоты.

В молекуле оксида углерода(2) атомы углерода и кислорода образуют одну и одну -связь за счет взаимного перекрывания их двух 2р-атомных орбиталей по обменному механизму. Третья связь, т. е. еще одна -связь, образуется по донорно-акцепторному механизму. Акцептором является свободная 2р-атомная ор-биталь атома углерода, а донором - атом кислорода, предостав­ляющий неподеленную пару электронов с 2p-орбитали:

Повышенная кратность связи обеспечивает этой молекуле высокую стабильность и инертность при нормальных ус­ловиях с позиции кислотно-основных (СО - несолеобразующий оксид) и окислительно-восстановительных свойств (СО - вос­становитель при Т > 1000 К). В то же время она делает его ак­тивным лигандом в реакциях комплексообразования с атомами и катионами d-металлов, прежде всего с железом, с которым он образует пентакарбонил железа - летучую ядовитую жидкость:


Способность к образованию комплексных соединений с ка­тионами d-металлов является причиной ядовитости оксида углерода(Н) для живых систем (разд. 10.4) вследствие протекания обратимых реакций с гемоглобином и оксигемоглобином, содер­жащими катион Fe 2+ , с образованием карбоксигемоглобина:

Эти равновесия смещены в сторону образования карбокси­гемоглобина ННbСО, устойчивость которого в 210 раз больше, чем оксигемоглобина ННbО2. Это приводит к накоплению карбоксигемоглобина в крови и, следовательно, к снижению ее спо­собности переносить кислород.

В анионе синильной кислоты CN- также содержатся легко поляризуемые - электроны, из-за чего он эффективно обра­зует комплексы с d-металлами, включая металлы жизни, вхо­дящие в состав ферментов. Поэтому цианиды являются высокотоксичными соединениями (разд. 10.4).

Круговорот углерода в природе. В основе круговорота угле­рода в природе в основном лежат реакции окисления и восста­новления углерода (рис. 12.3).

Из атмосферы и гидросферы растения ассимилируют (1) ок­сид углерода(4). Часть растительной массы потребляется (2) че­ловеком и животными. Дыхание животных и гниение их остан­ков (3), а также дыхание растений, гниение отмерших растений и горение древесины (4) возвращают атмосфере и гидросфере CO2. Процесс минерализации останков растений (5) и животных (6) с образованием торфа, ископаемых углей, нефти, газа при­водит к переходу углерода в природные ископаемые. В том же направлении действуют кислотно-основные реакции (7), проте­кающие между СО2 и различными горными породами с образо­ванием карбонатов (средних, кислых и основных):

Эта неорганическая часть круговорота приводит к потерям СО2 в атмосфере и гидросфере. Деятельность человека по сжи­ганию и переработке угля, нефти, газа (8), дров (4), наоборот, с избытком обогащает окружающую среду оксидом углерода(4). Долгое время существовала уверенность, что благодаря фото­синтезу концентрация СО2 в атмосфере сохраняется постоян­ной. Однако в настоящее время увеличение содержания СО2 в атмосфере за счет деятельности человека не компенсируется его естественной убылью. Общее поступление СО2 в атмосферу рас­тет в геометрической прогрессии на 4-5 % в год. Согласно рас­четам в 2000 году содержание СО2 в атмосфере достигнет приблизительно 0,04 % вместо 0,03 % (1990 г.).

После рассмотрения свойств и особенностей углеродсодержащих соединений следует еще раз подчеркнуть ведущую роль углерода

Рис. 12.3. Круговорот углерода в природе

органогена № 1: во-первых, атомы углерода формируют скелет молекул органических соединений; во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных про­цессах, поскольку среди атомов всех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность. Подробнее о свойствах органических соедине­ний - см. модуль IV "Основы биоорганической химии".

Общая характеристика и биологическая роль р-элементов группы IVA. Электронными аналогами углерода являются эле­менты IVA группы: кремний Si, германий Ge, олово Sn и свинец Рb (см. табл. 1.2). Радиусы атомов этих элементов закономерно возрастают с увеличением порядкового номера, а их энергия иони­зации и электроотрицательность при этом закономерно снижают­ся (разд. 1.3). Поэтому первые два элемента группы: углерод и кремний - типичные неметаллы, а германий, олово, свинец -металлы, так как для них наиболее характерна отдача электро­нов. В ряду Ge - Sn - Рb металлические свойства усиливаются.

С позиции окислительно-восстановительных свойств элемен­ты С, Si, Ge, Sn и Рb в обычных условиях достаточно устойчи­вы по отношению к воздуху и воде (металлы Sn и Рb - за счет образования оксидной пленки на поверхности). В то же время соединения свинца(4) - сильные окислители:

Комплексообразующие свойства наиболее характерны для свинца, так как его катионы Рb 2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA группы. Катионы свинца образуют прочные комплексы с биолигандами.

Элементы группы IVA резко различаются как по содержанию в организме, так и по биологической роли. Углерод играет осново­полагающую роль в жизнедеятельности организма, где его содер­жание составляет около 20 %. Содержание в организме остальных элементов IVA группы находится в пределах 10 -6 -10 -3 %. В то же время, если кремний и германий, несомненно, играют важную роль в жизнедеятельности организма, то олово и особенно сви­нец - токсичны. Таким образом, с ростом атомной массы эле­ментов IVA группы токсичность их соединений возрастает.

Пыль, состоящая из частиц угля или диоксида кремния SiO2, при систематическом воздействии на легкие вызывает заболе­вания - пневмокониозы. В случае угольной пыли это антракоз -профессиональное заболевание шахтеров. При вдыхании пыли, содержащей Si02, возникает силикоз. Механизм развития пневмокониозов еще не установлен. Предполагается, что при длительном контакте силикатных песчинок с биологическими жидкостями образуется поликремниевая кислота Si02 yH2O в гелеобразном состоянии, отложение которой в клетках ведет к их гибели.

Токсическое действие свинца известно человечеству очень дав­но. Использование свинца для изготовления посуды и водопроводных труб приводило к массовому отравлению людей. В на­стоящее время свинец продолжает быть одним из основных загрязнителей окружающей среды, так как выброс соединений свинца в атмосферу составляет свыше 400 000 т ежегодно. Сви­нец накапливается в основном в скелете в форме малораствори­мого фосфата РЬз(Р04)2, а при деминерализации костей оказы­вает регулярное токсическое действие на организм. Поэтому свинец относится к кумулятивным ядам. Токсичность соедине­ний свинца связана прежде всего с его комплексообразующими свойствами и большим сродством к биолигандам, особенно содержащим сульфгидрильные группы (-SH):

Образование комплексных соединений ионов свинца с бел­ками, фосфолипидами и нуклеотидами приводит к их денату­рации. Часто ионы свинца ингибируют металлоферменты ЕМ 2+ , вытесняя из них катионы металлов жизни:

Свинец и его соединения относятся к ядам, действующим преимущественно на нервную систему, кровеносные сосуды и кровь. При этом соединения свинца влияют на синтез белка, энергетический баланс клеток и их генетический аппарат.

В медицине применяются как вяжущие наружные антисеп­тические средства: свинец ацетат Рb(СНзСОО)2 ЗН2О (свинцо­вые примочки) и свинец(2) оксид РbО (свинцовый пластырь). Ионы свинца этих соединений вступают в реакции с белками (альбуминами) цитоплазмы микробных клеток и тканей, образуя гелеобразные альбуминаты. Образование гелей убивает микробы и, кроме того, затрудняет проникновение их внутрь клеток тка­ней, что снижает местную воспалительную реакцию.

1. Во всех органических соединениях атом углерода имеет валентность равную 4.

2. Углерод способен образовывать простые и очень сложные молекулы (высокомолекулярные соединения: белки, каучуки, пластмассы).

3. Атомы углерода соединяются не только с другими атомами, но и друг с другом, образуя различные углерод - углеродные цепи - прямые, разветвленные, замкнутые:


4. Для соединений углерода характерно явление изомерии, т.е. когда вещества имеют один и тот же качественный и количественный состав, но различное химическое строение, а следовательно, различные свойства. Например: эмпирической формуле С 2 Н 6 О соответствуют два различных строений веществ:

этиловый спирт, диметиловый эфир,

жидкость, t 0 кип. = +78 0 С газ, t 0 кип. = -23,7 0 С

Следовательно, этиловый спирт и диметиловый эфир – изомеры.

5. Водные растворы большинства органических веществ – неэлектролиты, молекулы их не распадаются на ионы.

Изомерия.

В 1823 г. было открыто явление изомерии – существование веществ с одинаковым составом молекул, но обладающих различными свойствами. В чем причина различия изомеров? Поскольку состав их одинаков, то причину можно искать только в разном порядке соединения атомов в молекуле.

Еще до создания теории химического строения А.М. Бутлеров предсказал, что для бутана С 4 Н 10 , имеющего линейное строение СН 3 – СН 2 – СН 2 – СН 3 t 0 (кип. -0,5 0 С) возможно существование другого вещества с той же молекулярной формулой, но с иной последовательностью соединения углеродных атомов в молекуле:

изобутан

t 0 кип. – 11,7 0 С

Итак, изомеры – это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а следовательно и разные свойства. Существует два основных типа изомерии – структурная и пространственная.

Структурными называют изомеры, имеющие различный порядок соединения атомов в молекуле. Различают три вида ее:

Изомерия углеродного скелета:

С – С – С – С – С С – С – С – С

Изомерия кратной связи:

С = С – С – С С – С = С – С

Межклассовая изомерия:


пропионовая кислота

Пространственная изомерия. Пространственные изомеры имеют одинаковые заместители у каждого атома углерода. Но отличаются их взаимным расположением в пространстве. Различают два типа этой изомерии: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, имеющих плоскостное строение молекул (алкенов, циклоалканов, алкадиенов и др.). Если одинаковые заместители у атомов углерода, например, при двойной связи находятся по одну сторону плоскости молекулы, то это будет цис-изомер, по разные стороны – транс-изомер:




Оптическая изомерия – характерна для соединений, имеющих асимметрический атом углерода, который связан с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга. Например:


Электронное строение атома.

Строение атома изучается в неорганической химии и физике. Известно, что атом определяет свойства химического элемента. Атом состоит из положительно заряженного ядра, в котором сосредоточена вся его масса, и отрицательно заряженных электронов, окружающих ядро.

Так как в процессе химических реакций ядра реагирующих атомов не изменяются, то физические и химические свойства атомов зависят от строения электронных оболочек атомов. Электроны могут уходить от одних атомов к другим, могут объединяться и т.д. Поэтому мы подробно рассмотрим вопрос о распределении электронов в атоме на основе квантовой теории строения атомов. Согласно этой теории электрон одновременно обладает свойствами частицы (массой, зарядом) и волновой функцией. Для движущихся электронов невозможно определить точное местонахождение. Они находятся в пространстве вблизи атомного ядра. Можно определить вероятность нахождения электрона в различных частях пространства. Электрон как бы «размазан» в этом пространстве в виде некоторого облака (рисунок 1), плотность которого убывает.

Рисунок 1.

Область пространства, в которой вероятность нахождения электрона максимальна (≈ 95%) называется орбиталью .



Согласно квантовой механике состояние электрона в атоме определяется четырьмя квантовыми числами: главным (n), орбитальным (l) , магнитным (m) и спиновым (s).

Главное квантовое число n – характеризует энергию электрона, расстояние орбитали от ядра, т.е. энергетический уровень и принимает значения 1, 2, 3 и т.д. или K, L, M, N и т.д. Значение n = 1 соответствует наименьшей энергии. С увеличением n энергия электрона возрастает. Максимальное число электронов, находящихся на энергетическом уровне, определяется по формуле: N = 2n 2 , где n – номер уровня, следовательно, при:

n = 1 N = 2 n = 3 N = 18

n = 2 N = 8 n = 4 N = 32 и т.д.

В пределах энергетических уровней электроны располагаются по подуровням (или подоболочкам). Число их соответствует номеру энергетического уровня, но характеризуются они орбитальным квантовым числом l, которое определяет форму орбитали. Оно принимает значения от 0 до n-1. При

n = 1 l = 0 n = 2 l = 0, 1 n = 3 l = 0, 1, 2 n = 4 l = 0, 1, 2, 3

Максимальное число электронов на подуровне определяется по формуле: 2(2l + 1). Для подуровней принимают буквенные обозначения:

l = 1, 2, 3, 4

Следовательно, если n = 1, l = 0, подуровень s.

n = 2, l = 0, 1, подуровень s, p.

Максимальное количество электронов на подуровнях:

N s = 2 N d = 10

N p = 6 N f = 14 и т.д.

Больше этих количеств электронов на подуровнях быть не может. Форму электронного облака определяет значение l . При
l = 0 (s-орбиталь) электронное облако имеет сферическую форму и не имеет пространственную направленность.

Рисунок 2.

При l = 1 (p-орбиталь) электронное облако имеет форму гантели или форму «восьмерки»:

Рисунок 3.

Магнитное квантовое число m характеризует
расположение орбиталей в пространстве. Оно может принимать значения любых чисел от –l до +l, включая 0. Число возможных значений магнитного квантового числа при данном значении l равно (2l + 1). Например:

l = 0 (s-орбиталь) m = 0, т.е. s-орбиталь имеет только одно положение в пространстве.

l = 1 (p-орбиталь) m = -1, 0, +1 (3 значения).

l = 2 (d-орбиталь) m = -2, -1, 0, +1, +2 и т.д.

p и d-орбитали имеют соответственно 3 и 5 состояний.

Орбитали p вытянуты по координатным осям и их обозначают р x , p y , p z -орбитали.

Спиновое квантовое число s - характеризует вращение электрона вокруг собственной оси по часовой стрелке и против нее. Оно может иметь только два значения +1/2 и -1/2. Строение электронной оболочки атома изображается электронной формулой, которая показывает распределение электронов по энергетическим уровням и подуровням. В этих формулах энергетические уровни обозначаются цифрами 1, 2, 3, 4…, подуровни – буквами s, p, d, f. Число электронов на подуровне записывается степенью. Например: максимальное число электронов на s 2 , p 6 , d 10 , f 14 .

Электронные формулы часто изображают графически, которые показывают распределение электронов не только по уровням и подуровням, но и по орбиталям, обозначаемым прямоугольником. Подуровни делятся на квантовые ячейки.

Свободная квантовая ячейка

Ячейка с неспаренным электроном

Ячейка со спаренными электронами

На s-подуровне одна квантовая ячейка.

На p-подуровне 3 квантовых ячейки.

На d-подуровне 5 квантовых ячеек.

На f-подуровне 7 квантовых ячеек.

Распределение электронов в атомах определяется принципом Паули и правилом Гунда . Согласно принципа Паули: в атоме не может быть электронов с одинаковыми значениями всех четырех квантовых чисел. В соответствии с принципом Паули в энергетической ячейке может быть один, максимально два электрона с противоположными спинами. Заполнение ячеек происходит по принципу Гунда, согласно которому электроны располагаются сначала по одному в каждой отдельной ячейке, затем, когда все ячейки данного подуровня окажутся занятыми, начинается спаривание электронов.

Последовательность заполнения атомных электронных орбиталей определена правилами В. Клечковскогов зависимости от суммы (n + l ):

вначале заполняются те подуровни, у которых эта сумма меньшая;

при одинаковых значениях суммы (n + l ) вначале идет заполнение подуровня с меньшим значением n .

Например:

а) рассмотрим заполнение подуровней 3d и 4s. Определим сумму (n + l ):

у 3d (n + l ) = 3 + 2 = 5, у 4s (n + l ) = 4 + 0 = 4, следовательно сначала заполняется 4s, а затем 3d подуровень.

б) у подуровней 3d, 4p, 5s сумма значений (n + l ) = 5. В соответствии с правилом Клечковского заполнение начинается с меньшим значением n, т.е. 3d → 4p → 5s. Заполнение электронами энергетических уровней и подуровней атомов происходит в следующей последовательности:валентность n = 2 n = 1

У Be спаренная пара электронов на 2s 2 подуровне. Для подведения энергии извне эту пару электронов можно разъединить и сделать атом валентным. При этом происходит переход электрона с одного подуровня на другой подуровень. Этот процесс называется возбуждением электрона. Графическая формула Be в возбужденном состоянии будет иметь вид:


и валентность равна 2.