В каких годах были вспышки на солнце. Что собой представляют вспышки на солнце и вредны ли они для человека? Опасны или нет? Влияние солнечных вспышек

Солнечная вспышка, фотография спутника “Hinode”. Наблюдается как две узких, ярких структуры около южной части солнечного пятна.

Солнечная вспышка - взрывной процесс выделения энергии (световой, тепловой и кинетической) в . Вспышки так или иначе охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца. Необходимо отметить, что солнечные вспышки и корональные выбросы массы являются различными и независимыми явлениями солнечной активности. Энерговыделение мощной солнечной вспышки может достигать 6×10 25 джоулей, что составляет около 1 ⁄ 6 энергии, выделяемой Солнцем за секунду, или 160 млрд мегатонн в тротиловом эквиваленте, что, для сравнения, составляет приблизительный объем мирового потребления электроэнергии за 1 миллион лет.

Описание

Продолжительность импульсной фазы солнечных вспышек обычно не превышает нескольких минут, а количество энергии, высвобождаемой за это время, может достигать миллиардов мегатонн в тротиловом эквиваленте. Энергию вспышки традиционно определяют в видимом диапазоне электромагнитных волн по произведению площади свечения в линии излучения водорода Н α , характеризующей нагрев нижней хромосферы, на яркость этого свечения, связанную с мощностью источника.

В последние годы часто используют также классификацию, основанную на патрульных однородных измерениях на серии , главным образом GOES, амплитуды теплового рентгеновского всплеска в диапазоне энергий 0,5-10 кэВ (с длиной волны0,5-8 ангстрем). Классификация была предложена в 1970 году Д.Бейкером и первоначально основывалась на измерениях спутников «Solrad». По этой классификации солнечной вспышке присваивается балл - обозначение из латинской буквы и индекса за ней. Буквой может быть A, B, C, M или X в зависимости от величины достигнутого вспышкой пика интенсивности рентгеновского излучения:

Индекс уточняет значение интенсивности вспышки и может быть от 1,0 до 9,9 для букв A, B, C, M и более - для буквы X. Так, например, вспышка 12 февраля 2010 года балла M8.3 соответствует пиковой интенсивности 8,3×10 −5 Вт/м 2 . Самой мощной (по состоянию на 2010 год) зарегистрированной с 1976 года вспышке, произошедшей 4 ноября 2003 года, был присвоен балл X28, таким образом, интенсивность её рентгеновского излучения в пике составляла28×10 −4 Вт/м 2 . Следует заметить, что регистрация рентгеновского излучения Солнца, так как оно полностью поглощается атмосферой , стала возможной начиная с первого запуска «Спутник-2» с соответствующей аппаратурой, поэтому данные об интенсивности рентгеновского излучения солнечных вспышек до 1957 года полностью отсутствуют.

Измерения в разных диапазонах длин волн отражают разные процессы во вспышках. Поэтому корреляция между двумя индексами вспышечной активности существует только в статистическом смысле, так для отдельных событий один индекс может быть высоким, а второй низким и наоборот.

Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы 11-летнего солнечного цикла.

Последствия

Солнечные вспышки имеют прикладное значение, например, при исследовании элементного состава поверхности небесного тела с разреженной атмосферой или при её отсутствии, выступая в роли возбудителя рентгеновского излучения для рентгенофлуоресцентных спектрометров, установленных на борту космических аппаратов.

Жёсткое ультрафиолетовое и рентгеновское излучение вспышек - основной фактор, ответственный за формирование ионосферы, способный также существенно менять свойства верхней атмосферы: плотность её существенно повышается, что ведёт к быстрому снижению высоты орбиты ИСЗ (до километра в сутки).

Плазменные облака, выбрасываемые во время вспышек приводят к возникновению геомагнитных бурь, которые определённым образом влияют на технику и биологические объекты.

Прогнозирование

Современный прогноз солнечных вспышек даётся на основе анализа магнитных полей Солнца. Однако магнитная структура Солнца настолько неустойчива, что прогнозировать вспышку даже за неделю не представляется в настоящее время возможным. NASA даёт прогноз на очень короткий срок, от 1 до 3 дней: в спокойные дни на Солнце вероятность сильной вспышки обычно указывается в диапазоне 1-5 %, а в активные периоды она возрастает только до 30-40 %.

6 сентября в 15:02 (мск) была зарегистрирована самая крупная за последние 12 лет вспышка на Солнце. Мощнейший выброс энергии произошел в период минимальной солнечной активности, что поразило астрономов. Как подобные события влияют на Землю – в материале «Футуриста».

Крупнейшая за последние 12 лет вспышка на Солнце была зарегистрирована Обсерваторией солнечной динамики SDO в активной области 2673. Взрыв мощностью X9.3 (буква показывает принадлежность к классу экстремально больших вспышек, а число — ее силу) произошел в результате взаимодействия двух крупнейших за несколько лет групп солнечных пятен. Судя по радиоизлучению, произошел выброс вещества из короны — внешних слоев атмосферы Солнца. Вспышка последовала за более слабой (X2.2), которая появилась в этой области в 12:10 по мск, а 4 сентября прошла серия вспышек класса М, предыдущего по мощности.

Как пишет Лаборатория рентгеновской астрономии Солнца ФИАН, это один из мощнейших взрывов, которые только способна производить наша звезда. За 20 лет наблюдений Солнца было зарегистрировано только пять вспышек большей силы (последняя мощностью X17.0 была зарегистрирована в ноябре 2005 года). Самая крупная из них произошла в ноябре 2003 года, ее мощность составила X28.

Как правило, такие события происходят на пике солнечной активности, однако эта вспышка появилась на фоне солнечного минимума - и в этом ее уникальность. Вспышечная активность после взрыва составила 10.3, что соответствует высшему уровню. Ученым продолжают разбираться, что стало причиной такого крупного взрыва в период "затишья" и прогнозировать последствия для Земли и космического пространства. За вспышкой наблюдали лишь зарубежные космические обсерватории. Единственный российский солнечный проект (космическая обсерватория ОКР «Арка») назначен только на 2024 год.

Что такое солнечная вспышка?

Это сильнейший взрыв на Солнце, в результате которого быстро высвобождается колоссальное количество энергии, накопившейся в атмосфере звезды. Он вызывается пересоединением магнитных силовых линий в солнечной плазме . Обычно вспышки возникают в нейтральных областях, расположенных между темными пятнами с противоположной полярностью. Крупные солнечные вспышки чаще всего случаются в период максимальной активности в 11-летнем цикле. Последний максимум текущего солнечного цикла был в апреле 2014 года. Мощные вспышки могут сопровождаться выбросом вещества из солнечной короны.

Как эта солнечная вспышка повлияет на Землю?

По данным космических коронографов (приборов, наблюдающих за солнечной короной и потоками плазмы в ней), произошел крупный выброс солнечного вещества, и он направлен на Землю. В Лаборатории рентгеновской астрономии Солнца предполагают, что облака плазмы (обычно они составляют 100 млн километров у орбиты Земли и движутся со скоростью 1000 км/c) подойдут к Земле уже 8 сентября и ударят по ее магнитному полю. Время прибытия солнечного вещества пока вычисляется. Точная сила последствий пока не ясна: это зависит от направления магнитного поля в облаке. Если при ударе оно совпадет с земным, последствия будут минимальными: солнечная плазма не прорывается внутрь. Если же магнитные поля будут разнонаправленными, плазма прорвет магнитный щит и устремится в магнитосферу Земли — и тогда по всей планете от экватора до полюсов расцветут полярные сияния и будет бушевать сильная магнитная буря. Определить направление магнитных полей — сложнейшая задача.

По действием потока заряженных частиц верхние слои атмосферы Земли нагреваются. Наряду с интенсивным радиоизлучением это ухудшает точность работы систем навигации и приводит к нарушению работы спутников, радиосвязи и телекоммуникационного оборудования. Особенно страдают спутники на высоких орбитах: либо аппарат становится сильно заряженным во время шторма, и его детали выходят из строя, либо его компоненты подвергаются бомбардировке заряженных частиц. Но предсказать, какой конкретно спутник погибнет, невозможно.

Пока обсерватории мира прогнозируют в ближайшие трое суток магнитную бурю силой 1-2 по 5-балльной шкале, которая будет длиться не менее 24 часов. Ученые отмечают резкие изменения магнитного поля Земли.

А какие еще проблемы могут быть?

Отключение электричества на больших территориях. Самый известный случай произошел в 1989 году в Квебеке. Мощные токи в магнитосфере вызывают чрезмерно высокое напряжение в линиях электропередач и выводят из строя электрические трансформаторы и электростанции. Чаще всего такое происходит ближе к полюсам Земли, где наибольшие индуцированные токи и в регионах с длинными линиями электропередач и где земля плохо ведет.

Верно ли, что из-за солнечных вспышек болит голова и портится настроение?

Да, такое может произойти. На поверхности Земли мы хорошо защищены от воздействия заряженных частиц и рентгеновского излучения Солнца магнитным полем и атмосферой Земли. Небольшое количество частиц с очень высокой энергией, которые достигают поверхности, существенно не увеличивает уровень радиации, который мы испытываем каждый день. Нагревание атмосферы может приводить к изменению атмосферного давления, что может повлиять на метеозависимых людей. Существуют утверждения о влиянии магнитных бурь на здоровье человека, но убедительных доказательств нет. В основном обсуждение вреда геомагнитных бурь идет в российской среде, в то время как за рубежом это обсуждается, но не постулируется.

Космонавты на МКС не страдают от радиации, так как станция находится на достаточно низкой орбите. Но солнечная вспышка может быть опасна для тех, кто летит к Луне или Марсу.

А кардиостимуляторы ломаются?

К​ардиостимуляторы могут регистрировать эффекты сильных солнечных бурь, но для пациентов эти "глюки" не опасны.

А на психику солнечные вспышки влияют?

Некоторые исследователи выявляют корреляцию между солнечной вспышкой и ростом числа самоубийств. Однако прямых доказательств нет. Предположительно, геомагнитные бури могут десинхронизировать циркадные ритмы, связанные со сменой дня и ночи, и производство мелатонина, гормона, оказывающего антистрессовый эффект. Шишковидная железа, которая регулирует циркадный ритм и производство мелатонина, чувствительна к изменениям в магнитном поле. Это может повлиять на наше настроение.

Б.В. Сомов, доктор физико-математических наук,
Государственный астрономический институт им. П.К. Штернберга, МГУ

Во время большой вспышки поток жесткого электромагнитного излучения Солнца возрастает во много раз. В невидимых для нас ультрафиолетовых (УФ), рентгеновских и гамма-лучах наше светило становится "ярче тысячи солнц". Излучение достигает орбиты Земли через восемь минут после начала вспышки. Через несколько десятков минут приходят потоки заряженных частиц, ускоренных до гигантских энергий, а через двое-трое суток - огромные облака солнечной плазмы. К счастью, озоновый слой атмосферы Земли защищает нас от опасного излучения, а геомагнитное поле - от частиц. Однако даже на Земле, тем более в космосе, солнечные вспышки опасны и необходимо уметь их заблаговременно прогнозировать. Что же такое солнечная вспышка, как и почему она возникает?

Солнце и мы

Ближайшая к нам звезда - Солнце - родилась около 5 млрд. лет тому назад. Внутри нее идут ядерные реакции, благодаря которым существует жизнь на Земле. Построенные на основе современных наблюдений теоретические модели строения и эволюции Солнца не оставляют сомнений в том, что оно будет сиять еще миллиарды лет.

Солнечное излучение - главный источник энергии для земной атмосферы. Фотохимические процессы в ней особенно чувствительны к жесткому УФ-излучению, которое вызывает сильную ионизацию. Поэтому когда Земля была молодой, жизнь существовала только в океане. Позднее, примерно 400 млн. лет назад, появился озоновый слой, поглощающий ионизирующее изучение, и жизнь вышла на сушу. С тех пор озоновый слой защищает нас от разрушительного воздействия жесткого УФ-излучения.

Магнитное поле Земли, ее магнитосфера препятствует проникновению к Земле быстрых заряженных частиц солнечного ветра (Земля и Вселенная, 1974, № 4; 1999, № 5). Когда его порывы взаимодействуют с магнитосферой, часть частиц все-таки высыпается вблизи магнитных полюсов Земли, порождая полярные сияния.

Увы, гармонию наших отношений с Солнцем нарушают солнечные вспышки.

Вспышки на Солнце

Последние десятилетия сразу несколько космических обсерваторий пристально вглядываются в "разгневанное" Солнце с помощью специальных рентгеновских и УФ-телескопов. Сейчас таких космических аппаратов четыре: американские "SOHO" (Solar and Heliospheric Observatory - солнечная гелиосферная обсерватория; Земля и Вселенная, 2003, № 3), "TRACE" (Transition Region and Coronal Explorer - исследователь короны и переходного слоя), "RHESSI" (Ramaty High Energy Solar Spectroscopic Imager - солнечный спектральный телескоп высокоэнергичного излучения им. Рамати) и российский спутник "Коронас-Ф" (Земля и Вселенная, 2002, № 6).

Огромный интерес к вспышкам на Солнце не случаен. Большие вспышки оказывают сильное воздействие на околоземное космическое пространство. Потоки частиц и излучения опасны для космонавтов. Кроме того, они могут повредить электронные приборы космических аппаратов, нарушить их работу.

УФ- и рентгеновские лучи от вспышки внезапно увеличивают ионизацию в верхних слоях атмосферы Земли, в ионосфере. Это может приводить к нарушениям радиосвязи, сбоям в работе радионавигационных приборов кораблей и самолетов, радиолокационных систем, длинных линий электроснабжения. Частицы высоких энергий, проникая в верхнюю атмосферу Земли, разрушают озоновый слой. Содержание озона уменьшается из года в год. Научную дискуссию вызывает вопрос о вероятной связи вспышечной активности Солнца с климатом на Земле.

Ударные волны и выбросы солнечной плазмы после вспышек сильно возмущают магнитосферу Земли, вызывают магнитные бури (Земля и Вселенная, 1999, № 5). Важно, что возмущения магнитного поля на поверхности Земли могут влиять на живые организмы, на состояние биосферы Земли (Земля и Вселенная, 1974, № 4; 1981, № 4), хотя это воздействие кажется пренебрежимо малым по сравнению с другими факторами нашей повседневной жизни.

Прогнозирование вспышек

Необходимость прогнозирования солнечных вспышек возникла давно, но особенно остро в связи с пилотируемыми космическими полетами. Долгое время почти независимо и практически безрезультатно разрабатывались два подхода к решению этой проблемы. Их можно условно назвать синоптическим и каузальным (причинным). Первый - сходный с предсказаниями погоды - базировался на изучении морфологических особенностей предвспышечных ситуаций на Солнце. Второй метод подразумевает знание физического механизма вспышки и, соответственно, распознавание предвспышечной ситуации путем ее моделирования.

До начала космических исследований, на протяжении многих лет, наблюдения вспышек велись преимущественно в оптическом диапазоне электромагнитного излучения: в линии водорода Нa и в "белом свете" (непрерывном спектре видимого излучения). Наблюдения в магниточувствительных линиях позволили установить тесную связь вспышек с магнитными полями на поверхности Солнца (фотосфере). Часто вспышка видна как увеличение яркости хромосферы (слой непосредственно над фотосферой) в виде двух светящихся лент, расположенных в областях магнитных полей противоположной полярности. Радионаблюдения подтверждали эту закономерность, имеющую принципиальное значение для объяснения механизма вспышки. Однако его понимание оставалось на чисто эмпирическом уровне, а теоретические модели (даже самые правдоподобные) казались совершенно не убедительными (Земля и Вселенная, 1974, № 4).


Рис. 1 - Солнечная вспышка (рентгеновский балл Х5.7), зарегистрированная 14 июля 2000 г. со спутников "TRACE" и "Yohkoh". Видна аркада вспышечных петель: слева в УФ (195 А); в центре - в мягком рентгеновском излучении; справа - источники жесткого рентгеновского излучения (53 - 94 кэВ), расположенные вдоль вспышечных лент - основания аркады. NL - фотосферная нейтральная линия.

Уже первые внеатмосферные наблюдения с помощью космических аппаратов показали, что солнечные вспышки представляют собой корональное, а не хромосферное явление. Современные многоволновые наблюдения Солнца с космических и наземных обсерваторий свидетельствуют о том, что источник энергии вспышки расположен над аркадой вспышечных петель (светлые полосы на рисунке слева) в короне, наблюдаемых в мягком рентгеновском и УФ-излучении. Аркады опираются на хромосферные вспышечные ленты, которые расположены по разные стороны линии раздела полярности фотосферного магнитного поля, или фотосферной нейтральной линии.

Энергия вспышки

Солнечная вспышка - самое мощное из всех проявлений активности Солнца. Энергия большой вспышки достигает (1-3)x10 32 эрг, что приблизительно в сто раз превышает тепловую энергию, которую можно было бы получить при сжигании всех разведанных запасов нефти и угля на Земле. Эта гигантская энергия выделяется на Солнце за несколько минут и соответствует средней (за время вспышки) мощности 10 29 эрг/с. Однако это меньше сотых долей процента от мощности полного излучения Солнца в оптическом диапазоне, равной 4x10 33 эрг/с. Она называется солнечной постоянной. Поэтому при вспышке не происходит заметного увеличения светимости Солнца. Лишь самые большие из них можно заметить в непрерывном оптическом излучении.

Откуда и как черпает свою огромную энергию солнечная вспышка?

Источник энергии вспышки - магнитное поле в атмосфере Солнца. Оно определяет морфологию и энергетику той активной области, где произойдет вспышка. Здесь энергия поля много больше, чем тепловая и кинетическая энергия плазмы. Во время вспышки происходит быстрое превращение избыточной энергии поля в энергию частиц и изменения плазмы. Физический процесс, обеспечивающий такое превращение, называется магнитным пересоединением.

Что такое пересоединение?

Рассмотрим простейший пример, который демонстрирует явление магнитного пересоединения. Пусть два параллельных проводника расположены на расстоянии 2l друг от друга. По каждому из проводников течет электрический ток. Магнитное поле этих токов состоит из трех различных магнитных потоков. Два из них - Ф 1 и Ф 2 - принадлежат соответственно верхнему и нижнему токам; каждый поток охватывает свой проводник. Они расположены внутри сепаратрисной линии поля А 1 А 2 (сепаратрисы), которая образует "восьмерку" с точкой пересечения X. Третий поток расположен вне сепаратрисной линии. Он принадлежит одновременно обоим проводникам.

Если мы сместим оба проводника в направлении друг к другу на величину dl, то магнитные потоки перераспределятся. Собственные потоки каждого из токов уменьшатся на величину dФ, а их общий поток увеличится на ту же величину (объединенный поток Ф 1 " и Ф 2 "). Этот процесс называется пересоединением линий магнитного поля, или просто магнитным пересоединением. Он осуществляется следующим образом. Две линии поля подходят к точке X сверху и снизу, сливаются c ней, образуя новую сепаратрису, и затем соединяются так, чтобы образовать новую линию поля, которая охватывает оба тока.


Рис. 2 - Магнитное поле двух параллельных электрических токов одинаковой величины I:
a) в начальный момент времени; А 1 А 2 - сепаратриса; Ф 1 Ф 2 - магнитный поток до пересоединения;
А3 - линия поля общего магнитного потока двух токов;
б) после смещения проводников на расстояние dl друг к другу. А 1 А 2 - новая сепаратриса; Ф 1 Ф 2 - пересоединенный магнитный поток. Он стал обшим потоком двух токов; линия X проходит перпендикулярно плоскости рисунка;
в) магнитное пересоединение в плазме. Показано промежуточное (предвспышечное) состояние с непересоединяющим (медленно пересоединяющим) токовым слоем CL.

Отметим, что такое пересоединение в вакууме при всей его простоте - реальный физический процесс. Его можно легко воспроизвести в лаборатории. Пересоединение магнитного потока индуцирует электрическое поле, величину которого можно оценить, разделив величину dФ на характерное время процесса пересоединения dt, то есть время движения проводников. Это поле будет ускорять заряженную частицу, помещенную вблизи точки Х, точнее говоря, линии Х.

Плазма солнечной короны отличается от вакуума очень высокой электрической проводимостью. Как только появляется индуцируемое пересоединением электрическое поле E, оно сразу же порождает электрический ток, направленный вдоль линии Х. Он приобретает форму токового слоя, который препятствуют процессу пересоединения. В плазме высокой проводимости токовый слой делает пересоединение между взаимодействующими магнитными потоками очень медленным. Это приводит к тому, что значительная часть энергии взаимодействия накапливается в виде избытка магнитной энергии, а именно магнитной энергии токового слоя.

Токовые слои и вспышки

В общем случае пересоединяющий токовый слой представляет собой магнито-плазменную структуру, как минимум, двумерную и, как правило, двухмасштабную, поскольку втекание плазмы в слой и вытекание из него осуществляются в ортогональных направлениях. Обычно (особенно в условиях сильного магнитного поля) ширина слоя (2b) много больше его толщины (2a). Это важно, поскольку, чем шире токовый слой, тем большую энергию он может накопить в области взаимодействия магнитных потоков. Между тем, чем толще слой, тем больше скорость диссипации (потери) накопленной энергии. Эти фундаментальные свойства пересоединяющего токового слоя составляют основу модели солнечной вспышки, предложенной выдающимся российским астрофизиком С.И. Сыроватским (1925-1979).


Рис. 3 - Простейшая модель пересоединяющего токового слоя - нейтральный слой.
2в - ширина слоя; 2а - толщина слоя; стрелками показаны направления втекания плазмы в слой и вытекания из него.

В реальных трех измерениях только в последние десятилетия, благодаря космическим исследованиям Солнца стала понятна роль топологических свойств крупномасштабных магнитных полей и кинетических плазменных явлений, вовлеченных в процесс пересоединения во вспышках.

"Радуга" и "молнии" на Солнце

Первоначально взаимодействие магнитных потоков в атмосфере Солнца рассматривалось исключительно как результат всплывания нового магнитного поля из-под фотосферы в корону. Новый магнитный поток, поднимаясь в солнечной атмосфере, взаимодействует со старым, предшествующим магнитным потоком. В действительности, взаимодействие магнитных потоков в атмосфере Солнца - гораздо более общее явление. В 1985 г. автор статьи предложил модель, которая связывает вихревые течения плазмы в фотосфере с появлением в короне особых линий магнитного поля - сепараторов. Сепаратор появляется над S-образным изгибом фотосферной нейтральной линии подобно радуге над изгибом реки. Такие изгибы весьма характерны для магнитограмм больших вспышек.


Рис. 4 - Модель магнитного поля активной области перед вспышкой. Особая линия магнитного поля - сепаратор (Х) над S-образным изгибом фотосферной нейтральной линии (NL) подобен радуге над рекой. Вихревое течение со скоростью V в фотосфере деформирует фотосферную нейтральную линию так, что она приобретает форму буквы S. V_ - конвергентные фотосферные течения (направленные к нейтральной линии); V|| - сдвиговые фотосферные течения (направленные вдоль нейтральной линии). В правом верхнем углу показана структура поля в окрестности сепаратора, вблизи его вершины: B_ - поперечные составляющие поля (перпендикулярные сепаратору), B || - продольная составляющая поля (направленная вдоль сепаратора).

По структуре поля сепаратор отличается от линии Х лишь тем, что содержит продольную составляющую магнитного поля. Наличие продольного поля В||, разумеется, не запрещает процесс пересоединения. Эта составляющая всегда присутствует внутри и вне формирующегося вдоль сепаратора пересоединяющего токового слоя. Она влияет на скорость пересоединения поперечных составляющих поля B_ и, следовательно, на мощность процесса преобразования энергии поля в тепловую и кинетическую энергии частиц. Это позволяет лучше понять и точнее объяснить особенности энерговыделения в солнечной вспышке.

Вспышка - быстрое магнитное пересоединение, которое подобно гигантской молнии вдоль "радуги" сепаратора. Оно связано с сильным электрическим полем (больше 10-30 В/см) в высокотемпературном (более 10 8 К) турбулентном токовом слое (ВТТТС), несущем огромный электрический ток (порядка 10 11 А).

Первичное энерговыделение

Картина вспышки во всем ее многообразии и красоте (см. стр. 1 обложки) - следствие первичного выделения энергии в ВТТТС. Наличие нескольких каналов выделения энергии в токовом слое (течения плазмы, тепловое и электромагнитное излучение, ускоренные частицы) определяет многообразие физических процессов, вызываемых вспышкой в атмосфере Солнца.


Рис. 5 - Вспышки 15 апреля 2002 г. Изображения получены рентгеновским телескопом на спутнике "RHESSI" в диапазоне энергий 10-25 кэВ, который соотвествует тепловому излучению сверхгорячей плазмы:
а) непосредственно перед импульсной фазой;
б) во время импульсного нарастания потока жесткого рентгеновского излучения;
в) в максимуме интенсивности; движущийся вверх источник соответствует началу коронального выброса массы (CME).

Пересоединенные линии магнитного поля вместе со "сверхгорячей" (электронная температура больше 3x10 7 К) плазмой и ускоренными частицами движутся из ВТТТС со скоростями порядка 10 3 км/с. Рентгеновский телескоп космической обсерватории "RHESSI" зафиксировал два источника жесткого рентгеновского излучения в короне во время вспышки 15 апреля 2002 г. Один из них находился высоко над солнечным лимбом. Его движение вверх соответствовало зарождению коронального выброса массы в межпланетное пространство. Этот выброс зарегистрировал коронограф на космическом аппарате "SOHO" 16 апреля 2002 г. (Земля и Вселенная, 2003, № 3). Второй источник жесткого рентгеновского излучения находился под сепаратором. Пространственное распределение энергии жесткого рентгеновского излучения и, соответственно, пространственное распределение самых высоких температур во вспышке согласуются с предположением, что между источниками действительно находится пересоединяющий ВТТТС.

"Вторичные" эффекты под радугой

Постепенно охлаждаясь, сверхгорячая плазма становится видимой в более мягком рентгеновском излучении. В области, расположенной под сепаратором, она движется вниз и встречается с другой "горячей" (электронная температура меньше или порядка 3x10 7 К) плазмой, которая быстро течет вверх, из хромосферы в корону.

Причина этого вторичного (но не второстепенного) течения в том, что мощные потоки тепла и ускоренных частиц из ВТТТС быстро распространяются вдоль пересоединенных линий магнитного поля и моментально нагревают хромосферу по обе стороны от фотосферной нейтральной линии. Так образуются пары вспышечных лент, наблюдаемые в видимых хромосферных линиях и УФ-линиях переходного слоя между короной и хромосферой. Нагретые до высоких температур верхние слои хромосферы "испаряются" в корону. Эффект быстрого расширения нагретой хромосферной плазмы в корону хорошо виден в рентгеновских лучах. "Хромосферное испарение" (так называют это явление) вместе с плазмой, вытекающей из токового слоя, порождает аркады вспышечных петель: длинные или короткие (как во вспышке 15 апреля 2002 г.).


Рис. 6 - Гигантская солнечная вслышка (рентгеновский балл Х17) 4 ноября 2003 г. Прекрасно видна аркада вспышечных петель в короне. Изображение в линиях крайнего ультрафиолетового излучения 171 А получено с помощью УФ-телескопа КА "ТRACE".

Как уже отмечалось, в мягком рентгеновском и УФ-излучениях заключена значительная часть полной энергии вспышки, причем именно они воздействуют на верхние слои атмосферы Земли. Не удивительно, что огромные потоки этого же излучения воздействуют и на атмосферу Солнца (Земля и Вселенная, 1978, № 1): хромосферу и фотосферу, вызывая нагрев и дополнительную ионизацию солнечной плазмы. К сожалению, точности современных наблюдений пока не хватает для изучения столь тонких эффектов.

Изучение вторичных явлений имеет принципиальное значение для сравнения результатов теории вспышек с наблюдениями, поскольку видны больше всего именно следствия первичного энерговыделения: например тормозное излучение ускоренных электронов в хромосфере делает вспышечные ленты видимыми в жестком рентгеновском излучении.

Оптическое излучение вспышки - часть сложного гидродинамического отклика хромосферы и фотосферы на импульсный нагрев мощными пучками заряженных частиц, потоками тепла и жесткого электромагнитного излучения. К сожалению, пока еще нет однозначных предсказаний теории, относящихся к оптическому излучению. Слишком сложна физическая картина "отклика". Успехи достигнуты лишь на пути численного моделирования импульсного нагрева хромосферы электронными пучками. Расчеты на ЭВМ вскрыли специфические особенности импульсной фазы вспышки: формирование ударных и тепловых волн большой амплитуды, отличие электронной температуры от ионной, мощное УФ-излучение в линиях переходного слоя. Однако в целом, даже в рамках столь ограниченной постановки задачи об отклике, предстоит еще много сделать, чтобы обеспечить сравнение результатов расчетов и наблюдений.


Рис. 7 - Вспышка, зарегистрированная 23 июля 2003 г. Положительно и отрицательно заряженные частицы разных энергий высыпаются из токового слоя в хромосферу в различных областях. Изображение получено в результате наложения снимков, сделанных КА "TRACE" и "RHESSI". Распределение зеленого фона дали УФ-наблюдения со спутника "TRACE" спустя 90 м. после вспышки; видны послевспышечные петли в короне (черный цвет).

Первые пространственные наблюдения гамма-излучения вспышек на космической обсерватории "RHESSI" показали, что ускоренные электроны и ускоренные ионы вторгаются в хромосферу в различных областях. Этот новый наблюдательный факт, хотя и требует дальнейшего детального изучения, в общих чертах согласуется с предположением о первичном ускорении частиц электрическим полем в пересоединяющем ВТТТС. Положительно и отрицательно заряженные частицы ускоряются крупномасштабным электрическим полем в противоположные стороны и, соответственно, высыпаются из токового слоя в хромосферу вдоль различных линий магнитного поля. Аккуратные теоретические расчеты эффекта, к сожалению, пока отсутствуют.

Перед вспышкой

Что предшествует вспышке? В какой момент времени она происходит? Рассмотрим эти вопросы на примере модели "Радуга", разрабатываемой в отделе физики Солнца ГАИШ МГУ.
Начнем с процесса накопления энергии перед вспышкой. Главными факторами здесь являются медленные течения фотосферной плазмы, несущей магнитные поля. Фотосферные течения, направленные к нейтральной линии, принято называть конвергентными, а течения вдоль нее называются сдвиговыми.

Очевидно, конвергентные течения стремятся сжать фотосферную плазму и "вмороженное" в нее (движущееся вместе с плазмой) магнитное поле в окрестности нейтральной линии. Это приводит к формированию медленно пересоединяющего токового слоя вдоль сепаратора. При этом магнитное поле приобретает избыток магнитной энергии токового слоя. Сдвиговые течения в фотосфере растягивают линии магнитного поля в короне в направлении, параллельном сепаратору.

Суммарный избыток магнитной энергии в короне, создаваемый течениями плазмы в фотосфере, называют "свободной магнитной энергией". Именно она полностью или частично "освобождается" во время вспышки, точнее говоря, превращается из энергии поля в тепловую и кинетическую энергию частиц солнечной плазмы.

Как происходит вспышка

В модели "Радуга" предполается, что процесс быстрого пересоединения, то есть первичное энерговыделение во вспышке, начинается на сепараторе вблизи его вершины.

В процессе пересоединения первой пары линий поля создается новая линия. При этом происходит быстрое превращение соответствующей порции энергии магнитного поля в энергию частиц плазмы. Ускоренные частицы за очень короткое время долетают вдоль пересоединенной линии поля к ее основаниям в хромосфере. Здесь они отдают свою энергию: тормозятся и нагревают хромосферную плазму, порождая пару "ярких точек", называемых "вспышечные ядра эмиссии".


Рис. 8 - Так выглядит магнитное поле перед вспышкой:
а) магнитные линии f 1 и f 1 " ближе всего расположены к токовому слою (RCL).
Они пересоединяются первыми в начале вспышки.
б) во время вспышки в момент быстрого пересоединения магнитного поля.
f 2 и f 2 " - новые пересоединенные магнитные линии.
P a и P b - вспышечные ядра эмиссии. Их кажущееся смещения показаны зелеными стрелками.

Быстрое пересоединение следующей пары линий магнитного поля создает другую линию поля и новую пару ярких точек. А наблюдателю на Земле или на космической станции кажется, что оба вспышечных ядра движутся друг к другу.

Реально во вспышке в процессе пересоединения участвуют, разумеется, не две линии поля, а два магнитных потока, которые взаимодействуют между собой не в одной точке, а вдоль всего сепаратора. Поэтому пересоединение порождает не две яркие точки в хромосфере, а две вспышечные ленты.

Модель "Радуга" объясняет наличие в наблюдаемой картине вспышки двух эффектов. Во-первых, вспышечные ленты в ходе вспышки должны двигаться в противоположные стороны от фотосферной нейтральной линии. Во-вторых, наиболее яркие участки вспышечных лент могут двигаться навстречу друг другу, если освобождается магнитная энергия, накопленная за счет сдвиговых течений фотосферной плазмы, параллельных нейтральной линии.

Разумеется, реальные вспышки на Солнце не столь симметричны, как упрощенные модельные структуры. В активных областях на Солнце одна полярность магнитного поля в фотосфере, как правило, доминирует над другой. Тем не менее, модель "Радуга" - хорошая основа для сравнения теории пересоединения при вспышке с современными многоволновыми их наблюдениями.


Рис. 9 - Вспышка (рентгеновский балл X5.7) 14 июля 2000 г. Показано положение наиболее яркого источника излучения, К1, в диапазоне 53-93 кэВ, по данным жесткого рентгеновского телескопа HXT на спутнике "Yohkoh" в начале (желтые контуры) и в конце (голубые контуры) всплеска жесткого рентгеновского излучения. Зеленая стрелка - смещение центроида излучения С, за время всплеска порядка 20 с. Красной стрелкой показано движение самого большого солнечного пятна Р1 в течение двух дней, предшествовавших вспышке. Оно складывается из двух частей: движение к упрощенной нейтральной линии SNL и движение вдоль нее.

Во время вспышки происходит быстрая "релаксация стрессов" магнитного поля в короне. Подобно тому, как спусковой крючок освобождает сжатую пружину, пересоединение при вспышке обеспечивает быстрое превращение накопленного в активной области на Солнце избытка энергии поля в тепловую и кинетическую энергию частиц.

Перспективы изучения вспышек

Изучение солнечных вспышек необходимо для создания научно обоснованного, надежного прогноза радиационной обстановки в ближнем космосе. В этом практическая задача теории вспышек. Важно, однако, и другое. Вспышки на Солнце необходимо изучать для понимания различных вспышечных явлений в космической плазме. В отличие от вспышек на других звездах, а также многих других аналогичных (или кажущихся аналогичными) нестационарных явлений во Вселенной, солнечные вспышки доступны самому всестороннему исследованию практически во всем электромагнитном диапазоне - от километровых радиоволн до жестких гамма-лучей. Физика солнечных вспышек - своеобразный разрез через многие области современной физики: от кинетической теории плазмы до физики частиц высоких энергий.

Современные космические наблюдения позволяют видеть появление и развитие солнечной вспышки в УФ- и рентгеновских лучах с высоким пространственным, временным и спектральным разрешением. Огромный поток наблюдательных данных о вспышках и вызываемых ими явлениях в атмосфере Солнца, межпланетном пространстве, магнитосфере и атмосфере Земли дает возможность тщательно проверять все результаты теоретического и лабораторного моделирования вспышек.

Б.В. Сомов, доктор физико-математических наук, Государственный астрономический институт им. П.К. Штернберга, МГУ

Во время большой вспышки поток жесткого электромагнитного излучения Солнца возрастает во много раз. В невидимых для нас ультрафиолетовых (УФ), рентгеновских и гамма-лучах наше светило становится "ярче тысячи солнц". Излучение достигает орбиты Земли через восемь минут после начала вспышки. Через несколько десятков минут приходят потоки заряженных частиц, ускоренных до гигантских энергий, а через двое-трое суток - огромные облака солнечной плазмы. К счастью, озоновый слой атмосферы Земли защищает нас от опасного излучения, а геомагнитное поле - от частиц. Однако даже на Земле, тем более в космосе, солнечные вспышки опасны и необходимо уметь их заблаговременно прогнозировать. Что же такое солнечная вспышка, как и почему она возникает?

Солнце и мы

Ближайшая к нам звезда - Солнце - родилась около 5 млрд. лет тому назад. Внутри нее идут ядерные реакции, благодаря которым существует жизнь на Земле. Построенные на основе современных наблюдений теоретические модели строения и эволюции Солнца не оставляют сомнений в том, что оно будет сиять еще миллиарды лет.

Солнечное излучение - главный источник энергии для земной атмосферы. Фотохимические процессы в ней особенно чувствительны к жесткому УФ-излучению, которое вызывает сильную ионизацию. Поэтому когда Земля была молодой, жизнь существовала только в океане. Позднее, примерно 400 млн. лет назад, появился озоновый слой, поглощающий ионизирующее изучение, и жизнь вышла на сушу. С тех пор озоновый слой защищает нас от разрушительного воздействия жесткого УФ-излучения.

Магнитное поле Земли, ее магнитосфера препятствует проникновению к Земле быстрых заряженных частиц солнечного ветра (Земля и Вселенная, 1974, № 4; 1999, № 5). Когда его порывы взаимодействуют с магнитосферой, часть частиц все-таки высыпается вблизи магнитных полюсов Земли, порождая полярные сияния.

Увы, гармонию наших отношений с Солнцем нарушают солнечные вспышки.

Вспышки на Солнце

Последние десятилетия сразу несколько космических обсерваторий пристально вглядываются в "разгневанное" Солнце с помощью специальных рентгеновских и УФ-телескопов. Сейчас таких космических аппаратов четыре: американские "SOHO" (Solar and Heliospheric Observatory - солнечная гелиосферная обсерватория; Земля и Вселенная, 2003, № 3), "TRACE" (Transition Region and Coronal Explorer - исследователь короны и переходного слоя), "RHESSI" (Ramaty High Energy Solar Spectroscopic Imager - солнечный спектральный телескоп высокоэнергичного излучения им. Рамати) и российский спутник "Коронас-Ф" (Земля и Вселенная, 2002, № 6).

Огромный интерес к вспышкам на Солнце не случаен. Большие вспышки оказывают сильное воздействие на околоземное космическое пространство. Потоки частиц и излучения опасны для космонавтов. Кроме того, они могут повредить электронные приборы космических аппаратов, нарушить их работу.

УФ- и рентгеновские лучи от вспышки внезапно увеличивают ионизацию в верхних слоях атмосферы Земли, в ионосфере. Это может приводить к нарушениям радиосвязи, сбоям в работе радионавигационных приборов кораблей и самолетов, радиолокационных систем, длинных линий электроснабжения. Частицы высоких энергий, проникая в верхнюю атмосферу Земли, разрушают озоновый слой. Содержание озона уменьшается из года в год. Научную дискуссию вызывает вопрос о вероятной связи вспышечной активности Солнца с климатом на Земле.

Ударные волны и выбросы солнечной плазмы после вспышек сильно возмущают магнитосферу Земли, вызывают магнитные бури (Земля и Вселенная, 1999, № 5). Важно, что возмущения магнитного поля на поверхности Земли могут влиять на живые организмы, на состояние биосферы Земли (Земля и Вселенная, 1974, № 4; 1981, № 4), хотя это воздействие кажется пренебрежимо малым по сравнению с другими факторами нашей повседневной жизни.

Прогнозирование вспышек

Необходимость прогнозирования солнечных вспышек возникла давно, но особенно остро в связи с пилотируемыми космическими полетами. Долгое время почти независимо и практически безрезультатно разрабатывались два подхода к решению этой проблемы. Их можно условно назвать синоптическим и каузальным (причинным). Первый - сходный с предсказаниями погоды - базировался на изучении морфологических особенностей предвспышечных ситуаций на Солнце. Второй метод подразумевает знание физического механизма вспышки и, соответственно, распознавание предвспышечной ситуации путем ее моделирования.

До начала космических исследований, на протяжении многих лет, наблюдения вспышек велись преимущественно в оптическом диапазоне электромагнитного излучения: в линии водорода Нa и в "белом свете" (непрерывном спектре видимого излучения). Наблюдения в магниточувствительных линиях позволили установить тесную связь вспышек с магнитными полями на поверхности Солнца (фотосфере). Часто вспышка видна как увеличение яркости хромосферы (слой непосредственно над фотосферой) в виде двух светящихся лент, расположенных в областях магнитных полей противоположной полярности. Радионаблюдения подтверждали эту закономерность, имеющую принципиальное значение для объяснения механизма вспышки. Однако его понимание оставалось на чисто эмпирическом уровне, а теоретические модели (даже самые правдоподобные) казались совершенно не убедительными (Земля и Вселенная, 1974, № 4).

Рис. 1 - Солнечная вспышка (рентгеновский балл Х5.7), зарегистрированная 14 июля 2000 г. со спутников "TRACE" и "Yohkoh". Видна аркада вспышечных петель: слева в УФ (195 А); в центре - в мягком рентгеновском излучении; справа - источники жесткого рентгеновского излучения (53 - 94 кэВ), расположенные вдоль вспышечных лент - основания аркады. NL - фотосферная нейтральная линия.

Уже первые внеатмосферные наблюдения с помощью космических аппаратов показали, что солнечные вспышки представляют собой корональное, а не хромосферное явление. Современные многоволновые наблюдения Солнца с космических и наземных обсерваторий свидетельствуют о том, что источник энергии вспышки расположен над аркадой вспышечных петель (светлые полосы на рисунке слева) в короне, наблюдаемых в мягком рентгеновском и УФ-излучении. Аркады опираются на хромосферные вспышечные ленты, которые расположены по разные стороны линии раздела полярности фотосферного магнитного поля, или фотосферной нейтральной линии.

Энергия вспышки

Солнечная вспышка - самое мощное из всех проявлений активности Солнца. Энергия большой вспышки достигает (1-3)x1032 эрг, что приблизительно в сто раз превышает тепловую энергию, которую можно было бы получить при сжигании всех разведанных запасов нефти и угля на Земле. Эта гигантская энергия выделяется на Солнце за несколько минут и соответствует средней (за время вспышки) мощности 1029 эрг/с. Однако это меньше сотых долей процента от мощности полного излучения Солнца в оптическом диапазоне, равной 4x1033 эрг/с. Она называется солнечной постоянной. Поэтому при вспышке не происходит заметного увеличения светимости Солнца. Лишь самые большие из них можно заметить в непрерывном оптическом излучении.

Откуда и как черпает свою огромную энергию солнечная вспышка?

Источник энергии вспышки - магнитное поле в атмосфере Солнца. Оно определяет морфологию и энергетику той активной области, где произойдет вспышка. Здесь энергия поля много больше, чем тепловая и кинетическая энергия плазмы. Во время вспышки происходит быстрое превращение избыточной энергии поля в энергию частиц и изменения плазмы. Физический процесс, обеспечивающий такое превращение, называется магнитным пересоединением.

Что такое пересоединение?

Рассмотрим простейший пример, который демонстрирует явление магнитного пересоединения. Пусть два параллельных проводника расположены на расстоянии 2l друг от друга. По каждому из проводников течет электрический ток. Магнитное поле этих токов состоит из трех различных магнитных потоков. Два из них - Ф1 и Ф2 - принадлежат соответственно верхнему и нижнему токам; каждый поток охватывает свой проводник. Они расположены внутри сепаратрисной линии поля А1А2 (сепаратрисы), которая образует "восьмерку" с точкой пересечения X. Третий поток расположен вне сепаратрисной линии. Он принадлежит одновременно обоим проводникам.

Если мы сместим оба проводника в направлении друг к другу на величину dl, то магнитные потоки перераспределятся. Собственные потоки каждого из токов уменьшатся на величину dФ, а их общий поток увеличится на ту же величину (объединенный поток Ф1" и Ф2"). Этот процесс называется пересоединением линий магнитного поля, или просто магнитным пересоединением. Он осуществляется следующим образом. Две линии поля подходят к точке X сверху и снизу, сливаются c ней, образуя новую сепаратрису, и затем соединяются так, чтобы образовать новую линию поля, которая охватывает оба тока.


Рис. 2 - Магнитное поле двух параллельных электрических токов одинаковой величины I:

a) в начальный момент времени; А1А2 - сепаратриса; Ф1Ф2 - магнитный поток до пересоединения;

А3 - линия поля общего магнитного потока двух токов;

б) после смещения проводников на расстояние dl друг к другу. А1А2 - новая сепаратриса; Ф1Ф2 - пересоединенный магнитный поток. Он стал обшим потоком двух токов; линия X проходит перпендикулярно плоскости рисунка;

в) магнитное пересоединение в плазме. Показано промежуточное (предвспышечное) состояние с непересоединяющим (медленно пересоединяющим) токовым слоем CL.

Отметим, что такое пересоединение в вакууме при всей его простоте - реальный физический процесс. Его можно легко воспроизвести в лаборатории. Пересоединение магнитного потока индуцирует электрическое поле, величину которого можно оценить, разделив величину dФ на характерное время процесса пересоединения dt, то есть время движения проводников. Это поле будет ускорять заряженную частицу, помещенную вблизи точки Х, точнее говоря, линии Х.

«Это одно из самых загадочных событий, которые Солнце когда-либо произвело за историю наблюдений с Земли», – заявил газете ВЗГЛЯД астрофизик Сергей Богачев, комментируя серию мощных вспышек, произошедших на Солнце за последние дни. Он рассказал, какие последствия от этих вспышек можно ожидать на Земле.


В пятницу на Солнце была зафиксирована новая мощная вспышка, ее максимум пришелся на 11.00 мск, следует из графика солнечной активности лаборатории «Рентгеновская астрономия Солнца» Физического института имени Лебедева Российской академии наук (ФИАН). На Земле возникла мощнейшая магнитная буря, которая оценивается в четыре единицы по пятибалльной шкале.

Представитель ФИАН признал, что сила магнитной бури оказалась в десять раз больше, чем предсказывалось. Последствия ее трудно предсказать. В частности, в Северном полушарии начались сильные полярные сияния на нехарактерных для них широтах. Кроме того, сообщалось, что во время вспышки по солнечной поверхности распространялись сейсмические волны – «солнцетрясение».

По данным ученых, направление магнитного поля выброса является неблагоприятным для нашей планеты – поле направлено противоположно земному и в настоящий момент «сжигает линии поля» Земли.

О том, опасно ли для землян такое «сжигание», в интервью газете ВЗГЛЯД рассказал главный научный сотрудник лаборатории «Рентгеновская астрономия Солнца», член ученого совета ФИАН, доктор физико-математических наук, астрофизик Сергей Богачев.

ВЗГЛЯД: Сергей Александрович, как долго продлится еще эта магнитная буря на Земле?

Сергей Богачев: Во-первых, стоит отметить, что вспышки были еще в среду, 6-го числа. Соответственно, облака плазмы, которые выбрасываются во время вспышки, дошли до нас только в пятницу. «Удар» действительно был сильный, вспышка крупная и скорости высокие, в ночь на пятницу произошла магнитная буря очень высокой мощности – четыре балла по пятибалльной шкале, практически максимальная. Днем в пятницу активность уже спала. Магнитная буря еще продолжается, магнитное поле Земли все еще возмущено, но баллы ее постепенно снижаются.

Солнечная активность носит цикличный характер, и этот цикл хорошо изучен. По сути, он уже 300 лет наблюдается уже и все 300 лет работал как часы. Раз в 11 лет Солнце переходит в состояние максимума активности. Но сейчас мы находимся в минимуме, поэтому сам факт необычен.

С другой стороны, Солнце – это все-таки не часы, не механизм, а сложный физический объект, который мы тем более не до конца понимаем. В каком-то смысле этот факт просто подтверждает нашу беспомощность.

ВЗГЛЯД: Одну из вспышек классифицировали как экстремально сильную – как говорят ученые, класса X9.3. Насколько такое редко бывает?

С. Б.: В нашей истории были события, может быть, в полтора раза более мощные. Но по сочетанию факторов такая крупная вспышка и тот факт, что она произошла при минимуме солнечной активности, – это одно из самых загадочных событий, которые Солнце когда-либо произвело за историю наблюдений с Земли.

ВЗГЛЯД: Говорят, она «сжигает силовые линии» Земли. Звучит страшновато. Но что это значит на самом деле?

С. Б.: Это образное выражение. Дело в том, что магнитное поле, если представить визуально, то это такие стрелки, направленные, скажем, вверх. Представьте, что есть другое поле, стрелки которого направлены вниз. Можно первое поле назвать плюсом, а второе – минусом. Эти поля при таком взаимодействии начинают как бы аннигилировать друг друга. Вот и получается, что поле выброса «сжигает», уничтожает какие-то части магнитного поля Земли. Вещество от выброса, которое обычно полем Земли блокируется, получает возможность проникнуть более глубоко в те слои атмосферы, в которые обычно плазма от Солнца не проникает.

Соответственно, радиационные пояса Земли насыщаются плазмой от Солнца. Это объясняет полярное сияние, которое в Канаде наблюдали в момент «удара», – очень сильное, на широтах до 40 градусов.

ВЗГЛЯД: Влияет ли это как-то на технику?

С. Б.: Полярное сияние можно увидеть, а бури – в каком-то смысле почувствовать. Вспышки сильно влияют на верхние слои атмосферы. В частности, у Земли есть ионосфера, это внешняя оболочка атмосферы, которая содержит нейтральные газы и квазинейтральную плазму. Ионосфера существенно влияет на коротковолновую радиосвязь. По сути, короткие радиоволны просто отражаются от ионосферы. Соответственно, радиолюбителям известно, что при солнечных вспышках, при высокой солнечной активности меняется характер радиосвязи. Она может улучшиться за счет того, что ионосфера становится более плотной, или ухудшиться, если ионосфера колеблется.

Взаимодействие со спутниками затрудняется, потому что в окружающем Землю космическом пространстве сейчас находится множество плазмы, которая преломляет и блокирует сигналы.

Магнитные бури способны влиять на глобальные электрические сети, вызывать в них избыточные токи, скачки напряжения. Однако в последние годы уровень защиты так усилился, что представить себе выход из строя электрических сетей теперь невозможно.

Надо понимать, что мы живем, в некотором смысле, на дне воздушного океана. Можно провести параллель. Наверху 10-балльный шторм на море, тонут корабли, а где-то на глубине нескольких километров плавает рыба и ничего не замечает. Так что на наземную технику вспышки слабо влияют.

ВЗГЛЯД: А здоровье людей?

С. Б.: Метеочувствительные люди замечают перепады давления, какие-то сезонные эффекты. Ряд людей говорят, что чувствуют влияние геомагнитного фона. Я к этой группе не отношусь, поэтому верить, не верить – это личное дело каждого. Здоровье человека – вещь сложная, формулами не описывается. Я ведь не врач, я занимаюсь физикой.

Магнитные бури носят планетарный характер. Нет такого места, куда можно было бы уехать, спрятаться. Если у людей метеочувствительность, надо просто принять обычные меры предосторожности. Знающие про свою склонность к таким эффектам люди понимают это.

ВЗГЛЯД: В ближайшее время вы ожидаете новых вспышек?

С. Б.: Наблюдения показывают, что энергия Солнца пока не исчерпана, продолжаются вспышки. Вместе с тем группа солнечных пятен, которая является центром этой активности, из-за вращения Солнца сейчас все больше уходит в сторону – условно говоря, в сторону солнечного горизонта. Думаю, через день-два она уже окажется совсем «на краю» Солнца, откуда влияние на Землю вообще невозможно. Потом вообще уйдет на другую его сторону.

Если эта серия вспышек снова приведет к какому-то крупному рекорду, скорее всего, это случится уже на другой стороне Солнца. Мы о нем даже не узнаем.