Второе начало термодинамики томсон. Второе начало термодинамики: определение, смысл, история

Второе начало термодинамики определяет направленность реальных тепловых процессов, протекающих с конечной скоростью.

Второе начало (второй закон) термодинамики имеет несколько формулировок . Например, любое действие , связанное с преобразованием энергии (то есть с переходом энергии из одной формы в другую), не может происходить без ее потери в виде тепла, рассеянного в окружающей среде . В более общем виде это означает, что процессы трансформации (превращения) энергии могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной (упорядоченной) формы в рассеянную (неупорядоченную) форму.

Еще одно определение второго закона термодинамики непосредственно связано с принципом Клаузиуса : процесс, при котором не происходит никаких изменений, кроме передачи тепла от горячего тела к холодному, необратим, то есть теплота не может переходить самопроизвольно от более холодного тела к более горячему. При этом такое перераспределение энергии в системе характеризуется величиной , получившей название энтропии , которая как функция состояния термодинамической системы (функция, имеющая полный дифференциал), была впервые введена в 1865 году именно Клаузиусом. Энтропия – это мера необратимого рассеяния энергии. Энтропия тем больше, чем большее количество энергии необратимо рассеивается в виде тепла.

Таким образом, уже из этих формулировок второго закона термодинамики можно сделать вывод, что любая система , свойства которой изменяются во времени, стремится к равновесному состоянию, в котором энтропия системы принимает максимальное значение . В связи с этим второй закон термодинамики часто называют законом возрастания энтропии , а саму энтропию (как физическую величину или как физическое понятие) рассматривают в качестве меры внутренней неупорядоченности физико-химической системы .

Другими словами, энтропия функция состояния, характеризующая направление протекания самопроизвольных процессов в замкнутой термодинамической системе. В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе невозможны. Максимальная энтропия соответствует полному хаосу .

Чаще всего переход системы из одного состояния в другое характеризуют не абсолютной величиной энтропии S , а ее изменением ∆S , которое равно отношению изменения количества теплоты (сообщенного системе или отведенного от нее) к абсолютной температуре системы: ∆S = Q/T, Дж/град. Это – так называемая термодинамическая энтропия .

Кроме того, энтропия имеет и статистический смысл. При переходе из одного макросостояния в другое статистическая энтропия также возрастает, так как такой переход всегда сопровождается большим числом микросостояний, а равновесное состояние (к которому стремится система) характеризуется максимальным числом микросостояний.

В связи с понятием энтропии в термодинамике новый смысл приобретает понятие времени. В классической механике направление времени не учитывается и состояние механической системы можно определить как в прошлом, так и в будущем. В термодинамике время выступает в форме необратимого процесса возрастания энтропии в системе. То есть чем больше энтропия, тем больший временной отрезок прошла система в своем развитии.

Кроме того, для понимания физического смысла энтропии необходимо иметь в виду, что в природе существует четыре класса термодинамических систем :

а) изолированные системы или замкнутые (при переходе таких систем из одного состояния в другое не происходит переноса энергии, вещества и информации через границы системы);

б) адиабатические системы (отсутствует только теплообмен с окружающей средой);

в) закрытые системы (обмениваются с соседними системами энергией, но не веществом) (например, космический корабль);

г) открытые системы (обмениваются с окружающей средой веществом, энергией и информацией). В этих системах за счет прихода энергии извне могут возникать диссипативные структуры с гораздо меньшей энтропией.

Для открытых систем энтропия уменьшается . Последнее прежде всего касается биологических систем , то есть живых организмов, которые представляют собой открытые неравновесные системы . Такие системы характеризуются градиентами концентрации химических веществ, температуры, давлений и других физико-химических величин. Использование концепций современной, то есть неравновесной термодинамики, позволяет описать поведение открытых, то есть реальных систем. Такие системы всегда обмениваются с окружающей их средой энергией, веществом и информацией. Причем такие обменные процессы характерны не только для физических или биологических систем, но и для социально-экономических, культурно-исторических и гуманитарных систем, так как происходящие в них процессы, как правило, необратимы.

Третье начало термодинамики (третий закон термодинамики) связано с понятием«абсолютный нуль». Физический смысл этого закона, показанный в тепловой теореме В. Нернста (немецкого физика), состоит в принципиальной невозможности достижения абсолютного нуля (-273,16ºС), при котором должно прекратиться поступательное тепловое движение молекул, а энтропия перестанет зависеть от параметров физического состояния системы (в частности, от изменения тепловой энергии). Теорема Нернста относится только к термодинамически равновесным состояниям систем.

Другими словами, теореме Нернста можно дать следующую формулировку : при приближении к абсолютному нулю приращение энтропии S стремится к вполне определенному конечному пределу, не зависящему от значений, которые принимают все параметры, характеризующие состояние системы (например, от объема, давления, агрегатного состояния и пр.).

Понять суть теоремы Нернста можно на следующем примере. При уменьшении температуры газа будет происходить его конденсация и энтропия системы будет убывать, так как молекулы размещаются более упорядоченно. При дальнейшем уменьшении температуры будет происходить кристаллизация жидкости, сопровождающаяся большей упорядоченностью расположения молекул и, следовательно, еще большим убыванием энтропии. При абсолютном нуле температуры всякое тепловое движение прекращается, неупорядоченность исчезает, число возможных микросостояний уменьшается до одного и энтропия приближается к нулю.

4.Понятие самоорганизации. Самоорганизация в открытых системах.

Понятие “синергетика” было предложено в 1973 году немецким физиком Германом Хакеном для обозначения направления , призванного исследовать общие законы самоорганизации – феномена согласованного действия элементов сложной системы без управляющего действия извне. Синергетика (в переводе с греч. – совместный, согласованный, содействующий) – научное направление изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико-химических, геолого-географических и др.) благодаря интенсивному (потоковому) обмену веществом, энергией и информацией с окружающей средой в неравновесных условиях . В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности (уменьшается энтропия), то есть развивается процесс самоорганизации.

Равновесие есть состояние покоя и симметрии , а асимметрия приводит к движению и неравновесному состоянию .

Значительный вклад в теорию самоорганизации систем внес бельгийский физик российского происхождения И.Р. Пригожин (1917-2003). Он показал, что в диссипативных системах (системах, в которых имеет место рассеяние энтропии) в ходе необратимых неравновесных процессов возникают упорядоченные образования, которые были названы им диссипативными структурами.

Самоорганизация – это процесс спонтанного возникновения порядка и организации из беспорядка (хаоса) в открытых неравновесных системах. Случайные отклонения параметров системы от равновесия (флуктуации) играют очень важную роль в функционировании и существовании системы. За счет роста флуктуаций при поглощении энергии из окружающей среды система достигает некоторого критического состояния и переходит в новое устойчивое состояние с более высоким уровнем сложности и порядка по сравнению с предыдущим. Система, самоорганизуясь в новом стационарном состоянии, уменьшает свою энтропию, она как бы “сбрасывает” ее избыток, возрастающий за счет внутренних процессов, в окружающую среду.

Возникающая из хаоса упорядоченная структура (аттрактор , или диссипативная структура) является результатом конкуренции множества всевозможных состояний, заложенных в системе. В резльтате конкуренции идет самопроизвольный отбор наиболее адаптивной в сложившихся условиях структуры.

Синергетика опирается на термодинамику неравновесных процессов, теорию случайных процессов, теорию нелинейных колебаний и волн.

Синергетика рассматривает возникновение и развитие систем . Различают три вида систем : 1) замкнутые, которые не обмениваются с соседними системами (или с окружающей средой) ни веществом, ни энергией, ни информацией; 2) закрытые , которые обмениваются с соседними системами энергией, но не веществом (например, космический корабль); 3) открытые, которые обмениваются с соседними системами и веществом, и энергией. Практически все природные (экологические) системы относятся к типу открытых.

Существование систем немыслимо без связей. Последние делят на прямы и обратные. Прямой называют такую связь , при которой один элемент (А ) действует на другой (В ) без ответной реакции. При обратной связи элемент В отвечает на действие элемента А. Обратные связи бывают положительными и отрицательными.

Обратная положительная связь ведет к усилению процесса в одном направлении. Пример ее действия – заболачивание территории (например, после вырубки леса). Процесс начинает действовать в одном направлении : увеличение увлажнения – обеднение кислородом – замедление разложения растительных остатков – накопление торфа – дальнейшее усиление заболачивания.

Обратная отрицательная связь действует таким образом, что в ответ на усиление действия элемента А увеличивается противоположная по направлению сила действия элемента В. Такая связь позволяет сохраняться системе в состоянии устойчивого динамического равновесия. Это наиболее распространенный и важный вид связей в природных системах. На них прежде всего базируется устойчивость и стабильность экосистем.

Важным свойством систем является эмерджентность (в переводе с англ. - возникновение, появление нового). Это свойство заключается в том, что свойства системы как целого не являются простой суммой свойств слагающих ее частей или элементов, а взаимосвязи различных звеньев системы обусловливают ее новое качество.

В основе синенергетического подхода к рассмотрению систем лежат три понятия : неравновесность, открытость и нелинейность .

Неравновесность (неустойчивость) состояние системы , при котором происходит изменение ее макроскопических параметров, то есть состава, структуры, поведения.

Открытость – способность системы постоянно обмениваться веществом, энергией, информацией с окружающей средой и обладать как “источниками” - зонами подпитки энергией из окружающей среды, так и зонами рассеяния, “стока”.

Нелинейность – свойство системы пребывать в различных стационарных состояниях, соответствующих различным допустимым законам поведения этой системы.

В нелинейных системах развитие идет по нелинейным законам, приводящим к многовариантности путей выбора и альтернатив выхода из состояния неустойчивости. В нелинейных системах процессы могут носить резко пороговый характер , когда при постепенном изменении внешних условий наблюдается скачкообразный их переход в другое качество. При этом старые структуры разрушаются, переходя к качественно новым структурам.

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************

Существует несколько формулировок второго закона термодинамики, авторами которых являются немецкий физик, механик и математик Рудольф Клаузиус и британский физик и механик Уильям Томсон, лорд Кельвин. Внешне они различаются, но суть их одинакова.

Постулат Клаузиуса

Рудольф Юлиус Эммануэль Клаузиус

Второй закон термодинамики, как и первый, также выведен опытным путём. Автором первой формулировки второго закона термодинамики считается немецкий физик, механик и математик Рудольф Клаузиус.

«Теплота сама собой не может переходить от тела холодного к телу горячему ». Это утверждение, которое Клазиус назвал «тепловой аксиомой », было сформулировано в 1850 г. в работе «О движущей силе теплоты и о законах, которые можно отсюда получить для теории теплоты». «Само собой теплота передаётся лишь от тела с более высокой температурой к телу с меньшей температурой. В обратном направлении самопроизвольная передача теплоты невозможна». Таков смысл постулата Клаузиуса , определяющего суть второго закона термодинамики.

Обратимые и необратимые процессы

Первый закон термодинамики показывает количественную связь между теплотой, полученной системой, изменением её внутренней энергии и работой, произведённой системой над внешними телами. Но он не рассматривает направление передачи теплоты. И можно предположить, что теплота может передаваться как от горячего тела к холодному, так и наоборот. Между тем, в действительности это не так. Если два тела находятся в контакте, то теплота всегда передаётся от более нагретого тела к менее нагретому. Причём этот процесс происходит сам по себе. При этом во внешних телах, окружающих контактирующие тела, никаких изменений не возникает. Такой процесс, который происходит без совершения работы извне (без вмешательства внешних сил), называется самопроизвольным . Он может быть обратимым и необратимым .

Самопроизвольно остывая, горячее тело передаёт свою теплоту окружающим его более холодным телам. И никогда само собой холодное тело не станет горячим. Термодинамическая система в этом случае не может возвратиться в первоначальное состояние. Такой процесс называется необратимым . Необратимые процессы протекают только в одном направлении. Практически все самопроизвольные процессы в природе необратимы, как необратимо время.

Обратимым называется термодинамический процесс, при котором система переходит из одного состояния в другое, но может вернуться в исходное состояние, пройдя в обратной последовательности через промежуточные равновесные состояния. При этом все параметры системы восстанавливаются до первоначального состояния. Обратимые процессы дают наибольшую работу. Однако в реальности их нельзя осуществить, к ним можно только приблизиться, так как протекают они бесконечно медленно. На практике такой процесс состоит из непрерывных последовательных состояний равновесия и называется квазистатическим . Все квазистатические процессы являются обратимыми.

Постулат Томсона (Кельвина)

Уильм Томсон, лорд Кельвин

Важнейшая задача термодинамики - получение с помощью тепла наибольшего количества работы. Работа легко превращается в теплоту полностью безо всякой компенсации, например, с помощью трения. Но обратный процесс превращения теплоты в работу происходит не полностью и невозможен без получения дополнительной энергии извне.

Нужно сказать, что передача теплоты от более холодного тела к более тёплому возможна. Такой процесс происходит, например, в нашем домашнем холодильнике. Но он не может быть самопроизвольным. Для того чтобы он протекал, необходимо наличие компрессора, который будет такой воздух перегонять. То есть, для обратного процесса (охлаждения) требуется подвод энергии извне. «Невозможен переход теплоты от тела с более низкой температурой без компенсации ».

В 1851 г. другую формулировку второго закона дал британский физик и механик Уильям Томсон, лорд Кельвин. Постулат Томсона (Кельвина) гласит: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара » . То есть, нельзя создать циклически работающий двигатель, в результате действия которого производилась бы положительная работа за счет его взаимодействия лишь с одним источником теплоты. Ведь если бы это было возможно, тепловой двигатель мог бы работать, используя, например, энергию Мирового океана и полностью превращая её в механическую работу. В результате этого происходило бы охлаждение океана за счёт уменьшения энергии. Но как только его температура оказалась бы ниже температуры окружающей среды, должен был бы происходить процесс самопроизвольной передачи тепла от более холодного тела к более горячему. А такой процесс невозможен. Следовательно, для работы теплового двигателя необходимо хотя бы два источника теплоты, имеющих разную температуру.

Вечный двигатель второго рода

В тепловых двигателях теплота превращается в полезную работу только при переходе от нагретого тела к холодному. Чтобы такой двигатель функционировал, в нём создаётся разность температур между теплоотдатчиком (нагревателем) и теплоприёмником (холодильником). Нагреватель передаёт теплоту рабочему телу (например, газу). Рабочее тело расширяется и совершает работу. При этом не вся теплота превращается в работу. Часть её передаётся холодильнику, а часть, например, просто уходит в атмосферу. Затем, чтобы вернуть параметры рабочего тела к первоначальным значениям и начать цикл сначала, рабочее тело требуется нагреть, то есть от холодильника необходимо отнять теплоту и передать её нагревателю. Это означает, что нужно передать теплоту от холодного тела к более тёплому. И если бы этот процесс можно было осуществить без подвода энергии извне, мы получили бы вечный двигатель второго рода. Но так как, согласно второму закону термодинамики, сделать это невозможно, то невозможно и создать вечный двигатель второго рода, который полностью превращал бы теплоту в работу.

Эквивалентные формулировки второго закона термодинамики:

  1. Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой.
  2. Невозможно создать вечный двигатель второго рода .

Принцип Карно

Николя Леонар Сади Карно

Но если невозможно создать вечный двигатель, то можно организовать цикл работы теплового двигателя таким образом, чтобы КПД (коэффициент полезного действия) был максимальным.

В 1824 г., задолго до того как Клаузиус и Томсон сформулировали свои постулаты, давшие определения второго закона термодинамики, французский физик и математик Николя Леонар Сади Карно опубликовал свою работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В термодинамике её считают основополагающей. Учёный сделал анализ существовавших в то время паровых машин, КПД которых был всего лишь 2%, и описáл работу идеальной тепловой машины.

В водяном двигателе вода совершает работу, падая с высоту вниз. По аналогии Карно предположил, что и теплота может совершать работу, переходя от горячего тела к более холодному. Это означает, что для того чтобы тепловая машина работала, в ней должно быть 2 источника тепла, имеющих разную температуру. Это утверждение называют принципом Карно . А цикл работы тепловой машины, созданной учёным, получил название цикла Карно .

Карно придумал идеальную тепловую машину, которая могла совершать максимально возможную работу за счёт подводимой к ней теплоты.

Тепловая машина, описанная Карно, состоит из нагревателя, имеющего температуру Т Н , рабочего тела и холодильника с температурой Т Х .

Цикл Карно является круговым обратимым процессом и включает в себя 4 стадии - 2 изотермические и 2 адиабатические.

Первая стадия А→Б изотермическая. Она проходит при одинаковой температуре нагревателя и рабочего тела Т Н . Во время контакта количество теплоты Q H передаётся от нагревателя рабочему телу (газу в цилиндре). Газ изотермически расширяется и совершает механическую работу.

Для того, чтобы процесс был циклическим (непрерывным), газ нужно вернуть к исходным параметрам.

На второй стадии цикла Б→В рабочее тело и нагреватель разъединяются. Газ продолжается расширяться адиабатически, не обмениваясь теплом с окружающей средой. При этом его температура снижается до температуры холодильника Т Х , и он продолжает совершать работу.

На третьей стадии В→Г рабочее тело, имея температуру Т Х , находится в контакте с холодильником. Под действием внешней силы оно изотермически сжимается и отдаёт теплоту величиной Q Х холодильнику. Над ним совершается работа.

На четвёртой стадии Г→А рабочее тело разъединятся с холодильником. Под действием внешней силы оно адиабатически сжимается. Над ним совершается работа. Его температура становится равной температуре нагревателя Т Н .

Рабочее тело возвращается в первоначальное состояние. Круговой процесс заканчивается. Начинается новый цикл.

Коэффициент полезного действия теловой машины, работающей по циклу Карно, равен:

КПД такой машины не зависит от её устройства. Он зависит только от разности температур нагревателя и холодильника. И если температура холодильника равна абсолютному нулю, то КПД будет равен 100%. До сих пор никто не смог придумать ничего лучшего.

К сожалению, на практике такую машину построить невозможно. Реальные обратимые термодинамические процессы могут лишь приближаться к идеальным с той или иной степенью точности. Кроме того, в реальной тепловой машине всегда будут тепловые потери. Поэтому её КПД будет ниже КПД идеального теплового двигателя, работающего по циклу Карно.

На основе цикла Карно построены различные технические устройства.

Если цикл Карно провести наоборот, то получится холодильная машина. Ведь рабочее тело сначала заберёт тепло от холодильника, затем превратит в тепло работу, затраченную на создание цикла, а потом отдаст это тепло нагревателю. По такому принципу работают холодильники.

Обратный цикл Карно лежит также в основе тепловых насосов. Такие насосы переносят энергию от источников с низкой температурой к потребителю с более высокой температурой. Но, в отличие от холодильника, в котором отбираемая теплота выбрасывается в окружающую среду, в тепловом насосе она передаётся потребителю.

Существует несколько формулировок второго начала термодинамики, две из которых приведены ниже:

· теплота сама собой не может переходить от тела с меньшей температурой к телу с большей температурой (формулировка Р. Клаузиуса);

· невозможен вечный двигатель второго рода, то есть такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вследствие охлаждения одного тела (формулировка Томсона).

Второй закон термодинамики указывает на неравноценность двух форм передачи энергии – работы и теплоты. Этот закон учитывает тот факт, что процесс перехода энергии упорядоченного движения тела как целого (механической энергии) в энергию неупорядоченного движения его частиц (тепловую энергию) необратим. Например, механическая энергия при трении переходит в теплоту без каких-либо дополнительных процессов. Переход же энергии неупорядоченного движения частиц (внутренней энергии) в работу возможен лишь при условии, что он сопровождается каким-либо дополнительным процессом. Так, тепловая машина, работающая по прямому циклу, производит работу только за счет подводимой от нагревателя теплоты, но при этом часть полученной теплоты передается холодильнику.

Энтропия.Кроме внутренней энергииU , которая является однозначной функцией параметров состояния системы, в термодинамике широко используются и другие функции состояния (свободная энергия, энтальпия и энтропия ).

Понятие энтропии введено в 1865 году Рудольфом Клаузиусом. Это слово происходит от греч. entropia и в буквальном смысле означает поворот , превращение. в термодинамике этим термином пользуются при описании превращений различных видов энергии (механической, электрической, световой, химической) в тепловую, то есть в беспорядочное, хаотическое движение молекул. Собрать эту энергию и превратить ее снова в те виды, из которых она была получена, невозможно.

Для определения меры необратимого рассеяния или диссипации энергии и было введено это понятие. Энтропия S является функцией состояния. Она выделяется среди других термодинамических функций тем, что имеет статистическую , то есть вероятностную природу.



Если в термодинамической системе происходит процесс, связанный с получением или отдачей теплоты, то это ведет к превращению энтропии системы, которая может и возрастать, и убывать. В ходе необратимого цикла энтропия изолированной системы возрастает

dS > 0. (3.4)

Это означает, что в системе происходит необратимое рассеяние энергии.

Если в замкнутой системе происходит обратимый процесс, энтропия остается неизменной

dS = 0. (3.5)

Изменение энтропии изолированной системы, которой сообщено бесконечно малое количество тепла, определяется соотношением:

. (3.6)

Это соотношение справедливо для обратимого процесса. Для необратимого процесса, происходящего в замкнутой системе, имеем:

dS > .

В незамкнутой системе энтропия всегда возрастает. Функция состояния, дифференциалом которой является , называется приведенной теплотой .

Таким образом, во всех процессах, происходящих в замкнутой системе, энтропия возрастает при необратимых процессах и остается неизменной при обратимых процессах. Следовательно, формулы (3.4) и (3.5)можно объединить и представить в виде

dS ³ 0.

Это статистическая формулировка второго начала термодинамики .

Если система совершает равновесный переход из состояния 1 в состояние 2, то согласно уравнению (3.6) , изменение энтропии

DS 1- 2 = S 2 – S 1 = .

Физический смысл имеет не сама энтропия, а разность энтропий .

Найдем изменение энтропии в процессах идеального газа. Поскольку:

; ;

,

или: . (3.7)

Отсюда видно, что изменение энтропии идеального газа при переходе из состояния 1 в состояние 2 не зависит от вида процесса перехода 1® 2.

Из формулы (3.7) следует, что при изотермическом процессе (Т 1 = Т 2 ):

.

При изохорном процессе изменение энтропии равно

.

Так как для адиабатического процессаdQ = 0, то иDS = 0, следовательно, обратимый адиабатический процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным процессом .

Энтропия системы обладает свойством аддитивности, это означает, что энтропия системы равна сумме энтропий всех тел, которые входят в систему.

Смысл энтропии становится более понятным, если привлечь статистическую физику. В ней энтропия связывается с термодинамической вероятностью состояния системы . Термодинамическая вероятность W состояния системы равна числу всевозможных микрораспределений частиц по координатам и скоростям, которое обусловливает данное макросостояние: Wвсегда³ 1,то есть термодинамическая вероятность не есть вероятность в математическом смысле .

Л. Больцман (1872 г.) показал, что энтропия системы равна произведению постоянной Больцмана k на логарифм термодинамической вероятности W данного состояния

Следовательно, энтропии можно дать следующее статистическое толкование: энтропия есть мера неупорядоченности системы . Из формулы (3.8) видно: чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. Наиболее вероятное состояние системы – это равновесное состояние. Число микросостояний при этом максимально, следовательно, максимальна и энтропия.

Поскольку все реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению энтропии – принцип возрастания энтропии.

При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении от менее вероятных состояний к более вероятным состояниям до тех пор, пока вероятность состояний не станет максимальной.

Поясним на примере. Представим себе сосуд, разделенный перегородкой на две равные части А и Б . В части А находится газ, а в Б - вакуум. Если сделать отверстие в перегородке, то газ немедленно начнет «сам собою» расширяться и через некоторое время равномерно распределится по всему объему сосуда и это будет наиболее вероятное состояние системы. Наименее вероятным будет состояние, когда большая часть молекул газа вдруг самопроизвольно заполнит одну из половинок сосуда. Этого явления можно ждать сколь угодно долго, однако газ сам по себе не соберется вновь в части А . Для этого нужно совершить над газом некоторую работу: например, как поршень передвинуть правую стенку части Б . Таким образом, любая физическая система стремится перейти из состояния менее вероятного в состояние более вероятное. Равновесное состояние системы – более вероятное.

Используя понятие энтропии и неравенство Р. Клаузиуса, второе начало термодинамики можно сформулировать какзакон возрастания энтропии замкнутой системы при необратимых процессах:

любой необратимый процесс в замкнутой системе происходит так, что система с большей вероятностью переходит в состояние с большей энтропией, достигая максимума в состоянии равновесия. Или иначе:

в процессах, происходящих в замкнутых системах, энтропия не убывает .

Следует обратить внимание на то, что речь идет только о замкнутых системах.

Итак, второй закон термодинамики является статистическим законом. Он выражает необходимые закономерности хаотического движения большого числа частиц, входящих в состав изолированной системы. Однако статистические методы применимы лишь в случае огромного количества частиц в системе. Для малого количества частиц (5-10) этот подход неприменим. В этом случае вероятность пребывания всех частиц в одной половине объема уже не равна нулю или другими словами - такое событие может реализоваться.

Тепловая смерть Вселенной . Р. Клаузиус, рассматривая Вселенную, как замкнутую систему, и, применяя к ней второе начало термодинамики, свел все к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что все формы движения должны перейти в тепловую, в результате чего температура всех тел во Вселенной со временем сравняется, наступит полное тепловое равновесие, и все процессы просто прекратятся: наступит тепловая смерть Вселенной.

Основное уравнение термодинамики. Это уравнение объединяет формулы первого и второго начала термодинамики:

dQ = dU + р dV , (3.9)

Подставимуравнение (3.9), выражающее второе начало термодинамики, в равенство (3.10):

.

Это и есть основное уравнение термодинамики .

В заключение еще раз отметим, что если первый закон термодинамики содержит энергетический баланс процесса, то второй закон показывает его возможное направление.

Третье начало термодинамики

Ещё один закон термодинамики был установлен в процессе исследования изменения энтропии химических реакций в 1906 г. В. Нернстом. Он носит название теорема Нернста или третье начало термодинамики и связан с поведением теплоемкости веществ при абсолютном нуле температур.

Теорема Нернста утверждает, что при приближении к абсолютному нулю энтропия системы также стремится к нулю, независимо от того, какие значения принимают все остальные параметры состояния системы:

.

Поскольку энтропия , а температура Т стремится к нулю, теплоемкость вещества также должна стремиться к нулю, причем быстрее, чем Т . Отсюда следует недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов, то есть конечного числа операций – циклов работы холодильной машины (вторая формулировка третьего начала термодинамики).

Реальные газы

Уравнение Ван-дер-Ваальса

Изменение состояния разреженных газов при достаточно высоких температурах и низких давлениях описывается законами идеального газа. Однако при увеличении давления и понижении температуры реального газа наблюдаются значительные отступления от этих законов, обусловленные существенными различиями между поведением реальных газов и поведением, которое приписывается частицам идеального газа.

Уравнение состояния реальных газов должно учитывать:

· конечное значение собственного объема молекул;

· взаимное притяжение молекул друг к другу.

Для этого Я. Ван-дер-Ваальс предложил включить в уравнение состояния не объем сосуда, как в уравнении Клапейрона-Менделеева (pV = RT ), а объем моля газа, не занятый молекулами, то есть величину (V m - b ), где V m – молярный объем. Для учета сил притяжения между молекулами Я. Ван-дер-Ваальс ввел поправку к давлению, входящему в уравнение состояния.

Внося поправки, связанные с учетом собственного объема молекул (сил отталкивания) и сил притяжения в уравнение Клапейрона-Менделеева, получим уравнение состояния моля реального газа в виде:

.

Это уравнение Ван-дер-Ваальса , в котором постоянные а и b имеют разное значение для разных газов.

Лабораторная работа

Cтраница 1


Сущность второго начала термодинамики до известной степени содержится в фактах, описанных в двух предыдущих параграфах. Очевидно, что они основаны не на отвлеченных представлениях или теоретических выводах, а на результатах непосредственного опыта. Задача заключается в том, чтобы их обобщить и сделать из такого обобщения возможно далеко идущие выводы.  

Сущность второго начала термодинамики и заключается в том, что оно формулирует те условия, в которых происходят превращения энергии в механическую. Второе начало термодинамики имеет смысл только в ограниченной области. Все выводы термодинамики, так же как и все ее основные понятия (теплообмен, температура), имеют смысл только при рассмотрении определенной области явлений.  

Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Из невозможности одного процесса - процесса некомпенсированного перехода тепла в работу - вытекает невозможность бесчисленного множества процессов; невозможны все те процессы, составной частью которых должен был бы явиться некомпенсированный переход тепла в работу.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще велико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Как было выяснено выше, сущность второго начала термодинамики заключается в том, что количество равновесных состояний подавляюще делико по сравнению с числом неравновесных распределений. Однако для вселенной, состоящей из бесконечно большого числа частиц, это утверждение теряет свой смысл. Действительно, как число равновесных состояний, так и число неравновесных состояний становятся бесконечно большими.  

Известно, что в педагогическом отношении строгое изложение сущности второго начала термодинамики и ближайших следствий его - дело, далеко не легкое. Этих трудностей в изложении второго начала не существовало бы, если бы второе начало определяло, как это иногда думают, превращаемость одного вида энергии в другой. В действительности второе начало определенным образом ограничивает превращение одной формы передачи энергии - тепла - в другую форму передачи энергии - в работу.  

Несколько позже мы покажем, что в представлении об энтропии отражена сущность второго начала термодинамики, подобно тому как в представлении о внутренней энергии отражена сущность первого начала.  

Рассмотренными здесь представлениями о двух видах закономерности мы будем руководствоваться далее при изучении всей статистической физики, а также, в частности, при выяснении сущности второго начала термодинамики, которое, как будет показано, является статистическим законом. Соотношение между статистической физикой и обычной термодинамикой основано на принятии статистической закономерности.  

Работы Карно способствовали установлению принципа, позволившего определить наибольший возможный КПД тепловой машины. Сущность второго начала термодинамики, по Клаузиусу, заключается в том, что теплота не может сама по себе перейти от более холодного тела к более теплому.  

Процессы обратимые и необратимые. Кратко резюмируя сущность второго начала термодинамики, можно сказать, что некомпенсированный переход тепла в работу невозможен. Под компенсацией здесь надлежит разуметь изменение термодинамического состояния какого-либо тела или нескольких тел; при этом неизбежное изменение состояния (охлаждение) теплоотдающего тела не принимается в расчет.  

Полное понимание сущности второго начала термодинамики и вместе с этим решение проблемы тепловой смерти пришло на пути глубокого проникновения в сущность понятия теплоты, на пути уточнения основ и развития молекуля-рно-кинетической теории.  

Итак, если бы мы захотели отнять теплоту у более холодного тела и передать ее более нагре тому, то должны были бы затратить на это некоторую дополнительную энергию. Это положение составляет сущность второго начала термодинамики, которое формулируется так: невозможен самопроизвольный переход теплоты от более холодного тела к телу более теплому.  

Особо важную роль играет в термодинамике понятие о так называемой абсолютной температуре. Это понятие-тесно связано с сущностью второго начала термодинамики.  

Следовательно, всегда (при каком угодно числе аргументов) уравнение для элемента тепла голономно. При желании можно считать, что сущность второго начала термодинамики как раз и заключается в том, что между коэффициентами уравнения для элемента теплоты всегда имеется соотношение, обеспечивающее голономность этого уравнения.  

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822 - 1888 гг.) пришел ко второму началу термодинамики и математически сформулировал его. Клаузиус ввел в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.