Второй закон термодинамики называют. Тепловой цикл Карно

Второй закон термодинамики - один из основных законов физики, закон о неспадання энтропии в изолированной системе . Он накладывает ограничения на количество полезной работы , которую может осуществить тепловой двигатель . На основополагающем уровне второй закон термодинамики определяет направление протекания процессов в физической системе - от порядка к беспорядка. Существует много различных формулировок второго закона термодинамики, в целом эквивалентных между собой.


1. Формулировка


2. Альтернативные формулировки

Приведенная формулировка очень формальное. Существует очень много альтернативных формулировок второго закона термодинамики. Например, Планк предложил такую ​​формулировку:

Невозможно построить машину, которая бы работала циклически, охлаждающей же источник тепла или поднимала вверх грузы, не вызывая при этом никаких изменений в природе.

Невозможно превратить теплоту в работу, не выполняя никакой другой действия кроме охлаждения системы.

Природа стремится перейти из состояний с меньшей вероятностью реализации в состояния с большей вероятностью реализации.

Невозможно создать вечный двигатель 2-го рода

Самопроизвольный переход тепла от менее нагретого к более нагретого невозможен

Там где есть разница температур там возможно выполнение работы

Распространены следующие формулировки:

Невозможно построить вечный двигатель второго рода.

Невозможно передать тепло от холодного тела к горячему, не затратив при этом энергию.

Каждая система стремится перейти от порядка к беспорядка.


3. Историческая справка

Второй закон термодинамики был сформульваний в середине 19-го века, в те времена, когда создавалась теоретическая основа для конструирования и построения тепловых машин. Опыты Майера и Джоуля установили эквивалентность между тепловой и механической энергиями (первый закон термодинамики). Возник вопрос об эффективности тепловых машин. Экспериментальные исследования свидетельствовали о том, что часть тепла обязательно теряется при работе любой машины.

В 1850-х, 1860-х годах Клаузиус в ряде публикаций разработал понятие энтропии . В 1865 году он наконец-то выбрал для нового понятия имя. Эти публикации доказали также, что тепло невозможно полностью превратить в полезную работу, сформулировав таким образом второй закон термодинамики.

Статистическую интерпретацию второму закону термодинамики дал Больцман, введя новое определение для энтропии, которое базировалось на микроскопических атомистических представлениях.


4. Статистическая интерпретация

Из статистического определения энтропии очевидно, что рост энтропии соответствует переходу к такому макроскопического состояния, характеризующегося наибольшим значением микроскопических состояний.


5. Стрела времени

Если исходное состояние термодинамической системы неравновесное, то со временем она переходит к равновесному состоянию, увеличивая свою энтропию. Этот процесс протекает только в одну сторону. Обратный процесс - переход от равновесного состояния к начальному неравновесного, не реализуется. То есть, течение времени получает направление.

Законы физики, описывающие микроскопический мир, инвариантные относительно замены t на-t. Данное утверждение справедливо как в отношении законов классической механики, так и законов квантовой механики. В микроскопическом мире действуют консервативные силы, нет трения, которое является диссипацией энергии, т.е. преобразованием других видов энергии в энергию теплового движения, а это в свою очередь связано с законом неспадання энтропии.

Представим себе, например, газ в резервуаре, помещенном в большую резервуар. Если открыть клапан менее резервуара, то газ через некоторое время заполнит больше резервуар таким образом, что его плотность выровняется. Согласно законам микроскопического мира, существует также и обратный процесс, когда газ из большего резервуара соберется в меньшую резервуар. Но в макроскопическом мире такое никогда не реализуется.


6. Тепловая смерть

Если энтропия каждой изолированной системы только увеличивается со временем, а Вселенная изолированной системой, то когда-нибудь энтропия достигнет максимума, после чего любые изменения в нем станут невозможными.

Такие рассуждения, которые появились после установки второго закона термодинамики, получили название тепловой смерти. Эта гипотеза широко дискутировалась в 19-ом столетии.

Каждый процесс в мире приводит к рассеиванию части энергии и перехода ее в тепло, ко все большему беспорядка. Конечно, наша Вселенная еще достаточно молод. Термоядерные процессы в звездах вызывающих постоянный потока энергии на Землю, например. Земля есть и еще долго будет оставаться открытой системой, которая получает энергию из различных источников: от Солнца, от процессов радиоактивного распада в ядре т.д.. В открытых системах, энтропия может уменьшаться, что приводит к появлению различных упорядоченных стуктур.

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.


Министерство образования и науки Российской Федерации

Государственной образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Кафедра Технологии пищевых продуктов и биотехнологии (ТППиБТ)

Реферат

по дисциплине «Техническая термодинамика и теплотехника»

II -ой закон термодинамики или «Тепловая смерть Вселенной»

Выполнил:

студент 3 курса

Ивлев Павел Андреевич

Руководитель:

к т н, доцент, кафедры ПиАХТ

Маркичев Николай Аркадьевич

Иваново 2010 г.

Введение__________________________________________________________________ 3

Часть 1. Второй закон термодинамики.

1.1. Второй закон термодинамики. Характеристика и формулировка._______________4

Часть 2. Энтропия

2.1. Понятие энтропии.______________________________________________________5

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.______________5

2.3 Возможность энтропии во Вселенной.______________________________________6

Часть 3. Теория «тепловой смерти» Вселенной

3.1. Появление идеи Теории «тепловой смерти» Вселенной._______________________8

3.2. Взгляд на Теорию «тепловой смерти» Вселенной из ХХ века.__________________9

3.3 «За» и «против» Теории «тепловой смерти» Вселенной_______________________10

Заключение_______________________________________________________________16

Список, использованной в работе литературы __________________________________17

Введение:

В данной работе поднимаеться проблема о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти», причиной которой являеться Второй закон термодинамики и истекающие из него выводы.

Часть1. Второй закон термодинамики

      Второй закон термодинамики. Характеристика и формулировка:

Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических поцессов.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами. Он гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют формулировоки:

- передача теплоты от холодного источника к горячему невозможна без затраты работы;

- невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар;

- природа стремится к переходу от менее вероятных состояний к более вероятным.

Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки:

невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.).

В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов.

М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника.

Часть 2. Энтропия

2.1 Понятие энтропии.

Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией , определяющей меру обесценения энергии.

Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии.

Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов:

Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов:

.

Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка

2.2. Закон возрастания энтропии. Вывод закона возрастания энтропии.

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

Рисунок 1. Необратимый круговой термодинамический процесс

Пусть процесс 1-2 будет необратимым, а 2-1 процесс - обратимым. Тогда неравенство Клаузиуса для этого случая примет вид

Так как процесс 2-1 является обратимым, тогда

Подстановка этой формулы в неравенство (1) позволяет получить выражение

Сравнение выражений (1) и (2) позволяет записать следующее неравенство

в котором знак равенства имеет место в случае, если процесс 1-2 является обратимым, а знак больше, если процесс 1-2 - необратимый.

Неравенство (3) может быть также записано и в дифференциальной форме

Если рассмотреть адиабатически изолированную термодинамическую систему, для которой, то выражение (4) примет вид

или в интегральной форме

Полученные неравенства выражают собой закон возрастания энтропии, который можно сформулировать следующим образом:

В адиабатически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

2.3 Возможность энтропии во Вселенной

В адиабтически изолированной термодинамической системе энтропия не может убывать: она или сохраняется, если в системе происходят только обратимые процессы, или возрастает, если в системе протекает хотя бы один необратимый процесс.

Записанное утверждение является ещё одной формулировкой второго начала термодинамики.

Таким образом, изолированная термодинамическая система стремится к максимальному значению энтропии, при котором наступает состояние термодинамического равновесия.

Необходимо отметить, что если система не является изолированной, то в ней возможно уменьшение энтропии. Примером такой системы может служить, например, обычный холодильник, внутри которого возможно уменьшение энтропии. Но для таких открытых систем это локальное понижение энтропии всегда компенсируется возрастанием энтропии в окружающей среде, которое превосходит локальное ее уменьшение.

С законом возрастания энтропии непосредственно связан парадокс, сформулированный в 1852 году Томсоном (лордом Кельвином) и названый им гипотезой тепловой смерти Вселенной. Подробный анализ этой гипотезы был выполнен Клаузиусом, который считал правомерным распространение на всю Вселенную закона возрастания энтропии. Действительно, если рассмотреть Вселенную как адиабатически изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Часть 3. Теория «тепловой смерти» Вселенной.

Тепловая смерть Вселенной (Т.С.В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы.

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. ... , «Аналитики» (I и II ) и др.; 3) ... закон исключенного тетьего (А или не – А, т.е. или А истинно, или ... очки" ... тепловой смерти Вселенной . Неуничтожимость материи нельзя понимать только в количественном отношении. Законы ... законы Кеплера, законы термодинамики , законы ...

  • Коцепции физики

    Реферат >> Физика

    Гидростатика Архимеда (III- II в. до н.э.) ... XIII веке очков , но... или начал, являющихся обобщением результатов многочисленных наблюдений и экспериментов. б) Первое начало термодинамики (закон ... формированию концепции "тепловой смерти" вселенной . Ее суть...

  • В физике, так как она является точной наукой, большинство догм доказывается эмпирическим путем. Именно таким образом был выведен второй закон термодинамики, который сегодня изучается в каждой школе. Необратимость тепловых процессов - вот о чем он говорит. Стоит отметить, что на начальных этапах изучения такая трактовка куда более понятна.

    Общие представления

    Физическим принципом, который ограничивает направления различных процессов в термодинамических системах, является второй закон термодинамики. Определение данного термина было сформировано в 19 столетии, сначала Рудольфом Клаузисом, а затем Уильямом Томсоном (лордом Кельвином). В соответствии с двумя постулатами в мире не может существовать некий вечный двигатель второго рода. Нет и не будет такой установки, которая бы тепло, исходящее от всех вещей, живых существ и явлений, превращала в энергию для своей постоянной работы. Исходя из этого было выведено правило, что КПД не может равняться единице. Сравнить это можно с работой холодильника, где температура, допустим, будет равна абсолютному нулю. В таких условиях круговой обмен теплом исключен.

    Формулировка Рудольфа Клаузиса

    Первым озвучил второй закон термодинамики Р. Клаузис - немецкий физик-практик и математик. По его словам, круговой процесс, в котором результат достигается путем передачи теплоты от менее нагретого тела к более нагретому, невозможен. Иными словами, температура в полной или частичной мере может свободно переходить от более теплого тела к более охлажденному, но в обратном направлении этот процесс происходить не сможет. Это наглядным образом демонстрирует нам отсутствие цикличности, замкнутого круга. Такие понятия неприемлемы для термодинамики. Между телами просто происходит обмен теплом, и в результате этих действий не производится лишняя энергия.

    Постулат, выведенный лордом Кельвином

    Аналогичное определение второй закон термодинамики получил в трудах Томсона - британского физика и механика. Теоретически он звучит так: «Циклический процесс, единственным результатом которого могла бы быть работа, получаемая путем охлаждения теплого тела или резервуара, невозможен». Чтобы понять более ясно такую трактовку, представим себе некую машину (в соответствии с термодинамическим постулатом она существовать не может). Она периодически охлаждает резервуар с постоянно горячей водой, получая от этого тепловую энергию. За счет этой энергии машина поднимает различные грузы, как строительный кран. При этом в ней нет мотора, силовых установок и прочего механического наполнения. В точки зрения эмпирической физики такое невозможно.

    Что общего?

    Теперь рассмотрим, каким образом эти две трактовки объединяются и на что в принципе опирается второй закон термодинамики. Энтропия - та самая мера хаоса, которая увеличивается в процессе обмена теплом. Именно она является связующим элементом для описания Клаузиса и Кельвина. Но вернемся немного назад. Второе начало термодинамики гласит, что при обмене теплом энергия убывает (потому получение работы никак не возможно), но при этом мера хаоса увеличивается. Этот процесс необратимый, и часто его называют стихийным. В термодинамике энтропия постоянно приумножается, но ее уничтожение невозможно. Именно поэтому даже 100 процентов энергии, которые находятся в любом теле, не могут преобразоваться в работу.

    Что такое мера хаоса?

    Само понятие энтропии впервые было сформулировано устами Клаузиса. Оно применялось для определения меры необратимого процесса рассеивания энергии. Это была своего рода разница отклонения реального процесса от идеального. Энтропия в замкнутых системах, где любые процессы происходят циклично, имеет постоянную величину. Если же процесс необратимый (что непосредственно касается термодинамики), то энтропия всегда имеет положительное значение. Также стоит выделить, что мера хаоса порождается абсолютно всеми процессами, которые происходят во Вселенной. При постоянных показателях объема и энергии какого-либо тела или резервуара энтропия постоянно возрастает. Если данные показатели периодически меняются, то мера хаоса может уменьшиться за счет производимой работы, но ее полное уничтожение невозможно. При этом стоит отметить, что энтропия Вселенной не уменьшается. Она остается либо в норме, либо безвозвратно увеличивается.

    Наглядный пример

    Второй закон термодинамики можно объяснить на стандартном примере, который часто приводят школьникам. У нас есть два тела с различной температурой. Более нагретая субстанция будет отдавать свое тепло менее нагретой до тех пор, пока их температурные показатели не сравняются. В ходе данного процесса энтропия у первого, более теплого тела уменьшится на меньший показатель, нежели она увеличится у второго, более прохладного тела. В результате подобный самопроизвольный процесс создаст энтропию системы, показатель которой будет выше, чем суммарное значение энтропий двух тел в первоначальном положении. Иными словами, мера хаоса системы двух субстанций, полученная в результате обмена теплом, увеличилась.

    Тепловая смерть Вселенной

    Проводя свои расследования, Клаузис пришел к выводу, что каким бы открытым нам ни казалось пространство (наша планета, ее отдельные территории, акватории и т.д.), все это находится в космосе. Вселенная, в свою очередь, является огромнейшим замкнутым пространством, в рамках которого происходят макроскопические процессы. В силу того, что в замкнутой системе энтропия постоянно увеличивает свой показатель, наш мир близится к тому, что скоро в нем мера хаоса достигнет бесконечной величины. Это значит, что все процессы попросту прекратятся за счет того, что энергия исчерпает себя. Такая критическая точка, которой мы достигнем, возможно, в неком будущем, получила название тепловой смерти. Получается, что все наши действия (движения, ходьба, бег), все явления, которые происходят на планете (дуновение ветра, цунами, движения литосферных плит), - все это вызывает необратимое увеличение энтропии и исчерпывает энергию.

    Опровержение теории

    Судить обо всем космосе человек до сих пор не может. Мы видим лишь часть мира, в котором живем, и исследуем этот уголок, доказывая определенные законы и формируя на основе этого свои представления. Потому первое опровержение возможности тепловой смерти, которая основана на втором законе термодинамики, заключается в том, что Вселенная может и не быть замкнутой системой. Доподлинно известно, что 85 процентов космоса состоит из антиматерии, свойства которой никому неизвестны. Второе опровержение заключается в том, что наш космос, даже если и замкнут, является сплошной флуктуацией. Из-за различных колебаний и смен размеров, масс, показателей энергии и температуры энтропия не увеличивается (в суммарном, вселенском значении) и не уменьшается. Следовательно, мы и так пребываем в состоянии термодинамического равновесия, или же, словами Клаузиса, в состоянии тепловой смерти.

    Подводим итоги

    Второй закон термодинамики неразрывно связан с развитием точных наук. Он был открыт на заре научно-технического прогресса и стал, можно сказать, отправной точкой для дальнейших работ ученых в области математики, физики и астрономии. Стоит отметить, что все это мы представляем сугубо в земных условиях. Вполне вероятно, что в другой среде, где гравитационные поля имеют иную силу, термодинамика будет работать по совсем другой схеме.

    Определение второго закона термодинамики (2 формулировки):

    Формулировка Кельвина и Планка Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

    Формулировка Клаузиуса Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

    Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

    Второй закон связан с понятием энтропии (S ).

    Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

    Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

    • 100% энергии не может быть преобразовано в работу
    • Энтропия может вырабатываться, но не может быть уничтожена

    Формулировки второго закона термодинамики

    Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

    \[\int^{(1)}_{(2)\ L}{\dfrac{\delta Q}{T}=\int^{(1)}_{(2)}{dS}}=S_1-S_2\le 0 \qquad (1),\]

    где S – энтропия; L – путь по которому система переходит из одного состояния в другое.

    В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

    Рост энтропии в замкнутой системе при необратимых процессах - это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

    где k – постоянная Больцмана; w – термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

    Эффективность теплового двигателя

    Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

    \[ \eta = \dfrac{T_h - T_c}{T_h} = \frac{1 - T_c }{T_h} \]

    где: η - эффективность, T h - верхняя граница температуры (K), T c - нижняя граница температуры (K)

    Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

    • Изменение энтропии > 0 Необратимый процесс
    • Изменение энтропии = 0 Двусторонний процесс (обратимый)
    • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

    Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

    Определение энтропии

    Энтропия определяется как:

    \[ S = \dfrac{H}{T} \]

    где: S = энтропия (кДж/кг*К), H - энтальпия> (кДж/кг), T = абсолютная температура (K)

    Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (T a ):

    \[ dS = \frac{dH}{T_a} \]

    Сумма значений (H / T) для каждого полного цикла Карно равна 0 . Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H .

    Тепловой цикл Карно

    Цикл Карно— идеальный термодинамический цикл.

    В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая:

    Положение 1 -- (изотермическое расширение) → Положение 2 -- (адиабатическое расширение) → Положение 3 --(изотермическое сжатие) → Положение 4 --(адиабатическое сжатие) → Положение 1

    Положение 1 - Положение 2: Изотермическое расширение Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS

    Положение 2 - Положение 3: Адиабатическое расширение Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

    Положение 3 - Положение 4: Изотермическое сжатие Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS

    Положение 4 - Положение 1: Адиабатическое сжатие Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

    При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

    Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

    Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

    Энтропия адиабатически изолированной системы не меняется!

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!