Чертежи на тему многогранники и тела вращения. Многогранники

Цилиндр называется описанным около призмы , если окружности оснований цилиндра описаны около оснований призмы, а боковые ребра призмы являются образующими цилиндра. Призма соответственно называется вписанной в цилиндр.

Теорема . Для того чтобы около призмы можно было описать цилиндр, необходимо и достаточно, чтобы призма была прямая и около ее основания можно было описать окружность.

Цилиндр называется вписанным в призму , если окружности его оснований вписаны в основания призмы, а боковая поверхность касается боковых граней призмы.

Теорема . Для того чтобы в призму можно было вписать цилиндр, необходимо и достаточно, чтобы призма была прямая и в ее основание можно было вписать окружность.

Конус называется описанным около пирамиды , если окружность основания конуса описана около основания пирамиды, а боковые ребра пирамиды являются образующими конуса. Пирамида соответственно называется вписанной в конус.

Теорема . Для того чтобы около пирамиды можно было описать конус, необходимо и достаточно, чтобы боковые ребра пирамиды были равны.

Конус называется вписанным в пирамиду , если окружность его основания вписана в основание пирамиды, а боковая поверхность касается боковых граней пирамиды. Пирамида соответственно называется описанной около конуса.

Теорема . Для того чтобы в пирамиду можно было вписать конус, необходимо и достаточно, чтобы в основание пирамиды можно было вписать окружность, а вершина пирамиды ортогонально проектировалась в центр этой окружности.

Пример 1. Шар вписан в прямую призму, основанием которой является прямоугольный треугольник с катетом a и противолежащим ему острым углом α . Найти объем призмы.

Решение. Сделаем рисунок (рис. 12.48). Шар вписан в прямую призму, значит, высота призмы равна диаметру шара, а в треугольник основания вписана окружность, радиус которой равен радиусу шара. Рассмотрим прямоугольный треугольник ABC , у которого катет BC = a , противолежащий ему ÐBAC = α . Найдем катет AC и гипотенузу AB :


Площадь треугольника ABC равна:

Вычислим радиус окружности, вписанной в треугольник:

Вычисляем объем призмы по формуле

Получаем ответ:

Пример 2 . Боковое ребро правильной четырехугольной пирамиды равно a. Двугранный угол, образованный смежными боковыми гранями, равен β . Найти радиус шара, описанного около этой пирамиды.

Решение. Сделаем рисунок (рис. 12.49): ABCD – квадрат, SO – высота пирамиды, ÐAEC = b – двугранный угол.

Рассмотрим диагональное сечение пирамиды – треугольник SBD (SB = SD ). Радиусом шара, описанного около данной пирамиды, будет радиус окружности, описанной около треугольника SBD . Найдем его по формуле


Из подобия треугольников (ÐSOB = ÐSEO = 90°, ÐBSO = ÐOSE ) следует пропорциональность сторон: SB /SO = BO /OE .

Из треугольника найдем Так как АО = ВО , то Следовательно,

Вычисляем радиус окружности:

Получаем ответ:

Пример 3. В усеченный конус вписан шар радиуса R . Образующая конуса наклонена к плоскости основания под углом a . Найти объем усеченного конуса.

Решение. Рассмотрим осевое сечение конуса (рис. 12.50).


Введем обозначения: R 1 – радиус нижнего основания конуса, R 2 – радиус верхнего основания. Высота данного усеченного конуса будет равна диаметру вписанного в него шара 2R . Рассмотрим прямоугольный треугольник ABC : ÐB = 90°, ÐA = a , BC = 2R . Найдем катет BA и гипотенузу AC : BA = BC × ctga , Так как в усеченный конус вписан шар, то образующая этого конуса равна сумме радиусов его оснований. Получим равенство:

Заметим, что

Решив систему найдем

Вычисляем объем усеченного конуса по формуле (12.8).

Получаем ответ:

Пример 4 . В шар радиуса R вписан конус, образующая которого составляет с плоскостью основания угол φ . Найти площадь полной поверхности конуса.

Решение. Для вычисления площади полной поверхности конуса необходимо знать радиус основания и образующую конуса. Рассмотрим осевое сечение данного конуса – равнобедренный треугольник SAB : SA = SB – образующие, SD – высота, DB – радиус основания конуса (рис. 12.51).


По условию задачи ÐSAD = φ , следовательно, Треугольник AOS – равнобедренный (AO = OS = R ), поэтому Внешний угол этого треугольника при вершине О равен: ÐAOD = ÐSAO + ÐASO = p – 2j .

Из треугольника AOD D = 90°, AO = R , ÐAOD = p – 2j ) выразим AD :

Из треугольника ASD D = 90°, AD = R sin 2j ) выразим SA :

Подставив найденные выражения в формулу для вычисления площади полной поверхности конуса, получим:

Таким образом,

Пример 5 . В прямой параллелепипед вписан цилиндр, объем которого в m раз меньше объема параллелепипеда. Найти двугранные углы при боковых ребрах параллелепипеда.

Решение. Двугранными углами при боковых ребрах данного параллелепипеда являются углы параллелограмма, лежащего в его основании. В параллелепипед вписан цилиндр, значит, в параллелограмм основания вписана окружность. Если в четырехугольник вписана окружность, то суммы длин противолежащих сторон четырехугольника равны. Таким образом, основанием параллелепипеда является ромб. Сделаем рисунок (рис. 12.52).


Обозначим искомый угол a . Из треугольника ABC C = 90°, ÐA = a ) найдем сторону ромба AB и его высоту BC :

Так как высоты цилиндра и параллелепипеда равны, то площадь основания цилиндра будет в m раз меньше площади основания параллелепипеда. Запишем равенство: и выразим из него далее

Двугранные углы при боковых ребрах параллелепипеда будут равны:

И

Задания

I уровень

1.1. В правильную четырехугольную пирамиду с объемом вписан конус. Найдите его объем.

1.2. В конус, образующая которого наклонена к плоскости основания под углом a , вписана пирамида. Основание пирамиды – прямоугольный треугольник с катетами 3 см и 4 см. Найдите объем пирамиды, если

1.3. Около цилиндра описана правильная четырехугольная призма, периметр основания которой равен 12 см, а площадь боковой поверхности равна 48 см 2 . Найдите площадь полной поверхности цилиндра.

1.4. В равносторонний цилиндр, диагональ осевого сечения которого равна вписана правильная шестиугольная призма. Вычислите площадь боковой поверхности призмы.

1.5. Усеченный конус описан около правильной треугольной усеченной пирамиды. Радиус верхнего основания в 2 раза меньше радиуса нижнего основания конуса, высота равна 4 см, а образующая – 5 см. Найдите площадь боковой поверхности усеченной пирамиды.

1.6. В куб вписан шар и около куба описан шар. Найдите отношение объемов этих шаров.

1.7. В сферу вписан цилиндр. Площадь основания цилиндра равна 16p см 2 , тангенс угла наклона диагонали его осевого сечения к плоскости основания равен 3. Найдите площадь сферы.

1.8. В конус, площадь боковой поверхности которого в 2 раза больше площади основания, вписан шар. Найдите радиус шара, если образующая конуса равна 8 см.

1.9. В цилиндрическую мензурку, диаметр которой 2,5 см, заполненную водой до некоторого уровня, опускают четыре равных металлических шарика диаметром 1 см. Определите, на сколько изменится уровень воды в мензурке.

1.10. Основания шарового слоя и цилиндра совпадают. Объем тела, заключенного между их боковыми поверхностями, равен 36p см 3 . Найдите высоту шарового слоя.

II уровень

2.1. Равносторонний треугольник, сторона которого равна а , вращается вокруг внешней оси, параллельной его высоте и удаленной от нее на Найдите площадь поверхности полученного тела вращения.

2.2. Усеченный конус вписан в четырехугольную усеченную пирамиду, основание которой – ромб со стороной а и углом a . Площадь боковой поверхности пирамиды равна S , боковые грани наклонены к основанию пирамиды под углом b . Найдите объем усеченного конуса.

2.3. В правильной треугольной призме боковое ребро равно стороне основания. Около призмы описан шар, а около шара описан конус. Образующая конуса равна l и составляет с плоскостью основания угол a . Найдите объем призмы.

2.4. В пирамиде, все боковые грани которой равнонаклонены к плоскости основания, через центр вписанного шара проведена плоскость, параллельная плоскости основания. Отношение площади сечения пирамиды этой плоскостью к площади основания равно k . Найдите угол между боковой гранью и основанием пирамиды.

2.5. В шар радиуса R вписаны два конуса с общим основанием. Вершины конусов совпадают с противоположными концами диаметра шара. Шаровой сегмент, вмещающий меньший конус, имеет в осевом сечении дугу a . Найдите расстояние между центрами шаров, вписанных в эти конусы.

2.6. Шар касается всех боковых ребер правильной четырехугольной призмы и ее оснований. Найдите отношение площади поверхности шара, лежащей вне призмы, к площади полной поверхности призмы.

2.7. В правильную четырехугольную пирамиду вписан равносторонний цилиндр так, что одна из его образующих расположена на диагонали основания пирамиды, а окружность основания касается двух смежных боковых граней пирамиды. Найдите радиус основания цилиндра, если боковое ребро пирамиды равно b , а угол его наклона к плоскости основания равен a .

2.8. Ребро тетраэдра равно 8 см. Цилиндрическая поверхность проходит через одно из его ребер и через все его вершины. Найдите радиус основания цилиндра.

2.9. Ребра треугольной пирамиды, выходящие из вершины S , попарно перпендикулярны и равны a , b и c . Найдите объем куба, вписанного в пирамиду так, что одна из его вершин совпадает с вершиной S пирамиды.

2.10. В усеченный конус вписан шар, объем которого составляет объема конуса. Найдите угол наклона образующей к плоскости нижнего основания конуса.

III уровень

3.1. Боковое ребро правильной треугольной пирамиды равно b и образует с плоскостью основания угол α . В пирамиду вписан равносторонний цилиндр так, что его нижнее основание лежит в плоскости основания пирамиды. Найдите высоту цилиндра.

3.2. Сфера с центром в вершине конуса касается его основания и делит поверхность конуса на две части, имеющие равные площади. Найдите угол при вершине осевого сечения конуса.

3.3. В куб, ребро которого равно a , вписан конус с углом между образующими в осевом сечении, равным α . Найдите длину образующей и радиус основания конуса, если его высота лежит на диагонали куба.

3.4. Шар касается трех граней куба, содержащих одну вершину, и проходит через вершину куба, противолежащую первой. Найдите радиус шара, если ребро куба равно a .

3.5. Цилиндр завершен сверху полушаром. Объем тела равен 45π . При каком радиусе полушара полная поверхность тела будет наименьшей?

3.6. В конус с радиусом основания R и высотой H вписан цилиндр. Найдите линейные размеры цилиндра, при которых его объем будет наибольшим.

3.7. Найдите наибольший объем правильной шестиугольной пирамиды вписанной в шар, радиус которого равен R .

3.8. В правильную четырехугольную пирамиду вписан цилиндр так, что окружность его верхнего основания касается всех боковых граней пирамиды, а нижнее основание лежит в плоскости основания пирамиды. Какую часть высоты пирамиды должна составлять высота цилиндра, чтобы объем цилиндра был наибольшим?

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Многогранники и тела вращения

В рамках УСП «Первые шаги в пространство»

Команда «Морские котики», г.Новокузнецк


"Морские котики"?

Морские котики не только милые, но ещё и очень умные. Они легко обучаемы. У котиков великолепная встроенная навигационная система. Несмотря на то, что это стайные животные, морские котики уходят на охоту в одиночку и вообще проявляют индивидуализм. Мы назвали себя этими животными, потому что мы хотим во многом быть похожими на них, быть смелыми и умными, ведь часто этих животных недооценивают.


Девиз команды:

Мы-морские котики, Активны и умны, Наш девиз всего три слова, Улыбаться это клево!


Стихи о геометрических фигурах

Есть на свете пирамида –

Удивительный объект,

Ее строили в Египте,

А вот как для всех секрет.

Вот хожу я по квартире и смотрю вокруг себя, И по всюду окружают тела вращения меня. На окне стоит игрушка в виде конуса она. А вот банка из-под чая форму цилиндра приняла.


Стоит на кухне холодильник По форме он параллелепипед. Как у квадрата у него Шесть граней на лицо, Однако есть отличия

У куба грани равные,

А у него противоположные.

Признаюсь вам призма, Ну очень капризна. Скажу без обмана Но так многогранна (автор Наталья У.)

А лучшая фигура-куб!

Поставлю я на кон свой зуб

И грани все и ребра в нем,

Прямо под прямым углом


Многогранники и тела вращения в объектах окружающего мира

Гипотеза: Во многих предметах окружающего мира, можно увидеть многогранники и тела вращения


Многогранник -

Геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников.


Призма -

Многогранник, две грани которого n-угольники, а остальные грани - параллелограммы.


Параллелепипед -

Призма основаниями которой служат параллелограммы.


Куб -

Прямоугольный параллелепипед с равными измерениями. Все грани куба – равные квадраты.


Пирамида -

Многогранник, основание которого многоугольник, а остальные грани – треугольники, имеющие общую вершину.


Усеченная пирамида -

Многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.


Тела вращения -

Объемные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.


Цилиндр -

Фигура, полученная при вращении прямоугольника вокруг оси, содержащей его сторону.


Конус -

Фигура, полученная при вращении прямоугольного треугольника вокруг оси.






Вывод

В ходе исследования мы подтвердили свою гипотезу и убедились, что многие объекты окружающего нас мира имеют форму тел вращения и многогранников.



Гипотеза:

НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ МИРОМ ИСКУССТВА

И МИРОМ ГЕОМЕТРИИ.


Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия»

на переднем плане

изобразил каменный многогранник .


Голландский художник Мориц Корнилис Эшер (1898-1972) создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей.

Правильные геометрические тела - многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов.


"Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.


Изящный пример звездчатого додекаэдра можно найти в его работе "Порядок и хаос". В данном случае звездчатый многогранник помещен внутрь стеклянной сферы. Аскетичная красота этой конструкции контрастирует с беспорядочно разбросанным по столу мусором.

Наиболее интересная работа Эшера - гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров.

Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.


На картине «Гравитация» изображён додекаэдр , образованный двенадцатью плоскими пятиконечными звёздами. На каждой из площадок живёт длинношеее четырёхногое бесхвостое фантастическое животное; его туловище находится в пирамиде, в отверстия которой оно высовывает конечности, верхушка пирамиды является одной из стен жилища соседнего чудовища .


На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра.

Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ, т.е. они считали, что мы живём внутри свода, имеющего форму поверхности правильного додекаэдра.



Вывод:

ГИПОТЕЗА ДОКАЗАНА, ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ, МНОГОГРАННИКИ ЯВЛЯЮТСЯ НЕОТЪЕМЛЕМОЙ ЧАСТЬЮ ГЕОМЕТРИИ. НА ПРИМЕРЕ РАБОТ ВЕЛИКИХ ХУДОЖНИКОВ МЫ ДОКАЗАЛИ, ЧТО НЕ СУЩЕСТВУЕТ ГРАНИ МЕЖДУ ИСКУССТВОМ И ГЕОМЕТРИЕЙ.


Какой вклад вносит геометрия в развитие культуры человека?

Искусство - это особый способ познания и отражения действительности. Искусство развивает духовную культуру человека. Проанализировав работы великих художников мы без сомнений можем сказать, что не существует границы между миром искусства и миром геометрии. А значит геометрия так же развивает интеллектуальные, творческие способности человека, образное и пространственное мышление, поэтому данная наука является неотъемлемой частью культуры человека.


Ментальная карта «Многогранники и тела вращения в продукции предприятий моего города»


Где живет геометрия в Вашем городе?

Геометрия в Нашем городе живет по всюду!!! На какое архитектурное сооружение не посмотри, в нем обязательно присутствуют многогранники и тела вращения. Собранные вместе в одном сооружении они создают уникальные, неповторимые, гениальные здания!!!



Используемая литература:

  • http://www.uzluga.ru/potrb/Многогранник+–+это+такое+тело,поверхность+которого+состоит+из+конечного+числа+плоских+многоугольниковb/part-5.html
  • http://kamensky.perm.ru/proj/mng/01.htm
  • http://www.liveinternet.ru/tags/%FD%F8%E5%F0/page3.html
  • http://www.distedu.ru/mirror/_math/www.tmn.fio.ru/works/26x/304/d9_3.htm
  • https://ru.wikipedia.org/wiki/Эшер,_Мауриц_Корнелис
  • http://www.propro.ru/graphbook/graphbook/book/001/027.htm
  • http://math4school.ru/mnogogranniki.html

Многогранником называется тело, ограниченное со всех сторон плоскостями. Элементы многогранника: грани, рёбра, вершины. Совокупность всех рёбер многогранника называется его сеткой. Многогранник называется выпуклым, если весь он лежит по одну сторону от плоскости любой его грани; при этом его грани являются выпуклыми многоугольниками. Для выпуклых многогранников Леонардом Эйлером предложена формула:

Г+В-Р=2, где Г-число граней; В – число вершин; Р – число рёбер.

Среди множества выпуклых многогранников наибольший интерес представляют правильные многогранники (тела Платона), пирамиды и призмы. Многогранник называется правильным, если все его грани являются равными правильными многоугольниками. К ним относятся (рис. 26): а - тетраэдр; б - гексаэдр (куб); в - октаэдр; г - додекаэдр; д - икосаэдр.

а) б) в) г) д)

Рис. 26

Параметры правильных многогранников (рис. 26)

Правильный многогранник (тело Платона) Число Угол между смежными рёбрами, град.
граней вершин рёбер сторон у каждой грани Число рёбер у каждой вершины
Тетраэдр 4 4 6 3 60 3
Гексаэдр (куб) 6 8 12 4 90 3
Октаэдр 8 6 12 3 60 4
Додекаэдр 12 20 30 5 72 3
Икосаэдр 20 12 30 3 60 5

Из таблицы видно, что число граней и вершин у куба и октаэдра соответственно составляет 6, 8 и 8, 6. Это позволяет вписывать (описывать) их в друг друга до бесконечности (рис. 27).

Большую группу составляют, так называемые, полуправильные многогранники (тела Архимеда). Это выпуклые многогранники, у которых грани являются правильными многоугольниками разных типов. Тела Архимеда это усечённые тела Платона. Внешний вид некоторых из них представлены на рис. 28, а ниже их параметры в таблице.




а) б) в) г)

Рис. 27 Рис. 28

Параметры полуправильных многогранников (рис. 28)

Многогранник может занимать общее положение в пространстве, или же его элементы могут быть параллельными и (или) перпендикулярными к плоскостям проекций. Исходными данными для построения многогранника в первом случае служат координаты вершин, во втором ─ его размеры. Построение проекций многогранника сводится к построению проекций его сетки. Наружный очерк проекции многогранника называют контуром тела.

Призма

─ выпуклый многогранник, боковые рёбра которого параллельны между собой. Нижняя и верхняя грани ─ равные многоугольники, определяющие количество боковых рёбер, называются основаниями призмы. Призма называется правильной, если в основании правильный многоугольник, и прямой, если боковые рёбра перпендикулярны к основанию. В противном случае призма наклонная. Боковые грани прямой призмы прямоугольники, а наклонной ─ параллелограммы. Боковая поверхность прямой призмы относится к проецирующим объектам и вырождается в многоугольник на перпендикулярную боковым рёбрам плоскость проекций. Проекции точек и линий, расположенных на боковой поверхности призмы, совпадают с её вырожденной проекцией.

Типовая задача 3 (рис. 29): Построить комплексный чертёж прямой призмы с размерами: l- сторона основания (длина призмы); b- высота равнобедренного треугольника основания (ширина призмы); h- высота призмы. Определить положение рёбер и граней относительно плоскостей проекций. На гранях ABB’A’ и ACC’A’ задать фронтальные проекции соответственно точки M и прямой n и построить их недостающие проекции.

1. Мысленно располагаем многогранник в системе плоскостей проекций так, чтобы его основание D ABC║P 1 ;а ребро АС║P 3 (рис. 29, а).

2. Мысленно вводим базовые плоскости: S║P 1 и совпадающую с основанием (D ABC); D║P 2 и совпадающую с задней гранью АСС’А’. Строим базовые линии S 2 , S 3 , D 1 , D 3 (рис. 29, б).

3. Строим горизонтальную, затем фронтальную и, наконец, профильную проекции призмы, используя базовые линии D 1 , D 3 (рис. 29, в).

Рёбра: АВ, ВС ─ горизонтали; АС ─ профильно-проецирующая; AS, SC, SB ─ горизонтально-проецирующие. Грани: ABC A"B’C’ ─ горизонтальные уровня; ABВ’А’, BCС’В’ ─ горизонтально-проецирующие; ACC"А’ ─фронтальная уровня..

5. Построение горизонтальных проекций точек, лежащих на боковых гранях призмы, выполняем с использованием собирательного свойства проецирующего объекта: все проекции точек и линий, расположенных на боковой поверхности призмы, совпадают с её вырожденной (горизонтальной) проекцией. Профильные проекции точек (например М) строим откладывая по горизонтальным линиям связи их глубины (Y M) от D 3 , которые измеряются на горизонтальной проекции от D 1 (см. также с. 8, 17). На прямой n задаём точки 1, 2 и строим эти точки на поверхности призмы, аналогично точке М. Определяем видимость методом конкурирующих точек. Выполнение задания "Призма с вырезом" см. в .


а) б) в)

Рис. 29

Пирамида

многогранник, одной из граней которого является многоугольник (основание пирамиды), определяющий число боковых граней, а остальные грани (боковые) ─ треугольники с общей вершиной, называемой вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми рёбрами. Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды. Пирамида правильная, если в основании правильный многоугольник и прямая, если вершина проецируется в центр основания. Боковые рёбра правильной пирамиды равны, а боковые грани являются равнобедренными треугольниками. Высота боковой грани правильной пирамиды называется апофемой. Если вершина пирамиды проецируется вне её основания, - то пирамида наклонная.

Типовая задача 4 (рис. 30-32): Построить комплексный чертёж прямой правильной пирамиды с размерами: l- сторона основания (длина); b- высота треугольника основания (ширина); h- высота пирамиды. Определить положение рёбер и граней относительно плоскостей проекций. Задать фронтальную и горизонтальные проекции точек M и N принадлежащих соответственно граням ASB и ASC и построить их недостающие проекции.

1. Мысленно располагаем многогранник в системе плоскостей проекций так, чтобы его основание D ABC║P 1 ;а ребро АС║P 3 (рис. 31).

2. Мысленно вводим базовые плоскости: S║P 1 и совпадающую с основанием (D ABC);

D║P 2 и совпадающую с ребром АС. Строим базовые линии S 2 , S 3 , D 1 , D 3 (рис. 32) .

3. Строим горизонтальную, затем фронтальную и, наконец,

профильную проекции пирамиды (см. рис. 32).

4. Анализируем положение рёбер и граней на комплексном чертеже пирамиды, учитывая исходные данные и классификаторы положения прямых и плоскостей (с. 11,14).

Рёбра: АВ, ВС ─ горизонтали; АС ─ профильно-проецирующая; AS, SC ─ общего положения; SB ─ профильная уровня. Грани: ASB, BSC ─ общего положения; ABC ─горизонтальная уровня; ASC ─ профильно-проецирующая.

5. Построение недостающих проекций точек, лежащих на гранях пирамиды, выполняем с использованием признака «принадлежности точек плоскости». В качестве вспомогательных прямых используем горизонтали или произвольные прямые. Профильные проекции точек строим откладывая по горизонтальным линиям связи глубины точек (в направлении оси Y), которые измеряются на горизонтальной проекции (см с. 8, 17).


Рис. 30 Рис. 31 Рис. 32

«Многогранники в геометрии» - Первый вел от фигур высшего порядка к фигурам низшего. Поверхность многогранника состоит из конечного числа многоугольников (граней). У прямоугольного параллелепипеда все грани прямоугольники. В ХI книге “Начал” изложены среди других и теоремы следующего содержания. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.

«Построение многогранников» - У додекаэдра: 12 граней, 20 вершин и 30 ребер. Платон родился в Афинах. Существует пять типов правильных многогранников. Построение додекаэдра, описанного около куба. Построение с помощью куба. Элементы симметрии правильных многогранников. Построение икосаэдра, вписанного в куб. Построение правильного тетраэдра.

«Тела вращения» - Тела вращения. Вращением какого многоугольника и около какой оси можно получить данное геометрическое тело? Вычислите объем геометрического тела, полученного при вращении равнобедренной трапеции со сторонами основания 6 см, 8 см и высотой 4 см, около меньшего основания? Какое геометрическое тело получится при вращении данного треугольника около указанной оси?

«Полуправильные многогранники» - Тетраэдр. Четвертая группа Архимедовых тел: Вы дали неверный ответ. Усеченный октаэдр. Усеченный тетраэдр. Правильные. Вспомним. Обучающая программа. Пятая группа Архимедовых тел состоит из одного многогранника: Ромбоикосододэкаэдр. Управляющие кнопки. Полуправильные. Курносый куб. Многогранники. Псевдоромбокубооктаэдр.

«Правильные многогранники» - Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия». Борьба со скрытыми симметриями - путь претворения в жизнь парадигмы Кокстера. Хaролд Скотт МакДoналд («Доналд») Кокстер (1907-2003). Малый звездчатый додекаэдр. Все автоморфизмы становятся скрытыми симметриями геометрической модели БТГ.

«Правильные многогранники» - Каждая вершина куба является вершиной трёх квадратов. Сумма плоских углов додекаэдра при каждой вершине равна 324?. 9 Каждая вершина икосаэдра является вершиной пяти треугольников. Икосаэдро-додекаэдровая структура Земли. Сумма плоских углов куба при каждой вершине равна 270?. Правильные многогранники и природа.