К функциям отношения не относится. Раздел i

Общение всегда рассматривалось как полифункциональный процесс. Функции общения психологи определяют по разным критериям: эмоциональная, информационная, социализирующая, связующая, трансляционная, направленная на самопознание (А. В. Мудрик), установление общности, самоопределение (А. Б. Добрович), самовыражение (А. А. Брудный), сплочение и др. Чаще всего в психологии функции общения рассматривают в соответствии с моделью отношений "человек-деятельность-общество".

Можно выделить пять основных его функций: прагматическая, формирующая, подтверждающая, организация и поддержание межличностных отношений, внутриличностная (рис. 7).

В прагматической функции общение выступает как важнейшее условие объединения людей в процессе любой совместной деятельности. О том, какие разрушительные последствия для деятельности людей имеет невыполнение этого условия, повествуется в знаменитом библейском сюжете о строительстве Вавилонской башни.

Рис. 7.

Большая роль принадлежит формирующей функции общения. Общение ребенка и взрослого это не просто процесс передачи первому суммы умений, навыков и знаний, которые он механически усваивает, а сложный процесс взаимного влияния, обогащения и изменения. Жизненно необходимая роль общения ярко проявляется в следующем примере. В 30-х гг. XX в. в США был проведен эксперимент в двух клиниках, в которых дети лечились от серьезных, плохо излечимых заболеваний. Условия в обеих клиниках были одинаковые, но с некоторым различием: в одной больнице родственников к малышам не пускали, опасаясь инфекции, а в другой – в определенные часы родители могли пообщаться и поиграть с ребенком в специально отведенной комнате. Через несколько месяцев сравнили показатели эффективности лечения. В первом отделении коэффициент смертности приблизился к одной трети, несмотря на усилия врачей. Во втором отделении, где малышей лечили теми же средствами и методами, не умер ни один ребенок.

Функция подтверждения в процессе общения дает возможность познать, утвердить себя. Желая утвердиться в своем существовании и своей ценности, человек ищет точку опоры в другом человеке. Повседневный опыт человеческого общения изобилует процедурами, организованными по принципу подтверждения: ритуалы знакомства, приветствия, именования, оказание различных знаков внимания. Известный английский психиатр Р. Д. Лейнг видел в не подтверждении универсальный источник многих психических заболеваний, прежде всего – шизофрении.

Межличностная для любого человека связано с оцениванием людей и установлением определенных эмоциональных отношений – либо позитивных, либо негативных. Поэтому эмоциональное отношение к другому человеку может быть выражено в терминах "симпатии – антипатии", что накладывает свой отпечаток не только на личностное, но и на деловое общение.

Внутриличностная функция рассматривается как универсальный способ мышления человека. Л. С. Выготский отмечал в связи с этим, что "человек и наедине с самим собой сохраняет функцию общения".

Итак, ведущее значение общения в жизнедеятельности человека состоит в том, что оно является средством организации совместной деятельности людей и способом удовлетворения потребности человека в другом человеке, живом их контакте.

Общение как социально-психологический феномен – это контакт между людьми, который осуществляется посредством языка и речи, имеет разные формы проявления. Язык – система словесных знаков, средство, с помощью которого осуществляется общение между людьми. Использование языка с целью общения людей называют речью. В зависимости от особенностей общения выделяют различные его виды (рис. 8).

По контакту с собеседником общение может быть непосредственным и опосредованным.

Непосредственное общение (прямое) – это естественное общение, когда субъекты взаимодействия находятся рядом и общаются посредством речи, мимики и жестов.

Рис. 8.

Данный вид общения является наиболее полноценным, потому что индивиды в процессе его получают максимальную информацию друг о друге.

Опосредованное (косвенное) общение осуществляется в ситуациях, когда индивиды отдалены друг от друга временем или расстоянием. Например: разговор по телефону, переписка. Опосредованное общение это неполный психологический контакт, когда обратная связь затруднена.

Общение может быть межличностным или массовым. Массовое общение представляет собой множественные контакты незнакомых людей, а также коммуникацию, опосредованную различными видами массовой информации. Оно может быть прямым и опосредованным. Прямое массовое общение наблюдается на митингах, собраниях, демонстрациях, во всех больших социальных группах: толпе, публике, аудитории. Опосредованное массовое общение имеет односторонний характер и связано с массовой культурой и средствами массовой коммуникации.

По критерию равноправия партнеров в межличностном общении (рис. 9) выделяют два типа: диалогическое и монологическое.

Диалогическое общение – равноправное субъект-субъектное взаимодействие, имеющее целью взаимное познание, стремление к реализации целей каждого партнера.

Монологическое общение реализуется при неравноправных позициях партнеров и представляет собой субъект-объектные отношения. Оно может быть императивным и манипулятивным. Императивное общение – авторитарная, директивная форма взаимодействия с партнером с целью достижения контроля над его поведением, установками, мыслями и принуждения к определенным действиям или решениям. Причем цель эта не завуалирована. Манипулятивное общение – форма межличностного общения, при которой воздействие на партнера по общению осуществляется скрытно для достижения своих намерений.

Рис. 9.

Выделяют два типа коммуникаций – ролевую и личностную. В ролевом общении люди действуют, исходя из занимаемого статуса. Например, ролевым будет общение учителя с учениками, начальника цеха с рабочими и т.д. Ролевое общение регламентировано принятыми в обществе правилами и спецификой обращения. Личностное общение зависит от индивидуальных особенностей людей и взаимоотношений между ними.

Общение может быть кратковременным или длительным в зависимости от целей, содержания деятельности, индивидуальных особенностей собеседников, их симпатий, антипатий и т.д.

Обмен информацией может происходить посредством вербального и невербального взаимодействия. Вербальное общение происходит посредством речи, невербальное – с помощью паралингвистических средств передачи информации (громкость речи, тембр голоса, жесты, мимика, позы).

Общение осуществляется на разных уровнях. Уровни общения определяются общей культурой взаимодействующих объектов, их индивидуальными и личностными характеристиками, особенностями ситуации, социальным контролем, ценностными ориентациями общающихся, их отношением друг к другу (рис. 10).

Рис. 10.

Самый примитивный уровень общения – фатический (от лат. fatuus – глупый). Он предполагает простой обмен репликами для поддержания разговора, не имеет глубокого смысла. Такое общение необходимо в стандартизированных условиях либо определяется этикетными нормами.

Информационный уровень общения предполагает обмен интересной для собеседников новой информацией, являющейся источником эмоциональной, мыслительной, поведенческой активности человека.

Личностный уровень общения характеризует такое взаимодействие, при котором субъекты способны к глубокому самораскрытию и постижению сущности другого человека, самого себя и окружающего мира. Он построен на позитивном отношении к себе, другим людям и окружающему миру в целом. Это высший духовный уровень общения.

  1. Лекция № 1. Множества и операции над ними.
  2. Лекция № 2. Соответствия и функции.
  3. Лекция № 3. Отношения и их свойства.
  4. Лекция № 4. Основные виды отношений.
  5. Лекция № 5. Элементы общей алгебры.
  6. Лекция № 6. Различные виды алгебраических структур.
  7. Лекция № 7. Элементы математической логики.
  8. Лекция № 8. Логические функции.
  9. Лекция № 9. Булевы алгебры.
  10. Лекция № 10. Булевы алгебры и теория множеств.
  11. Лекция № 11. Полнота и замкнутость.
  12. Лекция № 12. Язык логики предикатов.
  13. Лекция № 13. Комбинаторика.
  14. Лекция № 14. Графы: основные понятия и операции.
  15. Лекция № 15. Маршруты, цепи и циклы.
  16. Лекция № 16. Некоторые классы графов и их частей.

РАЗДЕЛ I. МНОЖЕСТВА, ФУНКЦИИ, ОТНОШЕНИЯ.

Лекция № 2. Соответствия и функции.

1. Соответствия.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: .

Если , то говорят, что соответствует при соответствии . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия .

В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым , если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным .

Соответствие называется сюръективным , если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества соответствует единственный элемент множества .

Соответствие называется инъективным , если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.

Пример 1.

а) Англо-русский словарь устанавливает соответствие между множествами слов русского и английского языка. Оно не является функциональным, так как почти каждому русскому слову соответствует несколько английских переводов; оно, также, не является, как правило, полностью определённым соответствием, так как всегда существуют английские слова, не включённые в данный словарь. Таким образом, это частичное соответствие.

б) Соответствие между аргументами функции и значениями этой функции является функциональным. Однако оно не является взаимнооднозначным, так как каждому значению функции соответствуют два прообраза и .

в) Соответствие между расположенными на шахматной доске фигурами и занимаемыми ими полями является взаимно однозначным.

г) Соответствие между телефонами города Вязьмы и их пятизначными номерами обладает, на первый взгляд, всеми свойствами взаимнооднозначного соответствия. Однако оно, например, не сюръективно, поскольку существуют пятизначные числа, не соответствующие никаким телефонам.

2. Взаимнооднозначные соответствия и мощности множеств.

Если между двумя конечными множествами А и В существует взаимнооднозначное соответствие, то эти множества равномощны. Этот очевидный факт позволяет, во-первых, установить равенство мощности этих множеств, не вычисляя их. Во-вторых, часто можно вычислить мощность множества, установив его однозначное соответствие с множеством, мощность которого известна, либо легко вычисляется.

Теорема 2.1. Если мощность конечного множества А равна , то число всех подмножеств А равно , то есть .

Множество всех подмножеств множества М называется булеаном и обозначается . Для конечных множеств выполняется: .

Определение. Множества А и В называются равномощными, если между их элементами можно установить взаимнооднозначное соответствие.

Заметим, что для конечных множеств это утверждение легко доказать. Для бесконечных множеств оно определят само понятие равномощности.

Определение. Множество А называется счётным, если оно равномощно множеству натуральных чисел : .

Очень упрощённо можно сказать, что данное бесконечное множество является счётным, если для его элементов можно установить нумерацию с помощью натуральных чисел.

Без доказательства примем ряд важных фактов:

1. Любое бесконечное подмножество множества натуральных чисел является счётным.

2. Множество является счётным.

3. Множество рациональных чисел является счётным (является следствием из предыдущего утверждения).

4. Объединение конечного числа счётных множеств является счётным.

5. Объединение счётного числа конечных множеств является счётным.

6. Объединение счётного числа счётных множеств является счётным.

Все эти утверждения, как можно видеть, позволяют достаточно успешно устанавливать факт, что данное множество является счётным. Однако сейчас будет показано, что не всякое бесконечное множества является счётным; существует множества большей мощности.

Теорема 2.2 (теорема Кантора). Множество всех действительных чисел из отрезка не является счётным.

Доказательство. Допустим, что множество является счётным и существует его нумерация. Поскольку любое действительное число можно представить в виде бесконечной десятичной дроби (периодической или непериодической), то проделаем это с числами данного множества. Расположим их в порядке этой нумерации:

Теперь рассмотрим любую бесконечную десятичную дробь вида , организованную таким образом, что и так далее. Очевидно, что данная дробь не входит в рассматриваемую последовательность, поскольку от первого числа она отличается первой цифрой после запятой, от второго – второй цифрой и так далее. Следовательно, мы получили число из данного интервала, которое не пронумеровано и, таким образом, множество не является счётным. Его мощность называется континуум , а множества такой мощности называются континуальными . Приведённый метод доказательства называется диагональным методом Кантора .

Следствие 1. Множество действительных чисел континуально.

Следствие 2. Множество всех подмножеств счётного множества континуально.

Как показывается в теории множеств (с помощью метода, аналогичного приведённому выше), для множества любой мощности множество всех его подмножеств (булеан) имеет более высокую мощность. Поэтому не существует множества максимальной мощности. Например, множество-универсум , описанное Кантором должно содержать все мыслимые множества, однако оно само содержится в множестве своих подмножеств в качестве элемента (парадокс Кантора). Получается, что множество не является множеством максимальной мощности.

3. Отображения и функции.

Функцией называется любое функциональное соответствие между двумя множествами. Если функция устанавливает соответствие между множествами А и В, то говорят, что функция имеет вид (обозначение ). Каждому элементу из своей области определения функция ставит в соответствие единственный элемент из области значений. Это записывается в традиционной форме . Элемент называется аргументом функции, элемент - её значением .

Полностью определённая функция называется отображением А в В; образ множества А при отображении обозначается . Если при этом , то есть соответствие сюръективно, говорят, что имеет отображение А на В.

Если состоит из единственного элемента, то называется функцией-константой.

Отображение типа называется преобразованием множества А.

Пример 2.

а) Функция является отображением множества натуральных чисел в себя (инъективная функция). Эта же функция при всех является отображением множества целых чисел в множество рациональных чисел.

б) Функция является отображением множества целых чисел (кроме числа 0) на множество натуральных чисел. Причём в данном случае соответствие не является взаимно однозначным.

в) Функция является взаимнооднозначным отображением множества действительных чисел на себя.

г) Функция не полностью определена, если её тип , но полностью определена, если её тип или .

Определение. Функция типа называется местной функцией. В этом случае принято считать, что функция имеет аргументов: , где .

Например, сложение, умножение, вычитание и деление являются двухместными функциями на , то есть функциями типа .

Определение. Пусть дано соответствие . Если соответствие таково, что тогда и только тогда, когда , то соответствие называют обратным к и обозначают .

Определение. Если соответствие, обратное к функции является функциональным, то оно называется функцией, обратной к .

Очевидно, что в обратном соответствии образы и прообразы меняются местами, поэтому для существования обратной функции требуется, чтобы каждый элемент из области значения имел бы единственный прообраз. Это означает, что для функции обратная функция существует тогда и только тогда, когда является биективным соответствием между своей областью определения и областью значений.

Пример 3. Функция имеет тип . Отрезок она взаимно однозначно отображает на отрезок . Поэтому для неё на отрезке существует обратная функция. Как известно, это .

Определение. Пусть даны функции и . Функция называется композицией функций и (обозначается ), если имеет место равенство: , где .

Композиция функций и представляет собой последовательное применение этих функций; применяется к результату .Часто говорят, что функция получена подстановкой в .

Для многоместных функций возможны различные варианты подстановок в , дающие функции различных типов. Особый интерес представляет случай, когда задано множество функций типа: . В этом случае возможны, во-первых, любые подстановки функций друг в друга, а во-вторых, любые переименования аргументов. Функция, полученная из данных функций некоторой подстановкой их друг в друга и переименованием аргументов, называется их суперпозицией.

Например, в математическом анализе вводится понятие элементарной функции, являющейся суперпозицией фиксированного (не зависящего от значения аргумента) числа арифметических операций, а также элементарных функций ( и т. п.).

А.Н. Колмогоровым и В.И. Арнольдом доказано, что всякая непрерывная функция переменных представима в виде суперпозиции непрерывных функций двух переменных.

Замечание. Понятие функции широко используется в математическом анализе, более того, является в нём базовым понятием. В целом, подход к пониманию термина “функция” в матанализе несколько уже, чем в дискретной математике. Как правило, в нём рассматриваются так называемые вычислимые функции. Функция называется вычислимой, если задана процедура, позволяющая по любому заданному значению аргумента найти значение функции.

Назад, в начало конспекта.

Пример 1.

а) Отношение равенства (часто обозначается ) на любом множестве является отношением эквивалентности. Равенство – это минимальное отношение эквивалентности в том смысле, что при удалении любой пары из этого отношения (то есть любой единицы на главной диагонали матрицы ) оно перестаёт быть рефлексивным и, следовательно, уже не является эквивалентностью.

б) Утверждения вида или , состоящие из формул, соединённых знаком равенства, задают бинарное отношение на множестве формул, описывающих суперпозиции элементарных функций. Это отношение обычно называется отношением равносильности и определяется следующим образом: две формулы равносильны, если они задают одну и ту же функцию. Равносильность в данном случае, хотя и обозначена знаком “=”, означает не то же самое, что отношение равенства, так как оно может выполняться для различных формул. Впрочем, можно считать, что знак равенства в таких отношениях относится не к самим формулам, а к функциям, которые ими описываются. Для формул же отношение равенства – это совпадение формул по написанию. Оно называется графическим равенством. Кстати, чтобы в подобных ситуациях избежать разночтений, часто для обозначения отношения равносильности используют знак “ ”.

в) Рассмотрим множество треугольников на координатной плоскости, считая, что треугольник задан, если даны координаты его вершин. Два треугольника будем считать равными (конгруэнтными), если при наложении они совпадают, то есть, переведены друг в друга с помощью некоторого перемещения. Равенство является отношением эквивалентности на множестве треугольников.

г) Отношение “иметь один и тот же остаток отделения на натуральное число ” на множестве натуральных чисел является отношением эквивалентности.

е) Отношение “быть делителем” не является на множестве отношением эквивалентности. Оно обладает свойствами рефлексивности и транзитивности, но является антисимметричным (см. ниже).

Пусть на множестве задано отношение эквивалентности . Осуществим следующее построение. Выберем элемент и образуем класс (подмножество ), состоящий из элемента и всех элементов, эквивалентных ему в рамках данного отношения. Затем выберем элемент и образуем класс , состоящий из и эквивалентных ему элементов. Продолжая эти действия, получим систему классов (возможно, бесконечную) такую, что любой элемент из множества входит хотя бы в один класс, то есть .

Эта система обладает следующими свойствами:

1) она образует разбиение множества , то есть классы попарно не пересекаются;

2) любые два элемента из одного класса эквивалентны;

3) любые два элемента из разных классов не эквивалентны.

Все эти свойства прямо следуют из определения отношения эквивалентности. Действительно, если бы, например, классы и пресекались, то они имели бы хотя бы один общий элемент. Этот элемент был бы, очевидно, эквивалентен и . Тогда, в силу транзитивности отношения выполнялось бы . Однако, по способу построения классов, это не возможно. Аналогично можно доказать другие два свойства.

Построенное разбиение, то есть система классов – подмножеств множества , называется системой классов эквивалентности по отношению . Мощность этой системы называется индексом разбиения . С другой стороны, любое разбиение множества на классы само определяет некоторое отношение эквивалентности, а именно отношение “входить в один класс данного разбиения”.

Пример 2.

а) Все классы эквивалентности по отношению равенства состоят из одного элемента.

б) Формулы, описывающие одну и ту же элементарную функцию, находятся в одном классе эквивалентности по отношению равносильности. В данном случае счётными являются само множество формул, множество классов эквивалентности (то есть индекс разбиения) и каждый класс эквивалентности.

в) Разбиение множества треугольников по отношению равенства имеет континуальный индекс, причём каждый класс имеет также мощность континуум.

г) Разбиение множества натуральных чисел по отношению “иметь общий остаток при делении на 7” имеет конечный индекс 7 и состоит из семи счётных классов.

  1. Отношения порядка.

Определение 1. Отношение называется отношением нестрогого порядка , если оно является рефлексивным, антисимметричным и транзитивным.

Определение 2. Отношение называется отношением строгого порядка , если оно является антирефлексивным, антисимметричным и транзитивным.

Оба типа отношений вместе называются отношениями порядка . Элементы сравнимы по отношению порядка , если выполняется одно из двух отношений или . Множество , на котором задано отношение порядка, называется полностью упорядоченным, если любые два его элемента сравнимы. В противном случае, множество называется частично упорядоченным.

Пример 3.

а) Отношения “ ” и “ ” являются отношениями нестрогого порядка, отношения “<” и “>” – отношениями строгого порядка (на всех основных числовых множествах). Оба отношения полностью упорядочивают множества и .

б) Определим отношения “ ” и “<” на множестве следующим образом:

1) , если ;

2) , если и при этом ходя бы для одной координаты выполняется .

Тогда, например, , но и несравнимы. Таким образом, эти отношения частично упорядочивают .,

в) На системе подмножеств множества отношение включения “ ” задаёт нестрогий частичный порядок, а отношение строгого включения “ ” задаёт строгий частичный порядок. Например, , а и не сравнимы.

г) Отношение подчинённости в трудовом коллективе создаёт строгий частичный порядок. В нём, например, несравнимыми являются сотрудники различных структурных подразделений (отделов и т. п.).

д) В алфавите русского языка порядок букв зафиксирован, то есть всегда один и тот же. Тогда этот список определяет полное упорядочение букв, которое называется отношением предшествования. Обозначается ( предшествует ). На основании отношения предшествования букв построено отношение предшествования слов, определяемое примерно, таким образом, как производится сравнение двух десятичных дробей. Это отношение задаёт полное упорядочение слов в русском алфавите, которое называется лексикографическим упорядочением.

Пример 4.

а) Наиболее известным примером лексикографического упорядочения слов является упорядочение слов в словарях. Например, (так как ), поэтому слово лес расположено в словаре раньше слова лето .

б) Если рассматривать числа в позиционных системах счисления (например, в десятичной системе) как слова в алфавите цифр, то их лексикографическое упорядочение совпадает с обычным, если все сравниваемые числа имеют одинаковое количество разрядов. В общем же случае эти два вида могут не совпадать. Например, и , но , а . Для того, чтобы они совпадали, нужно уравнять число разрядов у всех сравниваемых чисел, приписывая слева нули. В данном примере при этом получим . Такое выравнивание происходит автоматически при записи целых чисел в ЭВМ.

в) Лексикографическое упорядочивание цифровых представлений дат вида 19.07.2004 (девятнадцатое июля две тысячи четвёртого года) не совпадает с естественным упорядочением дат от более ранних к более поздним. Например, дата 19.07.2004 “лексикографически” старше восемнадцатого числа любого года. Чтобы возрастание дат совпадало с лексикографическим упорядочением, обычное представление надо “перевернуть”, то есть записать в виде 2004.07.19. так обычно делают при представлении дат в памяти ЭВМ.

В данном подразделе мы вводим декартовы произведения, отношения, функции и графы. Изучаем свойства этих математических моделей и связи между ними.

Декартово произведение и перечисление его элементов

Декартовым произведением множеств A и B называется множество, состоящее из упорядоченных пар: A ´ B = {(a ,b ): (a Î A ) & (b Î B )}.

Для множеств A 1 , …, A n декартово произведение определяется по индукции:

В случае произвольного множества индексов I декартово произведение семейства множеств {A i } i Î I определяется как множество, состоящее из таких функций f: I ® A i , что для всех i Î I верно f(i) Î A i .

Теорема 1

Пусть A и B – конечные множества. Тогда | A ´B| = | A| ×| B|.

Доказательство

Пусть A = { a 1 , …, a m } , B = { b 1 , …, b n } . Элементы декартового произведения можно расположить с помощью таблицы

(a 1 ,b 1), (a 1 ,b 2), …, (a 1 ,b n) ;

(a 2 ,b 1), (a 2 ,b 2), …, (a 2 ,b n) ;

(a m ,b 1), (a m ,b 2),…, (a m ,b n) ,

состоящей из n столбцов, каждый из которых состоит из m элементов. Отсюда | A ´B|= mn .

Следствие 1

Доказательство

C помощью индукции по n . Пусть формула верна для n . Тогда

Отношения

Пусть n ³1 – положительное целое число и A 1 , …, A n – произвольные множества. Отношением между элементами множеств A 1 , …, A n или n-арным отношением называется произвольное подмножество .

Бинарные отношения и функции

Бинарным отношением между элементами множеств A и B (или, коротко, между A и B ) называется подмножество R Í A ´B .

Определение 1

Функцией или отображением называется тройка, состоящая из множеств A и B и подмножества f Í A ´ B (графика функции ), удовлетворяющего следующим двум условиям;

1) для любого x Î A существует такой y Î f , что (x, y) Î f ;

2) если (x, y) Î f и (x, z) Î f , то y = z.

Легко видеть, что f Í A ´ B будет тогда и только определять функцию, когда для любого x Î A существует единственный y Î f , что (x ,y ) Î f . Этот y обозначим через f (x ).

Функция называется инъекцией , если для любых x, x’ Î A , таких что x ¹ x’ , имеет место f(x) ¹ f(x’) . Функция называется сюръекцией , если для каждого y Î B существует такой x Î A , что f (x ) = y . Если функция является инъекцией и сюръекцией, то она называется биекцией .

Теорема 2

Для того чтобы функция была биекцией, необходимо и достаточно существования такой функции , что fg = Id B и gf = Id A .

Доказательство

Пусть f – биекция. В силу сюръективности f для каждого y Î B можно выбрать элемент x Î A , для которого f (x ) = y . В силу инъективности f , этот элемент будет единственным, и мы обозначим его через g (y ) = x . Получим функцию .

По построению функции g , имеют место равенства f (g (y )) = y и g (f (x )) = x . Значит, верно fg = Id B и gf = Id A . Обратное очевидно: если fg = Id B и gf = Id A , то f – сюръекция в силу f (g (y )) = y , для каждого y Î B . В этом случае из будет следовать , и значит . Следовательно, f – инъекция. Отсюда вытекает, что f – биекция.

Образ и прообраз

Пусть – функция. Образом подмножества X Í A называется подмножество f(X) = { f(x): x Î X} Í B. Для Y Í B подмножество f - -1 (Y) ={ x Î A: f(x) Î Y} называется прообразом подмножества Y .

Отношения и графы

Бинарные отношения можно наглядно показать с помощью ориентированных графов .

Определение 2

Ориентированным графом называется пара множеств (E, V) вместе с парой отображений s, t: E ® V . Элементы множества V изображаются точками на плоскости и называются вершинами . Элементы из E называются направленными ребрами или стрелками . Каждый элемент e Î E изображается в виде стрелки (возможно, криволинейной), соединяющей вершину s(e) с вершиной t(e) .

Произвольному бинарному отношению R Í V ´ V соответствует ориентированный граф с вершинами v Î V , стрелками которого являются упорядоченные пары (u, v) Î R . Отображения s, t: R ® V определяются по формулам:

s(u, v) = u и t(u, v) = v .

Пример 1

Пусть V = {1,2,3,4} .


Рассмотрим отношение

R = {(1,1), (1,3), (1.4), (2,2), (2,3), (2,4), (3,3), (4,4)} .

Ему будет соответствовать ориентированный граф (рис. 1.2). Стрелками этого граф будут пары (i, j) Î R .

Рис. 1.2. Ориентированный граф бинарного отношения

В полученном ориентированном графе любая пара вершин соединяется не более чем одной стрелкой. Такие ориентированные графы называются простыми . Если не рассматривать направление стрелок, то мы приходим к следующему определению:

Определение 3

Простым (неориентированным) графом G = (V, E) называется пара, состоящая из множества V и множества E , состоящего из некоторых неупорядоченных пар {v 1 , v 2 } элементов v 1 , v 2 Î V таких, что v 1 ¹ v 2 . Эти пары называются ребрами , а элементы из V вершинами .

Рис. 1.3. Простой неориентированный граф K 4

Множество E определяет бинарное симметричное антирефлексивное отношение, состоящее из пар (v 1 , v 2 ), для которых {v 1 , v 2 } Î E . Вершины простого графа изображаются как точки, а ребра – как отрезки. На рис. 1.3 изображен простой граф с множеством вершин

V = {1, 2, 3, 4}

и множеством ребер

E = {{1,2}, {1,3},{1,4}, {2,3}, {2,4}, {3, 4}}.

Операции над бинарными отношениями

Бинарным отношением между элементами множеств A и B называется произвольное подмножество R Í A ´ B . Запись aRb (при a Î A , b Î B ) означает, что (a, b) Î R .

Определены следующие операции над отношениями R Í A ´ A :

· R -1 = {(a,b): (b,a) Î R} ;

· R ° S = {(a,b): ($ x Î A)(a,x) Î R & (x,b) Î R} ;

· R n = R °(R n -1) ;

Пусть Id A = {(a, a): a Î A} – тождественное отношение. Отношение R Í X ´ X называется:

1) рефлексивным , если (a, a) Î R для всех a Î X ;

2) антирефлексивным , если (a, a) Ï R для всех a Î X ;

3) симметричным , если для всех a, b Î X верна импликация aRb Þ bRa ;

4) антисимметричным , если aRb & bRa Þ a= b ;

5) транзитивным , если для всех a, b, c Î X верна импликация aRb & bRc Þ aRc ;

6) линейным , для всех a, b Î X верна импликация a ¹ b Þ aRb Ú bRa .

Обозначим Id A через Id . Легко видеть, что имеет место следующее.

Предложение 1

Отношение R Í X ´ X :

1) рефлексивно Û Id Í R ;

2) антирефлексивно Û R Ç Id= Æ ;

3) симметрично Û R = R -1 ;

4) антисимметрично Û R Ç R -1 Í Id ;

5) транзитивно Û R ° R Í R ;

6) линейно Û R È Id È R -1 = X ´ X .

Матрица бинарного отношения

Пусть A = {a 1 , a 2 , …, a m } и B = {b 1 , b 2 , …, b n } – конечные множества. Матрицей бинарного отношения R Í A ´ B называется матрица с коэффициентами:

Пусть A – конечное множество, |A | = n и B = A . Рассмотрим алгоритм вычисления матрицы композиции T = R ° S отношений R , S Í A ´ A . Обозначим коэффициенты матриц отношений R , S и T соответственно через r ij , s ij и t ij .

Поскольку свойство (a i ,a k T равносильно существованию такого a j Î A , что (a i ,a j R и (a j ,a k ) Î S , то коэффициент t ik будет равен 1, если и только если существует такой индекс j , что r ij = 1 и s jk = 1. В остальных случаях t ik равен 0. Следовательно, t ik = 1 тогда и только тогда, когда .

Отсюда вытекает, что для нахождения матрицы композиции отношений нужно перемножить эти матрицы и в полученном произведении матриц ненулевые коэффициенты заменить на единицы. Следующий пример показывает, как этим способом вычисляется матрица композиции.

Пример 2

Рассмотрим бинарное отношение на A = {1,2,3} , равное R = {(1,2),(2,3)} . Запишем матрицу отношения R . Согласно определению, она состоит из коэффициентов r 12 = 1, r 23 = 1 и остальных r ij = 0. Отсюда матрица отношения R равна:

Найдем отношение R ° R . С этой целью умножим матрицу отношения R на себя:

.

Получаем матрицу отношения:

Следовательно, R ° R = {(1,2),(1,3),(2,3)}.

Из предложения 1 вытекает следующее следствие.

Следствие 2

Если A = B , то отношение R на A :

1) рефлексивно, если и только если все элементы главной диагонали матрицы отношения R равны 1;

2) антирефлексивно, если и только если все элементы главной диагонали матрицы отношения R равны 0;

3) симметрично, если и только если матрица отношения R симметрична;

4) транзитивно, если и только если каждый коэффициент матрицы отношения R ° R не больше соответствующего коэффициента матрицы отношения R.

Любое множество 2-списокв или пар называется отношением. Отношения будут особенно полезны при обсуждении значения программ.

Слово «отношение» может означать правило сравнения, «эквивалентность» или «является подмножеством» и т.д. Формально отношения, которые являются множествами 2-списков, могут описать эти неформальные правила точно, путем включения точно тех пар, чьи элементы состоят в нужной связи друг с другом. Например, отношение между символами и 1-строками содержащими эти символы задается следующим отношением:

C = {: x - символ} = {, , …}

Поскольку отношение это множество, пустое отношение также возможно. Например, соответствие между четными натуральными числами и их нечетными квадратами – таких не существует. Более того, операции над множествами применимы к отношениям. Если s и r отношения, то существуют

s È r, s – r, s Ç r

поскольку это множества упорядоченных пар элементов.

Частный случай отношения – функция, отношение со специальным свойством, отличающееся тем, что каждый первый элемент находится в паре с уникальным вторым элементом. Отношение r является функцией, если и только если для любого

Î r и Î r, то y = z.

В таком случае каждый первый элемент может служить именем для второго в контексте отношения. Например, описанное выше отношение C между символами и 1-строками является функцией.

Операции над множествами также применимы к функциям. Хотя результат операции над множествами упорядоченных пар, которые являются функциями, будет обязательно другим множеством упорядоченных пар, а следовательно отношением, но не всегда функцией.

Если f,g –функции, то f Ç g, f – g тоже функции, но f È g, может быть а может и не быть функцией. Например, определим отношение голова

H = {< Θ y, y>: y - строка} = {, , …}

И возьмем отношение C, описанное выше. Тогда из факта, что C Í H:

является функцией,

H - С = {< Θ y, y>: y – строка как минимум из 2 символов}

является отношением, но не функцией,

является пустой функцией, и

является отношением.

Множество первых элементов пар отношения или функции называется областью определения (domain), а множество вторых элементов пар называется областью значений (range). Для элементов отношения, скажем Î r, x называется аргументом r, а у называется значением r.

Когда Î r и и y является единственным значением для x, value-нотация:

читается, как «y является значением r для аргумента x» или, более кратко, «y является значением r для x» (функциональная форма записи).

Зададим произвольное отношение r и аргумент x, тогда существуют три варианта их соответствия:

  1. x Ï domain(r), в таком случае r не определено на x
  2. x Î domain(r), и существуют различные y, z, такие что Î r и Î r. В этом случае r неоднозначно определено на x
  3. x Î domain(r), и существует уникальная пара Î r. В этом случае r однозначно определено на x и y=r(x).

Таким образом, функция – это отношение, которое однозначно определено для всех элементов его области определения.

Выделяют три специальные функции:

Пустая функция {}, не имеет аргументов и значений, то есть

domain({}) = {}, range({}) = {}

Функция эквивалентности (identity function) , функция I такая,

что если x Î domain(r), тогда I(x) = x.

Постоянная функция , область значений которой задается 1-множеством, то есть всем аргументам соответствует одно и то же значение.

Поскольку отношения и функции являются множествами, они могут быть описаны перечислением элементов или заданием правил. Например:

r = {<†ball†, †bat†>, <†ball†, †game†>, <†game†, †ball†>}

является отношением, поскольку все его элементы - 2-списки

domain(r) = {†ball†, †game†}

range (r) = {†ball†, †game†, †bat†}

Однако, r не является функцией, потому что два разных значения встречаются в паре с одним аргументом †ball†.

Пример отношения, определенного с помощью правила:

s = {: слово x непосредственно предшествует слову y

в строке †this is a relation that is not a function†}

Это отношение также может быть задано перечислением:

s = {<†this†, †is†>, <†is†, †a†>, <†a†, †relation†>, <†relation†, †that†>,

<†that†, †is†>, <†is†, †not†>, <†not†, †a†>, <†a†, †function†>}

Следующее правило определяет функцию:

f = {: первый экземпляр слова непосредственно предшествующий слову y

в строке †this is a relation that is also a function†}

которая также может быть задана перечислением:

f = {<†this†, †is†>, <†is†, †a†>, <†a†, †relation†>,

<†relation†, †that†>, <†that†, †is†>, <†also†, †a†>}

Значение программ.

Отношения и функции жизненно необходимы для описания для описания значения программ. Используя эти понятия, разрабатывается нотация для описания значения программ. Для простых программ значение будет очевидным, но эти простые примеры послужат освоению теории в целом.

Новые идеи: box-нотация, программа и значение программы.

Множество пар ввод-вывод для всех возможных нормальных запусков программы называется значением программы. Также может быть использованы понятия функция программы и отношение программы . Важно различать значение программы и элементы значения. Для конкретного входа Паскаль-машина, управляемая Паскаль-программой может произвести конкретный выход. Но значение программы это гораздо больше, чем способ выражения результата одного частного выполнения. Оно выражает все возможные выполнения Паскаль-программы на Паскаль-машине.

Программа может принимать вход разбиты на строки и производить выход разбитый на строки. Таким образом пары в значении программы могут быть парами списков состоящих из строк символов.

Box-нотация.

Любая Паскаль-программа – строка символов, передаваемая для обработки Паскаль-машине. Например:

P = †PROGRAM PrintHello (INPUT, OUTPUT); BEGIN WRITELN(‘HELLO’) END.†

Представляет одну из первых программ, рассмотренных в начале части I, в виде строки.

Также эту строку можно записать, опустив маркеры строки, как

P = PROGRAM PrintHello (INPUT, OUTPUT);

WRITELN(‘HELLO’)

Строка P представляет синтаксис программы, а ее значение мы будем записывать как P. Значение P это множество 2-списков (упорядоченных пар) списков символьных строк, в которых аргументы представляют входные данные программы, а значения представляют выходные данные программы, то есть

P = {: для входного списка строк L, P выполняется корректно

и возвращает список строк M}

Box-нотация для значения программы держит синтаксис и семантику программы, но ясно разграничивает одно от другого. Для программы PrintHello, приведенной выше:

P = { } =

{>: L – любой список строк }

Помещая текст программы в box:

P = PROGRAM PrintHello (INPUT, OUTPUT); BEGIN WRITELN(‘HELLO’) END

Поскольку P - функция,

PROGRAM PrintHello (INPUT, OUTPUT); BEGIN WRITELN(‘HELLO’) END (L) = <†HELLO†>

для любого списка строк L.

Box-нотация скрывает способ которым программа управляет Паскаль-машиной и показывает только то что сопутствует выполнению. Термин «черный ящик» часто используется для описания механизма рассматриваемого только извне в терминах входов и выходов. Таким образом эта нотация подходит для значения программы с точки зрения ввода-вывода. Например, программа R

PROGRAM PrintHelloInSteps (INPUT, OUTPUT);

WRITE(‘HE’);

WRITE (‘L’);

WRITELN(‘LO’)

Имеет то же значение что и P, то есть R = P.

Программ R также имеет CFPascal имя PrintHelloInSteps. Но поскольку строка †PrintHelloInSteps† является частью строки R, лучше не использовать PrintHelloInSteps в качетсве названия программы R в box-нотации.

Пусть r Í Х х Y .

Функциональное отношение – это такое бинарное отношение r, у которого каждому элементу соответствует ровно один такой, что пара принадлежит отношению или такого не существует совсем : или.

Функциональное отношение – это такое бинарное отношение r, длякоторого выполняется: .

Всюду определённое отношение – бинарное отношение r , для которого D r =Х ("нет одиноких х ").

Сюръективное отношение – бинарное отношение r , для которого J r = Y ("нет одиноких y ").

Инъективное отношение – бинарное отношение, в котором разным х соответствуют разные у .

Биекция – функциональное, всюду определённое, инъективное, сюръективное отношение, задаёт взаимно однозначное соответствие множеств.


Например :

Пусть r = { (x, y) Î R 2 | y 2 + x 2 = 1, y > 0 }.

Отношение r - функционально,

не всюду определено ("есть одинокие х "),

не инъективно (есть разные х, у ),

не сюръективно ("есть одинокие у "),

не биекция.

Например:

Пусть Ã= {(x,y) Î R 2 | y = x+1}

Отношение Ã- функционально,

Отношение Ã- всюду определено ("нет одиноких х "),

Отношение Ã- инъективно (нет разных х, которым соответствуют одинаковые у ),

Отношение Ã- сюръективно ("нет одиноких у "),

Отношение Ã- биективно, взаимно-однородное соответствие.

Например:

Пусть j={(1,2), (2,3), (1,3), (3,4), (2,4), (1,4)} задано на множестве N 4 .

Отношение j - не функционально, x=1 соответствует три y: (1,2), (1,3), (1,4)

Отношение j - не всюду определенно D j ={1,2,3}¹ N 4

Отношение j - не сюръективно I j ={1,2,3}¹ N 4

Отношение j - не инъективно, разным x соответствуют одинаковые y, например (2,3) и (1,3).

Задание к лабораторной работе

1. Заданы множества N1 и N2 . Вычислить множества:

(N1 хN2) Ç (N2 хN1) ;

(N1 хN2) È (N2 хN1) ;

(N1 Ç N2) x(N1 Ç N2) ;

(N1 È N2) x(N1 È N2) ,

где N1 = { цифры номера зачетной книжки, три последние};

N2 = { цифры даты и номера месяца рождения}.

2. Отношения r иg заданы на множествеN 6 ={1,2,3,4,5,6}.

Описать отношения r ,g ,r -1 , r g, r - 1 ○g списком пар.

Найти матрицы отношений r иg .

Для каждого отношения определить область определения и область значений.

Определить свойства отношений.

Выделить отношения эквивалентности и построить классы эквивалентности.

Выделить отношения порядка и классифицировать их.

1) r = { (m ,n ) | m > n }

g = { (m ,n ) | сравнение по модулю 2}

2) r = { (m ,n ) | (m - n) делится на 2}

g = { (m ,n ) | m делитель n }

3) r = { (m ,n ) | m < n }

g = { (m ,n ) | сравнение по модулю 3}

4) r = { (m ,n ) | (m + n) - четно}

g = { (m ,n ) | m 2 =n }

5) r = { (m ,n ) | m / n - степень 2 }

g = { (m ,n ) | m = n }

6) r = { (m ,n ) | m / n - четно}

g = { (m ,n ) | m ³n }

7) r = { (m ,n ) | m / n - нечетно }

g = { (m ,n ) | сравнение по модулю 4}

8) r = { (m ,n ) | m * n - четно }

g = { (m ,n ) | m £n }

9) r = { (m ,n ) | сравнение по модулю 5}

g = { (m ,n ) | m делится наn }

10) r = { (m ,n ) | m - четно, n - четно}

g = { (m ,n ) | m делительn }

11) r = { (m ,n ) | m = n }

g = { (m ,n ) | (m + n) £5 }

12) r ={ (m ,n ) | m и n имеют одинаковый остаток от деления на 3}

g = { (m ,n ) | (m -n) ³2}

13) r = { (m ,n ) | (m + n) делится нацело на 2 }

g = { (m ,n ) | 2 £(m -n) £4}

14) r = { (m ,n ) | (m + n) делится нацело на 3 }

g = { (m ,n ) | m ¹n }

15) r = { (m ,n ) | m и n имеют общий делитель }

g = { (m ,n ) | m 2 £n }

16) r = { (m ,n ) | (m - n) делится нацело на 2 }

g = { (m ,n ) | m < n +2 }

17) r = { (m ,n ) | сравнение по модулю 4 }

g = { (m ,n ) | m £n }

18) r = { (m ,n ) | m делится нацело наn }

g = { (m ,n ) | m ¹n , m- четно}

19) r = { (m ,n ) | сравнение по модулю 3 }

g = { (m ,n ) | 1 £(m -n) £3}

20) r = { (m ,n ) | (m - n) делится нацело на 4 }

g = { (m ,n ) | m ¹n }

21) r = { (m ,n ) | m - нечетно, n - нечетно}

g = { (m ,n ) | m £n , n- четно}

22) r = { (m ,n ) | m и n имеют нечетный остаток от деления на 3 }

g = { (m ,n ) | (m -n) ³1}

23) r = { (m ,n ) | m * n - нечетно }

g = { (m ,n ) | сравнение по модулю 2}

24) r = { (m ,n ) | m * n - четно }

g = { (m ,n ) | 1 £(m -n) £3}

25) r = { (m ,n ) | (m + n) - четно}

g = { (m ,n ) | m не делится нацело на n }

26) r = { (m ,n ) | m = n }

g = { (m ,n ) | m делится нацело на n }

27) r = { (m ,n ) | (m - n)- четно}

g = { (m ,n ) | m делитель n }

28) r = { (m ,n ) | (m -n) ³2}

g = { (m ,n ) | m делится нацело на n }

29) r = { (m ,n ) | m 2 ³ n }

g = { (m ,n ) | m / n - нечетно}

30) r = { (m ,n ) | m ³n, m - четно}

g = { (m ,n ) | m и n имеют общий делитель, отличный от 1}

3. Определить является ли заданное отношение f - функциональным, всюду определенным, инъективным, сюръективным, биекцией (R - множество вещественных чисел). Построить график отношения, определить область определения и область значений.

Выполнить это же задание для отношений r и g из пункта 3 лабораторной работы.

1) f={ (x, y) Î R 2 | y=1/x +7x }

2) f={ (x, y) Î R 2 | x ³y }

3) f={ (x, y) Î R 2 | y ³x }

4) f={ (x, y) Î R 2 | y ³x, x ³ 0 }

5) f={ (x, y) Î R 2 | y 2 + x 2 = 1 }

6) f={ (x, y) Î R 2 | 2 | y | + | x | = 1 }

7) f={ (x, y) Î R 2 | x + y £ 1 }

8) f={ (x, y) Î R 2 | x = y 2 }

9) f={ (x, y) Î R 2 | y = x 3 + 1}

10) f={ (x, y) Î R 2 | y = -x 2 }

11) f={ (x, y) Î R 2 | | y | + | x | = 1 }

12) f={ (x, y) Î R 2 | x = y -2 }

13) f={ (x, y) Î R 2 | y 2 + x 2 ³1, y > 0 }

14) f={ (x, y) Î R 2 | y 2 + x 2 = 1, x > 0 }

15) f={ (x, y) Î R 2 | y 2 + x 2 £ 1, x > 0 }

16) f={ (x, y) Î R 2 | x = y 2 ,x ³ 0 }

17) f={ (x, y) Î R 2 | y = sin(3x + p) }

18) f={ (x, y) Î R 2 | y = 1 /cos x }

19) f={ (x, y) Î R 2 | y = 2| x | + 3 }

20) f={ (x, y) Î R 2 | y = | 2x + 1| }

21) f={ (x, y) Î R 2 | y = 3 x }

22) f={ (x, y) Î R 2 | y = e -x }

23) f ={ (x, y) Î R 2 | y = e | x | }

24) f={ (x, y) Î R 2 | y = cos(3x) - 2 }

25) f={ (x, y) Î R 2 | y = 3x 2 - 2 }

26) f={ (x, y) Î R 2 | y = 1 / (x + 2) }

27) f={ (x, y) Î R 2 | y = ln(2x) - 2 }

28) f={ (x, y) Î R 2 | y = | 4x -1| + 2 }

29) f={ (x, y) Î R 2 | y = 1 / (x 2 +2x-5)}

30) f={ (x, y) Î R 2 | x = y 3 , y ³ - 2 }.

Контрольные вопросы

2.Определение бинарного отношения.

3.Способы описания бинарных отношений.

4.Область определения и область значений.

5.Свойства бинарных отношений.

6.Отношение эквивалентности и классы эквивалентности.

7.Отношения порядка: строгого и нестрого, полного и частичного.

8.Классы вычетов по модулю m.

9.Функциональные отношения.

10. Инъекция, сюръекция, биекция.


Лабораторная работа № 3