Кто создал теорию гравитации. Теория гравитации эйнштейна


4. Сборка ракеты-носителя
5. История

«Дельта IV» - четвёртое поколение ракеты-носителя Дельта компании «Боинг». Первый успешный коммерческий запуск РН со спутником Eutelsat был осуществлён в 2002 году. Дельта IV была разработана в рамках программы развития одноразовых ракет-носителей для запуска коммерческих спутников и спутников ВВС США. Ракета-носитель используется в пяти версиях: Медиум, Медиум+, Медиум+, Медиум+ и Хеви. Последний тяжелый вариант предназначен для большего размера и веса полезной нагрузки. Дельта IV используется в первую очередь для удовлетворения нужд американских военных по причине высокой стоимости запуска этой ракеты-носителя.

Запуски ракеты-носителя осуществляются с мыса Канаверал и базы Ванденберг, ВВС США, где они собираются в горизонтальных сборочных центрах.

Описание ракеты-носителя

Первая ступень Дельта IV состоит из одного, а в варианте Хеви из трех, унифицированных разгонных блоков, CBC), использующих один двигатель RS-68 производства фирмы Рокетдайн. В отличие от большинства двигателей РН первой ступени, которые используют твердое топливо или керосин, RS-68 сжигают жидкий водород, используя кислород в качестве окислителя.

Двигатель RS-68 первый большой ЖРД, который был разработан в США после разработки основного двигателя для космического челнока в 1970 годах. Основное назначение RS-68 было сокращение стоимости двигателя по сравнению с SSME. Давление в камере сгорания и удельный импульс, которыми в некоторой степени пришлось пожертвовать, сказались на эффективности двигателя, однако, время разработки, стоимость комплектующих, общая стоимость и количество необходимого рабочего времени были значительно сокращены по сравнению с SSME, несмотря на гораздо больший размер RS-68. Как правило, двигатель дросселируется до 102 % тяги в течение первых нескольких минут полета, затем до 58 % тяги вплоть до момента отключения. В случае варианта Хеви, двигатель центрального CBC дросселируется до уровня 58 % номинальной тяги примерно через 50 секунд после запуска, в то время как боковые CBC остаются на 102 %. Это позволяет сохранить топливо центрального CBC и использовать его дольше. После отделения боковых CBC, центральный CBC дросселируется до 102 % и затем переводится на 58 % тяги вплоть до отключения.

Двигатель RS-68 устанавливается в нижней несущей конструкции ускорителя на четырехопорную ферму, которая закрыта коническим термозащитным кожухом, выполненным из композитных материалов. Выше несущей конструкции находится водородный бак, выполненный из алюминия, который усилен изнутри сеточной облицовкой для уменьшения веса. Далее располагается композитный цилиндр, расположенный под кислородным баком, который также усилен сеточной облицовкой, сверху конструкция прикрыта головной частью. Вдоль ускорителя проходит кабельный туннель для обеспечения электропитанием и связью, а также трубопровод для транспортировки жидкого кислорода к двигателю RS-68 из бака. CBC имеет постоянный диаметр, равный 5 м.

Система наведения RIFCA фирмы Л-3 Комьюникейшнс, используемая на РН Дельта IV, схожа с системой наведения РН Дельта-2 с некоторыми отличиями в программном обеспечении, которые обусловлены отличиями двух РН. Отличительной особенностью RIFCA является лазерный гироскоп, снабженный шестью кольцами с акселерометрами, который обеспечивает более высокую степень надежности.

Верхняя ступень РН Дельта IV практически идентична РН Дельта III за тем исключением, что баки или вытянуты в 4 метровом варианте, или имеют больший диаметр в 5-ти метровом исполнении. Двигатель RL-10B-2 компании Пратт & Витни отличается выдвижным углеродным сопловым насадком для увеличения удельного импульса. В зависимости от варианта РН используются два различных переходника между первой и второй ступенью - конусообразный переходник, который сужается от пяти к четырём метрам в четырехметровом варианте, и цилиндрический переходник в пятиметровом варианте. В обоих случаях переходник выполнен из композитных материалов.

Существует множество различных обтекателей для ПН. Удлиненный обтекатель РН Дельта III используется в 4-х метровом варианте, тогда как пятиметровый обтекатель используется во втором варианте. Более длинный алюминиевый обтекатель возможен при использовании схемы РН Хеви.

РН Дельта IV пришла на рынок космических запусков в период, когда глобальные возможности по выводу ПН на околоземную орбиту были уже гораздо выше спроса. Более того, неопробованный дизайн нового РН привел к сложностям в поиске коммерческих запусков. Также стоимость запуска РН Дельта IV несколько выше чем у конкурирующих РН. В 2003 году Боинг отозвал РН c коммерческого рынка, ссылаясь на низкий спрос и большие затраты. В 2005 году Боинг заявил, что он может вернуть РН Дельта IV для коммерческого использования, однако вплоть до 2006 года по этой теме не было никаких заявлений. Все запуски, за исключением одного, были оплачены правительством США с ценами в диапазоне от 140 млн. USD до 170 млн. USD.

Сравнимые РН: Атлас V - Ариан 5 - GSLV Mk. III - Великий поход 5 - Ангара 5 - H-IIB - Протон М - Фалькон 9

«Дельта IV» (англ. Delta IV) - четвёртое поколение ракеты-носителя Дельта. Семейство многоцелевых РН Delta IV, включающее пять вариантов, разработано подразделением одноразовых носителей отделения Boeing Integrated Defense Systems в рамках программы «развитой одноразовой ракетоносителя» EELV (Evolved Expendable Launch Vehicle). Основным заказчиком выступали ВВС США. Для первого запуска был использован вариант Medium+ (4,2) высотой 62.5 м, характеризуемый наличием криогенного «Единого центрального блока» СВС (Common Booster Core), двух навесных стартовых твердотопливных ускорителей (СТУ), криогенной верхней ступени, а также четырехметрового головного обтекателя (ГО), выполненного из композитных материалов. Практически все элементы носителя новые и созданы специально для РН данного семейства.

Блок СВС высотой 40.9 м, диаметром 4.88 м и «сухой» массой около 24.5 т включает бак жидкого кислорода (окислитель) в верхней части, бак жидкого водорода (горючее) в средней и двигательный отсек с маршевым ЖРД RS-68 (создан отделением Rocketdyne фирмы Boeing) в хвостовой части. Баки соединены межбаковым отсеком. В нижней части ступени закреплены СТУ GEM-60 фирмы Alliant Techsystems – РДТТ с композитным корпусом диаметром 1.55 м. Это увеличенный вариант ускорителей GEM-48, применявшихся на РН Delta III. Первая ступень управляется качанием RS-68 в подвесе, отклонением сопел ускорителей, а также специальными соплами крена, через которые сбрасывается газогенераторный газ, отработанный на ТНА маршевого двигателя. Вторая ступень, оснащенная криогенным двигателем RL10B-2 с раздвижным соплом, также имеет раздельные баки горючего (жидкий водород) и окислителя (жидкий кислород); они соединены ферменными конструкциями. Изделие (правда,с баками меньшей емкости) прошло летные испытания в составе РН Delta III.

Криогенные компоненты на обеих ступенях также очень «благотворно» действуют на такие важные характеристики ракеты, как зависимость массы ПГ от высоты орбиты – с увеличением последней грузоподъемность носителя падает не так сильно, как у других РН. Первая Delta IV начала свой полет с исторического стартового комплекса SLC-37B, построенного 40 лет назад в рамках программы Apollo. Ступени РН привозят морем с завода в Декейтере, Алабама, и собирают горизонтально в здании HIF. После этого ракета выкатывается на стартовый стол, гигантский установщик поворачивает ее в вертикальное положение, после чего сверху на нее «надевают» ГО с расположенным внутри спутником.

Первой полезной нагрузкой, запущенной с помощью РН Дельта IV, стал спутник связи Eutelsat W5. Запуск ракеты-носителя, выполненный по схеме Медиум+ (4,2), был осуществлен с мыса Канаверал. Спутник был выведен на геостационарную орбиту 20 ноября 2002 г.

РН «Delta IV Heavy»

Дельта IV (Delta IV ) - четвёртое поколение семейства компании Boeing. Дельта IV была разработана в рамках программы развития одноразовых ракет-носителей (Evolved Expendable Launch Vehicle, EELV ) для запуска коммерческих и спутников ВВС США.

Дельта IV состоит из двух ступеней и использует криогенные компоненты топлива: жидкий водород и жидкий кислород.

Ракета-носитель используется в пяти версиях: Medium (Medium - средний ), Medium+ (4,2), Medium+ (5,2), Medium+ (5,4) и Heavy (Heavy - тяжелый ).

Из-за высокой стоимости (от 164 до 400 млн $ в зависимости от версии), Дельта IV используется в первую очередь для запуска спутников Министерства обороны (DoD) и Национального управления военно-космической разведки США (NRO).

Дельта IV Heavy, по состоянию на 2016 год, обладает наибольшей выводимой полезной нагрузкой среди всех эксплуатируемых ракет-носителей в мире. В 2015 году стоимость запуска ракеты-носителя Дельта IV Heavy составляла около 400 млн.

История

Первый успешный запуск ракеты-носителя со спутником Eutelsat W5 был осуществлён в 2002 году.

Ракета-носитель Дельта IV пришла на рынок космических запусков в период, когда глобальные возможности по выводу полезной нагрузки на околоземную были уже гораздо выше спроса. Более того, неопробованный дизайн новой ракеты-носителя привел к сложностям в поиске коммерческих запусков. Также стоимость запуска Дельта IV несколько выше, чем у конкурирующих ракет-носителей. В 2003 году компания Boeing отозвала ракету-носитель c коммерческого рынка, ссылаясь на низкий спрос и большие затраты. В 2005 году компания Boeing заявила, что она может вернуть ракету-носитель Дельта IV для коммерческого использования, однако вплоть до 2016 года все запуски, за исключением первого, были оплачены правительством США.

С 2007 года запуски ракеты-носителя Дельта IV осуществляет United Launch Alliance (ULA), совместное предприятие, организованное компаниями Boeing и Lockheed Martin.

В 2015 году компания ULA приняла решение отказаться от всех модификаций Дельты IV, кроме Heavy уже к 2018 году из-за конкуренции со SpaceX (запуски будут выполнятся ракетой-носителем ), а в дальнейшем предполагается полный вывод из эксплуатации как Атласа V, так и Дельты IV, их заменит новая ракета-носитель , первый запуск которой планируется не ранее 2019 года. Однако, как заверил CEO ULA Тори Бруно, полный отказ от ракеты-носителя не может быть произведен раньше, чем правительственные заказчики будут к этому готовы, поскольку некоторые спутники специально сконфигурированы для запуска на Дельте IV.

Начиная с июля 2015 года и вплоть до вывода ракеты-носителя из эксплуатации, все запускаемые конфигурации ракеты-носителя Дельта IV будут использовать улучшенный главный двигатель RS-68A.

Конструкция

Эволюция ракет семейства Дельта

Первая ступень

Первой ступенью Дельта IV является универсальный ракетный модуль (УРМ, англ. Common Booster Core(s), CBC ), общий для всех модификаций ракеты-носителя. Модуль состоит из двигательного отсека, баков для горючего и окислителя (26,3 и 9,4 метра в высоту соответственно), секции между баками и промежуточного адаптера. Главный двигатель устанавливается в нижней несущей части конструкции на четырёхопорную ферму и закрыт коническим термозащитным кожухом, выполненным из композитных материалов, который защищает двигатель от пламени боковых твердотопливных ускорителей. Выше находится бак для горючего, выполненный из алюминия и усиленый изнутри сеточной облицовкой для уменьшения веса. Далее располагается композитный цилиндр, расположенный под баком для окислителя, который также усилен сеточной облицовкой, сверху конструкция заканчивается композитным адаптером, который вмещает в себя двигатель второй ступени и оборудование для расстыковки ступеней. Вдоль всего модуля проходит кабельный туннель для обеспечения электропитанием и связью, а окислитель достигает двигателя через внешний трубопровод, проходящий по внешней стенке бака для горючего. Стенки модуля покрыты изоляционным материалом (твёрдая полиуретановая пена), который препятствует нагреванию топлива и образованию льда на внешней поверхности топливных баков.

Полная длина ступени 40,8 м, диаметр - 5,1 м, сухой вес ступени - 26 400 кг. Ступень использует криогенные компоненты топлива, жидкий водород (горючее) и жидкий кислород (окислитель). Вместимость топлива: жидкий водород - 29 500 кг (416 м 3), жидкий кислород - 172 500 кг (151 м 3). Перед запуском закачиваемый жидкий кислород охлаждается до температуры −185 °C, жидкий водород - до −253 °C.

Модуль использует один двигатель RS-68 производства фирмы Рокетдайн (Rocketdyne). Двигатель RS-68 - первый большой ЖРД, который был разработан в США после разработки основного двигателя для космического челнока SSME(англ. Space Shuttle Main Engine , или RS-25) в 1970 годах. Основное назначение RS-68 было сокращение стоимости двигателя по сравнению с SSME. Давление в камере сгорания и удельный импульс, которыми в некоторой степени пришлось пожертвовать, сказались на эффективности двигателя, однако, время разработки, стоимость комплектующих, общая стоимость и количество необходимого рабочего времени были значительно сокращены по сравнению с SSME, несмотря на гораздо больший размер RS-68.

Тяга двигателя на уровне моря составляет 2950 кН, в вакууме - 3370 кН. Удельный импульс в вакууме - 409 с.

В 2012 году впервые был использован модифицированный двигатель RS-68A.

Модификация турбонагнетателя, а также обеспечение лучшего смешивания и сгорания элементов топлива, позволили повысить тягу нового двигателя до 3137 кН на уровне моря и до 3560 кН в вакууме. Удельный импульс вырос до 412 с. С июня 2015 года двигатель RS-68A используется на всех модификациях Дельта IV.

Как правило, двигатель форсируется до 102 % тяги в течение первых нескольких минут полёта, затем дросселируется до 58 % тяги вплоть до момента отключения. При запуске ракеты-носителя в модификации Heavy, двигатель центрального модуля дросселируется до уровня 58 % номинальной тяги примерно через 50 секунд после запуска, в то время как боковые ускорители остаются на 102 % тяги. Это позволяет сохранить топливо центрального модуля CBC и использовать его дольше. После отделения боковых ускорителей, центральный форсируется до 102 % и затем переводится на 58 % тяги незадолго до отключения.

Номинальное время работы двигателя первой ступени составляет 245 секунд для модификаций Medium и 328 cекунд для модификации Heavy.

Ускорители

На модификациях Дельта IV Medium+ используются твердотопливные ускорители GEM-60 компании Orbital ATK (бывшая Alliant Techsystems, ATK), с топливом на основе HTPB. Длина ускорителя с носовым обтекателем - 15,2 м, диаметр - 1,5 м, стартовая масса - 33 638 кг. Каждый ускоритель обеспечивает тягу 826,6 кН на уровне моря с удельным импульсом 275 с. Время горения - 91 секунда.

Для модификации Дельта IV Heavy используются 2 универсальных ракетных модуля CBC, закреплённые по бокам центрального модуля CBC первой ступени. На верхнем конце ускорителей устанавливаются конические обтекатели из композитных материалов. Боковые ускорители работают в течение 242 секунд, после чего отсоединяются от центрального модуля с помощью пироболтов и пружинных толкателей.

Вторая ступень

Четырёхметровая вторая ступень.

Delta Cryogenic Second Stage, DCSS ) была выполнена на основе верхней ступени ракеты-носителя Дельта III, но с повышенной вместимостью топлива. В 4-метровом варианте второй ступени топливные баки вытянуты в длину, в 5-метровом варианте бак для кислорода дополнительно удлинён на 0,5 м, а бак для жидкого водорода увеличен в диаметре до 5 метров. Вынесенный отдельно бак для жидкого кислорода имеет диаметр 3,2 м в обеих версиях второй ступени.

Четырёхметровая вторая ступень (используется для модификаций Medium и Medium+ (4,2)) имеет длину 12,2 м, сухой вес - 2850 кг и вмещает 20 410 кг компонентов топлива. Максимальное время работы двигателя составляет 850 секунд.

Пятиметровая вторая ступень (используется для Medium+ (5,2), Medium+ (5,4) и Heavy) имеет длину 13,7 м, сухой вес - 3490 кг и вмещает в себя 27 200 кг топлива. Время работы двигателя может может достигать 1125 секунд.

На обоих вариантах второй ступени используется двигатель RL-10B-2 компании Pratt & Whitney, отличается выдвижным углеродным сопловым насадком для увеличения удельного импульса. Тяга двигателя в вакууме составляет 110 кН, удельный импульс - 465 с.

Для управления положением второй ступени в фазе свободного полёта используются 12 маленьких гидразиновых двигателей MR-106D с тягой 21 и 41 Н.

Промежуточный адаптер между ступенями различается в зависимости от модификации ракеты-носителя. Для версий Medium и Medium+ (4,2) используется конический адаптер для соединения с четырёхметровой второй ступень. Для Medium+ (5,2), Medium+ (5,4) и Heavy используется цилиндрический адаптер для соединения с пятиметровой второй ступенью.

Расстыковка ступеней осуществляется с помощью пироболтов и пружинных толкателей.

Головной обтекатель

Для версий Medium и Medium+ (4,2) используется композитные обтекатель диаметром 4 метра, длиной 11,75 м и весом около 2800 кг, немного удлинённая версия обтекателя, ранее используемого на ракете-носителе Дельта III.

Для Medium+ (5,2), Medium+ (5,4) используется композитный обтекатель диаметром 5 м и длиной 14,3 м.

Для Дельта IV Heavy используется композитный обтекатель диаметром 5 м и длиной 19,1 м, а также может использоваться алюминиевый обтекатель длиной 19,8 метров, который раньше использовался на ракете-носителе Titan IV.

Бортовые системы

Система управления RIFCA (Redundant Inertial Flight Control Assembly ) компании L-3 Communications, используемая на ракете-носителе Дельта IV, схожа с системой управления ракеты с некоторыми отличиями в программном обеспечении. Отличительной особенностью RIFCA является лазерный гироскоп, снабженный шестью кольцами с акселерометрами, который обеспечивает более высокую степень надежности.

Варианты ракеты-носителя

Дельта IV Medium является основой всех остальных вариантов компоновки. Включает в себя один универсальный ракетный модуль (CBC), четырёхметровую вторую ступень и четырёхметровый обтекатель. Высота ракеты-носителя составляет 62,5 м. Стартовая масса - 249,5 т.

Дельта IV Medium+ (4,2) близка к варианту Medium, но использует два твердотопливных ускорителя. Стартовая масса ракеты-носителя - 292,7 т.

Дельта IV Medium+ (5,2) использует пятиметровую вторую ступень, пятиметровый головной обтекатель и два твердотопливных ускорителя. Высота ракеты-носителя составляет 65,9 м.

Дельта IV Medium+ (5,4) соответствует Medium+ (5,2), но использует четыре твердотопливных ускорителя вместо двух. Стартовая масса ракеты-носителя - 404,6 т.

В Дельта IV Heavy вместо твердотопливных ускорителей используются два дополнительных универсальных ракетных модуля CBC, присоединенные по бокам центрального модуля, пятиметровая вторая ступень и удлинённый пятиметровый головной обтекатель. Возможно также использование модифицированного алюминиевого обтекателя от ракеты-носителя Титан IV (впервые использовался при запуске спутника DSP-23). Высота ракеты-носителя составляет 70,7 м. Стартовая масса - 733,4 т.

В ходе разработки ракеты-носителя рассматривалась возможность создания малого её варианта (Дельта IV Small). Она должна была иметь вторую ступень ракеты-носителя Дельта-2 с возможностью использования третьей ступени и головной обтекатель от Дельты-2, установленные на универсальном ракетном модуле первой ступени. Проект малого варианта РН был отклонен в 1999 г. Возможно, это объясняется тем, что ракета-носитель Дельта-2 имеет близкие параметры по полезной нагрузке.

Таблица обозначения версий

Все показатели полезной нагрузки указаны с учётом использования двигателя RS-68A.

Версия Обтекатель Ускорители ПН на НОО* ПН на ГПО** ПН на ГСО*** Число
запусков
Medium 4 м - 9 420 кг 4 440 кг 1 270 кг 3
Medium+ (4,2) 4 м 2 ТТУ 13 140 кг 6 390 кг 2 320 кг 14
Medium+ (5,2) 5 м 2 ТТУ 11 470 кг 5 490 кг 2 250 кг 2
Medium+ (5,4) 5 м 4 ТТУ 14 140 кг 7 300 кг 3 120 кг 7
Heavy 5 м 2 УРМ 28 790 кг 14 220 кг 6 750 кг 9

(* ) НОО - 200 × 200 км, наклонение 28,7°
(** ) ГПО - 35 786 × 185 км, наклонение 27°
(*** ) ГСО - 35 786 × 35 786 км, наклонение 0°

Сборка ракеты-носителя

Дельта IV Heavy внутри мобильной башни обслуживания (MST).

Ракета-носитель Дельта IV собирается по схеме, которая по утверждению компании Boeing сокращает стоимость и дорогое пребывание ракеты на стартовой площадке. Блоки первой ступени производятся на фабрике в Дакатуре, штат Алабама, США. После этого они транспортируются по воде до необходимой стартовой площадки, где перевозятся в ангар горизонтальной сборки (Horizontal Integration Facility) для сборки со второй ступенью, которая также проделывает основной путь по воде. Также в ангаре собираются вместе три блока CBC для ракеты-ноcителя Дельта IV Heavy.

После того как выполнено множество проверок, ракета-носитель с помощью мобильной башни перемещается горизонтально к стартовому столу, где устанавливается вертикально установщиком внутри мобильной башни обслуживания (Mobile Service Tower). На этом этапе присоединяются твердотопливные ускорители GEM-60 , если в них есть необходимость. После дополнительных проверок, полезная нагрузка, закрытая в головном обтекателе, транспортируется из ангара горизонтальной сборки к стартовой площадке и с помощью крана мобильной башни присоединяется к ракете-носителю. После этого ракета-носитель готова к запуску.

Стартовые площадки

Запуски ракеты-носителя Дельта IV производятся с двух стартовых площадок:

Перспективы развития

До принятия решения об отказе от ракеты, возможное будущее развитие ракет-носителей семейства Дельта IV включало в себя добавление дополнительных боковых твердотопливных ускорителей для повышения показателей полезной нагрузки, использование двигателей первой и второй ступеней с большей тягой, применение более легких материалов и увеличение числа унифицированных блоков CBC до шести штук. Эти модификации могли в принципе увеличить массу доставляемого на опорную орбиту груза до 60-100 тонн. В зависимости от характера принятых изменений в конце программы модернизации к 2020 году, процентная доля полезной нагрузки (для НОО) от стартовой массы ракеты-носителя могла достичь 5-5.5 % и превысить значение данного показателя 4,24 % у керосино-кислородной ракеты-носителя , которая является лучшей ракетой-носителем по этому показателю на 2009 год.

NASA первоначально имело планы по использованию ракеты-носителя Дельта IV Heavy для одноразового пилотируемого корабля CEV (Crew Exploration Vehicle ) в программе Созвездие, который предполагается использовать вместо космического челнока. Но с изменением CEV от концепций планера с крыльями или несущего крыла к концепции (Орион) и с переходом на ракету-носитель на основе твердотопливного ускорителя челнока, единственный компонент, который будет заимствован от Дельта IV будет водородно/кислородный двигатель RS-68.

Программа модернизации ракеты-носителя Дельта IV Heavy, нацеленная на использование более эффективных двигателей RS-68A, была рассчитана на период до 2011 года. Первый полет с новыми двигателями был выполнен 29 июня 2012. Результатом стало 13 % увеличение выводимой полезной нагрузки на ГПО. Новый двигатель RS-68A также планируется использовать на всех модификациях ракеты-носителя Дельта IV к 2015 году, обеспечиваемая им тяга 106 % должна привести к 7-11 % увеличению полезной нагрузки, выводимой на ГПО. Хотя здесь следует отметить, что большая тяга возможно потребует структурных изменений и использование двигателей при текущих 102 % тяги обеспечит меньшее улучшение показателей, но потребует меньше модификаций.

Другое возможное обновление семейства ракеты-носителя Дельта IV состояло в создании новых вариантов путём добавления дополнительных твердотопливных ускорителей. Одна такая модификация, Medium+ (4,4), могла бы использовать четыре ускорителя GEM-60, что теоретически обеспечило бы полезную нагрузку на ГПО 7 500 кг и 14 800 кг на низкой опорной орбите. Данный вариант является наиболее простым для реализации и возможен в пределах 36 месяцев от первого заказа. Две другие версии, Medium+ (5,6) и Medium+ (5,8), можно получить добавлением двух и четырёх твердотопливных ускорителей GEM-60 соответственно к модификации Medium+ (5,4). Это должно существенно увеличить массу полезной нагрузки до 9 200 кг на ГПО для Medium+ (5,8), но потребует значительной модификации в виде дополнительных точек крепления на первой ступени и изменений, направленных на учёт увеличенных нагрузок на конструкцию во время полета. Скорее всего, это потребует также изменений стартовой площадки и инфраструктуры. Версии Medium+ (5,6) и Medium+ (5,8) могут быть доступны в пределах 48 месяцев со времени первого заказа.

Запуски ракеты-носителя Дельта IV

Запуск Дельта IV Heavy с космическим кораблём Орион.

21 декабря 2004 года была впервые запущена ракета-носитель Дельта IV Heavy c массогабаритным макетом полезной нагрузки, после существенных задержек из-за плохой погоды. По причине кавитации в топливопроводах, датчики зарегистрировали исчерпание топлива. Двигатели боковых ускорителей и позже двигатель первой ступени были отключены преждевременно, хотя топлива оставалось достаточно для продолжения горения согласно плану полета. Вторая ступень попыталась скомпенсировать недоработку первой ступени и боковых ускорителей до тех пор, пока не завершилось топливо. Этот полет был пробным запуском со следующей полезной нагрузкой:

  • DemoSat - 6 020 кг; алюминиевый цилиндр, заполненный 60 прутьями из латуни, который предполагалось вывести на ГСО, однако из-за сбоя датчиков, спутник не достиг планируемой орбиты.
  • NanoSat-2 - выводимый на низкую околоземную орбиту, представлял собой два очень маленьких спутника Спарки (24 кг) и Ральфи (21 кг). С учётом недостаточного времени работы первых ступеней, наиболее вероятно, что они не достигли стабильной орбиты.

5 декабря 2014 года, в рамках тестовой миссии EFT-1, состоялся запуск ракеты-носителя Дельта IV Heavy с космическим кораблём Орион, который будет использоваться в будущих пилотируемых миссиях NASA к и .



Новая теория гравитации, сформулированная в 2010 году сотрудником Амстердамского университета Эриком Верлинде, до сих пор горячо оспаривается в научных кругах. Пожалуй, ни одна идея не вызвала бы столь бурной полемики, как отсутствие темной материи во Вселенной. Кажется, сейчас теория Верлинде имеет возможность получить новые доказательства. Это стало возможно благодаря текущим наблюдениям астрономов.

Убедительные доказательства

Текущее исследование астрономов было расценено как убедительное доказательство идеи эмерджентной гравитации, когда сила тяжести может возникать спонтанно, а не быть стихийно упорядоченной природной единицей. Пока собранные доказательства находятся на стадии проверки, а результаты исследования не опубликованы в научных журналах. Однако если эта теория получит официальное подтверждение, мир в очередной раз встанет на порог научной революции. Только теперь будут опровергнуты предположения Ньютона и Эйнштейна. С другой стороны, это может расставить все точки над «и», ведь классическая и квантовая механика не могут быть использованы одновременно.

Действительно ли сила тяжести не является реальной?

Согласно гипотезе Эрика Верлинде, сила тяжести не является реальной. Она является эффектом, связанным с энтропией, или необратимым рассеиванием энергии во Вселенной. Полученные доказательства не опровергают теорию космологических постоянных, которые утверждают, что галактики окружены темными материями. Эти фундаментальные вещества не вступают во взаимодействие с видимым светом и не могут быть обнаруженными с помощью наземных приборов.

В чем суть спора?

Приверженцы теории гравитации убеждены, что темная материя является теоретической частицей, заданной несколькими параметрами. Однако теория эмерджентной гравитации происходит от расширенных физических формул. Таким образом, обе теории могут не противоречить друг другу, поскольку в новой версии за основу расчетов было принято больше переменных.

Гравитационное линзирование

Астрономические наблюдения стали возможными благодаря гравитационному линзированию. Это явление принято связывать с отклонением световых лучей в поле тяжести. С помощью линз можно объяснить образование кратных изображений различных астрономических объектов. Преломление света, направленное на тяжелые объекты, ранее использовалось и в расширенных испытаниях стандартной космологической модели.

Несмотря на то что до сих пор нет прямых ссылок на линзирование в космологических опытах, ученые могут производить оценку ожидаемого линзирующего сигнала применительно к красному смещению галактик. Вероятно, их группирование происходит под действием сил притяжения.

Новая теория может изменить представление о времени, пространстве и гравитации

Таким образом, эмерджентная сила тяжести жаждет покончить с общей теорией относительности и темной материей. Так, при тестировании можно понять, каким образом отдельные объекты могут взаимодействовать друг с другом. Если общая теория относительности предсказывает модель реальной Вселенной, то новая идея применима к изолированным, сферическим и статическим системам.

По утверждению Карла Сагана, «экстаординарные заявления требуют экстраординарных доказательств». А пока запасемся терпением и будем ждать подтверждений зарождающейся теории гравитации.