Квантовое испарение черных дыр зельдович. Испаряются ли черные дыры

, чёрной дырой . В силу энерги и" href="http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8">закона сохранения энерги и , этот процесс сопровождается уменьшением массы чёрной дыры, т. е. её «испарением». Предсказан теор етически Стивеном Хокингом в году. Работе Хокинга предшествовал его визит в Москву в 1973 году, где он встречался с советскими учеными Яковом Зельдовичем и Александром Старобинским. Они продемонстрировали Хокингу, что в соответствии с принципом неопределенности квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы.

Испарение чёрной дыры - чисто квантовый процесс. Дело в том, что понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой же механике, благодаря туннелированию , появляется возможность преодолевать Потенциал ьный барьер" href="http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B1%D0%B0%D1%80%D1%8C%D0%B5%D1%80">потенциал ьные барьеры , непреодолимые для неквантовой системы.

В случае чёрной дыры ситуация выглядит следующим образом. В квантовой теор ии поля физический вакуум наполнен постоянно рождающимися и исчезающими флуктуациями различных полей (можно сказать и «виртуальными частицами »). В поле внешних сил динамика этих флуктуаций меняется, и если силы достаточно велики, прямо из вакуума могут рождаться пары частица-античастица . Такие процессы происходят и вблизи (но всё же снаружи) горизонта событий чёрной дыры. При этом возможен случай, когда полная энерги я античастицы оказывается отрицательной, а полная энерги я частицы - положительной. Падая в чёрную дыру, античастица уменьшает её полную энерги ю покоя , а значит и массу, в то время как частица оказывается способной улететь в бесконечность. Для удалённого наблюдателя это выглядит как излучение чёрной дыры.

Важным является не только факт излучения, но и то, что это излучение имеет тепловой спектр . Это значит, что излучению вблизи горизонта событий чёрной дыры можно сопоставить определённую температуру

где - постоянная Планка , c - скорость света в вакууме, k - постоянная Больцмана , G - гравитационная постоянная , и, наконец, M - масса чёрной дыры. Развивая теор ию, можно построить и полную термодинамику чёрных дыр .

Однако, такой подход к чёрной дыре оказывается в противоречии с квантовой механикой и приводит к проблеме исчезновения информации в чёрной дыре .

До сих пор эффект не подтверждён наблюдениями. Согласно ОТО , при образовании Вселенной должны были родиться первичные чёрные дыры, некоторые из которых (с начальной массой 10 12 кг) должны заканчивать испаряться в наше время . Так как интенсивность испарения растёт с уменьшением размера чёрной дыры, то последние стадии должны быть по сути взрывом чёрной дыры. Пока таких взрывов зарегистрировано не было.

Экспериментальное подтверждение

Исследователи из университета Милана (University of Milan) утверждают, что им удалось наблюдать эффект радиации Хокинга, создав антипод черной дыры - так называемую белую дыру. В отличие от белой дыры, «засасывающей» извне всю материю и излучение, белая дыра полностью останавливает свет, попадающий в нее, создавая, таким образом, границу, горизонт событий. В эксперименте роль белой дыры играл кристалл кварца, имеющий определенную структуру и помещенный в особые условия, внутри которого происходила полная остановка фотонов света. Освещая светом инфракрасного лазера вышеупомянутый кристалл, ученые обнаружили и подтвердили существование эффекта переизлучения, радиации Хокинга.

Физик Джефф Штейнхауэр (Jeff Steinhauer) из Израильского технологического института в Хайфе зафиксировал излучение, предсказанное Стивеном Хокингом еще в 1974 году. Ученый создал акустический аналог черной дыры и показал в экспериментах, что от нее исходит излучение, имеющее квантовую природу. Статья опубликована в журнале Nature Physics, кратко об исследовании сообщает BBC News.
...Зафиксировать это излучение на настоящей черной дыре пока не представляется возможным, поскольку оно слишком слабое. Поэтому Штейнхауэр использовал ее аналог - так называемую «глухую дыру». Для моделирования горизонта событий черной дыры он взял конденсат Бозе-Эйнштейна из охлажденных до близких к абсолютному нулю температур атомов рубидия.
Скорость распространения звука в нем очень мала - около 0,5 мм/сек. И если создать границу, с одной стороны от которой атомы движутся с дозвуковой скоростью, а с другой - ускоряются до сверхзвуковой скорости, то эта граница будет аналогична горизонту событий черной дыры. Кванты атомов - в данном случае фононы - в эксперименте захватывались областью со сверхзвуковой скоростью. Пары фононов были разорваны, один находился в одной области, а второй - в другой. Зафиксированные ученым корреля ции говорят о том, что частицы оказываются квантово запутанными.

Все рождается и умирает. Умирают и черные дыры. Их губят их же суперсильные гравитационные поля, в которых квантовые процессы протекают по-особому. Чтобы понять эти процессы, надо рассмотреть свойства физического вакуума.

Пустоты как таковой в природе нет. Есть вакуум, физический вакуум, в котором находится море не рожденных (виртуальных) частиц и античастиц. Никаким вакуумным насосом убрать эти не рожденные частицы нельзя. Нет и других способов устранить их. Эти не рожденные частицы рождаются только в том случае, если появится энергия. Тогда они превратятся в реальные частицы. Носители этой энергии могут быть разные - сильные электромагнитные поля, сильное гравитационное поле и т. д. В обычных же условиях только на короткий миг в каждой точке физического вакуума появляется пара - частица и античастица. Но они тут же сливаются и исчезают. Они возвращаются в свое «эмбриональное» состояние.

Рождение частиц и античастиц происходит, в частности, в переменном поле. Это может быть переменное гравитационное поле. Если гравитационное поле изменяется во времени, то из физического вакуума рождаются фотоны. Их частота соответствует времени изменения поля. В слабом гравитационном поле такой эффект очень мал. Но в сильном поле ситуация меняется. Подобным образом сильное электрическое поле вызывает рождение из физического вакуума пар заряженных частиц - электронов и позитронов.

Из сказанного выше ясно, что в сильных переменных гравитационных полях черных дыр могут рождаться (и рождаются) элементарные частицы и античастицы. При сжатии электрически заряженного тела и превращении его в заряженную черную дыру электрическое поле усиливается настолько, что оно порождает электроны и позитроны. Элементарные частицы рождаются и в эргосфере вращающейся черной дыры. При этом часть энергии вращения черной дыры уходит на рождение частиц. Но, по сути, здесь речь идет не об энергии самой черной дыры, а об энергии полей вокруг черной дыры. В результате рождения частиц и расхода на этот процесс энергии эти поля уменьшают свою энергию.

Однако оказалось, что и сама черная дыра может рождать элементарные частицы. То есть на переход частиц из виртуального состояния в реальное тратится энергия самой черной дыры. Естественно, что это энергия гравитационного поля черной дыры. В результате уменьшается как масса черной дыры, так и ее размеры.

Частица и античастица в физическом вакууме являются сиамскими близнецами. Они превращаются в реальные частицу и античастицу только вместе. Вместе они должны и исчезать, а точнее, возвращаться в физический вакуум. Так всегда и бывает в обычных физических условиях. Но в условиях черной дыры частица и античастица могут оказаться в разных мирах: одна из них может оказаться в области, откуда путь один - падать на черную дыру, а другая в это время может убежать от черной дыры. Рубиконом служит горизонт черной дыры. Если частица и античастица оказались по разные стороны горизонта черной дыры, то они уже никогда не могут слиться и уйти в физический вакуум, превратиться в физическое «ничто». Та частица, которая окажется по эту сторону горизонта черной дыры, спокойно уйдет в космос, унося с собой частичку энергии и массы черной дыры. Но на самом деле это процесс очень маломощный, и он с лихвой компенсируется тем, что на черную дыру непрерывно падает вещество из межзвездного пространства.

Черная дыра рождает не только фотоны, но и другие частицы. Если черная дыра обладает массой, равной массе нескольких Солнц, то их температура настолько низкая, что они могут производить только такие частицы, которые не обладают массой покоя. Это фотоны, электронные и мюонные нейтрино, а также их античастицы. Излучаются такой черной дырой и кванты гравитационных волн - гравитоны. Типичная звездная дыра рождает больше всего нейтрино всех сортов (84 % от всех частиц). Количество рожденных при этом фотонов составляет 17 %. Гравитонов рождается 2 %.

Черная дыра излучает больше всего нейтрино, потому что их квантовое вращение (спин) минимально. Оно равно 1/2. У гравитонов спин равен 2, поэтому их меньше всего.

Черная дыра с малой массой имеет высокую температуру. Такие черные дыры порождают кроме этих частиц и электронно-позитронные пары. Но речь идет о черных дырах, размеры которых в тысячу раз меньше атома. Это, конечно, очень похоже на фантастику. Но, оказывается, должны быть и черные дыры, которые еще меньше. Такие микроскопические черные дыры, как полагают физики, способны излучать также мюоны и более тяжелые элементарные частицы. Эти черные дыры не просто микроскопические. Их размер меньше атомного ядра. Ясно, что такие черные дыры не могут возникать путем бесконечного сжатия звезд. Полагают, что в далеком прошлом могли быть условия, необходимые для рождения таких черных дыр.

Черные дыры могут испаряться. Но это испарение является квантовым. Суть этого испарения состоит в следующем. По законам классической физики у частицы нет возможности вырваться из черной дыры. Но по законам квантовой механики у определенной доли частиц имеется возможность «просочиться» через запретный энергетический барьер. Запретный потому, что у частицы нет достаточного количества энергии для того, чтобы это сделать законно. Она просачивается через энергетический барьер вопреки всем законам физики. Именно вследствие такого процесса просачивания частиц и происходит испарение черных дыр. Получается, что черные дыры сами затягиваются без всяких внешних воздействий. Они просто превращаются в тепловое излучение.

Физики установили, что по мере уменьшения массы черной дыры в процессе испарения температура черной дыры увеличивается. Это значит, что испарение ускоряется. Так этот процесс постепенно нарастает. Когда масса черной дыры уменьшается до тысячи тонн, температура ее излучения увеличивается до 1CF". Это фантастическая температура. Следствием этого может быть только взрыв. Дело в том, что это вещество (последние тысячи тонн, которые остались от черной дыры) упаковано в очень маленьком, микроскопическом объеме. Оно взрывается и за одну десятую долю секунды превращается в излучение. При таком взрыве черной дыры выделяется энергия, которая эквивалентна взрыву одного миллиона мегатонных водородных бомб. Так кончает свою жизнь черная дыра. Что же касается жизни черной дыры, то она может быть долгой даже в космических масштабах.

от обычной звезды до черной дыры

Активный период жизни звезды определяется скоростью потери энергии на излучение и запасами топлива. Это зависит от массы звезды. Продолжительность жизни звезды определяется ее массой. Если масса звезды равна массе Солнца, то такая звезда живет активной жизнью примерно десять миллиардов лет. Чем массивнее звезда, тем короче ее активная жизнь. Если масса звезды составляет три массы Солнца, то такая звезда живет всего один миллиард лет. Звезда с массой, равной 10 масс Солнца, живет всего сто миллионов лет.

Когда ядерное топливо звезды заканчивается, звезда продолжает терять энергию. Она ее излучает и поэтому сжимается. Если масса звезды не превышает массу Солнца более чем в 1,2 раза, то сжатие ее закончится тогда, когда радиус звезды составит несколько тысяч километров. Плотность вещества таких звезд огромная. Один квадратный сантиметр этого вещества весит тысячу тонн. Такие звезды получили название белых карликов. Превратившись в белого карлика, звезда остывает и не изменяет своих размеров. Дальнейшему сжатию белого карлика препятствует давление газа. Оно обеспечивается квантовыми силами, возникающими между достаточно тесно упакованными электронами плазмы, которые составляют звезду. В этих условиях давление не зависит от температуры вещества звезды. Поэтому белый карлик остывает и превращается в черного карлика. Размер его при этом не изменяется.

В том случае, если масса звезды больше 1,2 массы Солнца, то в результате сжатия плотность ее вещества станет еще больше. При такой плотности начнут протекать ядерные реакции, которые поглощают много энергии. Поэтому звезда начинает стремительно сжиматься. Такое сжатие может закончиться ядерным взрывом, он называется вспышкой сверхновой звезды. В результате ядерного взрыва звезда сбрасывает оболочку и превращается в нейтронную звезду. В центре звезды плотность достигает миллиарда тонн в кубическом сантиметре. Примерно такова плотность атомного ядра. Собственно, специалисты считают, что нейтронная звезда есть что-то вроде атомного ядра размером в несколько километров. Ядерные частицы-нуклоны очень тесно упакованы в нейтронной звезде.

Если масса звезды не превосходит две массы Солнца, то нук-лонный газ способен квантовыми силами воспрепятствовать дальнейшему сжатию звезды. Тогда нейтронная звезда перестанет сжиматься и будет существовать в этом качестве. Нейтронные звезды считают холодными. Но на самом деле в ее центре температура достигает сотен - миллионов градусов, а на поверхности миллиона градусов. Тут нет никакого противоречия. При таком состоянии вещества как у нейтронной звезды понятие температуры является формальным, вычислительным и не имеет ничего общего с тем, к которому мы привыкли в повседневной жизни. Собственно, таково положение не только на нейтронной звезде, но даже в нашей атмосфере на высоте в сотни километров. Там ситуация обратная - плотность атмосферного газа столь мала, что можно говорить о вакууме. При такой малой плотности газа, как и при чрезмерно большой плотности, как в нейтронных звездах, температура является чисто вычислительной.

Стивена Хокинга была одна из первых научно-популярных книг, прочитанных мною, и я ее возненавидела. Возненавидела, потому что не понимала. Фрустрация от этой книги стала одной из основных причин, почему я стала физиком - ну, по крайней мере, я знаю, кого винить в этом.

Оригинальный пост не может похвастаться идеальной структурой повествования, которую я не стал изменять. Но проблема очень важна и актуальна, и за ее обсуждение и объяснение Сабине можно простить погрешности стиля.

Я перестала ненавидеть эту книгу - надо признать, с подачи Хокинга возгорелся интерес общей публики к фундаментальным вопросам физики (связанным с черными дырами). Но время от времени я все еще хочу ударить чертову книгу. Не потому что я не понимаю ее, но потому что она убедила так много людей, что они понимают ее.

В этой книге Хокинг нарисовал изящную картинку испарения черных дыр, которая теперь используется повсеместно. В его представлении черные дыры испаряются, потому что пары виртуальных частиц, возникающих вблизи горизонта, разрываются приливными силами. Одна из частиц оказывается за горизонтом событий, и падает в черную дыру, а вторая улетает вовне. В результате черная дыра постоянно излучает частицы на горизонте событий. Это просто, это интуитивно, и это совершенно неверно.

Такое объяснение - простая иллюстрация, не более. В реальности - вы не будете удивлены - ситуация более сложная.

Пары частиц - насколько вообще имеет смысл говорить о частицах в квантовой физике - не локализованы в пространстве. Они «размазаны» по области пространства, сравнимой с радиусом черной дыры (прим. пер. сродни тому, как электрон движется не по определенной орбите вокруг ядра атома, находясь к какой-то ее точке, а «размазан» вокруг ядра. ). Пары частиц возникают не как точки, но как облака, размытые всюду вокруг черной дыры, и они разделяются только на расстояниях, сравнимых с радиусом черной дыры. Картинка, которую нарисовал Хокинг для не-специалистов не подкрепляется никакой математикой. В ней есть элемент истины, но не стоит ее принимать слишком серьезно - это может стать источником многих заблуждений.

То, что объяснение Хокинга не точно, не является чем-то новым - с начала 70х было известно, что излучение Хокинга возникает не на самом горизонте. Уже в учебнике Биррела и Девиса (1984) ясно написано, что если если предположить возникновение излучения на горизонте и рассмотреть процесс излучения в обратном направлении по времени: отследить частицы, приближающиеся к горизонту событий издалека и увеличивающие при этом частоту ("синее смещение "), это не даст корректного описания области вблизи горизонта событий. Правильным подходом будет другой: частицы из пары Хокинга при рождении «размазываются» и смешиваются друг с другом, так что говорить о них как о «частицах» можно только в локальном смысле (имеется в виду локальная с точки зрения ОТО система координат, прим.пер. ). Более того, нужно честно считать наблюдаемые величины, такие как тензор момента-импульса.

Предположение о возникновении пар на некотором отдалении от горизонта событий было необходимо для решения загадки, которыми были озадачены физики в 70-80е. Температура излучения черной дыры очень мала, если смотреть издалека. Но чтобы это излучение вообще могло убежать от притяжения ЧД, оно должно изначально обладать огромной энергией вблизи горизонта. А тогда наблюдатель, падающий в черную дыру, обратился бы в пепел, проходя через область с такой энергией. Это в свою очередь нарушает принцип эквивалентности , согласно которому наблюдатель, падающий в черную дыру вообще не должен заметить ничего необычного при пересечении горизонта.

Чтобы разрешить эту проблему, нужно учесть, что нельзя рассматривать излучение как приходящее от самого горизонта. Если честно посчитать тензор энергии-импульса вблизи горизонта, окажется, что он достаточно мал, и остается таковым и при пересечении горизонта. На самом деле он насколько мал, что падающий наблюдатель сможет заметить разницу с плоским пространством только на расстояниях, сравнимых с радиусом черной дыры (что также является размером кривизны пространства-времени). Тогда все сходится, и никакого нарушения принципа эквивалентности не возникает.

[Я знаю, все это звучит похоже на проблему фаервола , которую я обсуждала ранее, но это несколько иной эффект. (прим.пер. Проблема фаервола возникает, если рассматривать запутанность между излученной частицей и упавшей в черную дыру. Чтобы удовлетворять принципам квантовой механики, эти корреляции должны разрушаться. При разрушении корреляций высвобождается огромная энергия, которая создает «огненную стену» на горизонте.) При этом возникают разные проблемы при вычислениях вблизи горизонта. Идею фаервола можно критиковать на основании того, что в оригинальной статье про фаервол тензор энергии-импульса посчитан не был. В отличие от других я не думаю , что проблема в этом.]

Настоящая, подкрепленная вычислениями, причина излучения частиц черными дырами заключается в том, что для разных наблюдателей понятие частицы отличается.

Мы привыкли, что частица либо находится у нас, либо не находится. Однако, это справедливо только пока мы равномерно движемся друг относительно друга. Если наблюдатель (мы) ускоряется, самое определение частицы для него изменяется. То, что выглядит пустым вакуумом для наблюдателя при равномерном движении, оказывается наполненным частицами при ускорении. Этот эффект назван в честь Билла Унру , кто предложил его практически одновременно с гипотезой излучения черных дыр Хокингом. Сам эффект слишком мал для привычных нам ускорений, и мы никогда не замечаем его.

Эффект Унру близко связан с эффектом испарения черных дыр Хокинга. При возникновении черных дыр материя, коллапсирующая в черную дыру, создает динамическое пространство-время, которое приводит к ускорению между наблюдателями в прошлом и будущем. В результате пространство-время вокруг коллапсирующей материи, которое не содержало частиц до возникновения черной дыры, оказывается наполненным тепловым излучением на поздних стадиях коллапса. То есть, излучение Хокинга - тот же самый вакуум, изначально окружавший коллапсирующее вещество, (прим.пер. ровно как в эффекте Унру вакуум наполняется излучением при ускорении наблюдателя ).

Это и является источником излучения черных дыр: само определение частицы зависит от наблюдателя. Не столь просто, как картинка Хокинга, но гораздо точнее.

Картинка с парами частица-античастица на горизонте, предложенная Хокингом, стала столь потрясающе популярной, что теперь даже некоторые физики верят, что именно так все и происходит (Прим.пер. До поста Сабины я и сам к своему стыду думал именно так ). Тот факт, что синее смещение излучения при рассмотрении его распространения обратно во времени от бесконечности к горизонту дает настолько огромную энергию на горизонте, оказался затерян в литературе. К сожалению, непонимание связи между потоком частиц Хокинга вдалеке от ЧД и вблизи горизонта событий приводит к неверному заключению, что этот поток гораздо сильнее, чем он есть на самом деле. Например, это привело Mersini-Houghton к ошибкам при выводе доказательства, что черные дыры вообще не существуют.

(Прим.пер. Дальше статья сокращена для удобства чтения, в оригинальном посте обсуждается книга «Spooky action at a distance» и расчеты , где вычисляется точное расстояние, на котором возникает излучение Хокинга - в несколькое радиусов ЧД - и в подробностях обсуждается источник эффекта )

Если книга Хокинга и научила меня одной вещи, так это тому, что прилипчивые визуальные метафоры может быть проклятием в той же мере, как и благом.

Излучение Хокинга - процесс излучения различных элементарных частиц , который был теоретически описан британским ученым Стивеном Хокингом в 1974-м году.

Задолго до публикаций работ Стивена Хокинга, возможность излучения частиц черными дырами высказывалась советским физиком-теоретиком Владимиром Грибовым в дискуссии с другим ученым - Яковом Зельдовичем.

Занимаясь исследованием поведения элементарных частиц вблизи черной дыры, в 1973-м году тридцатилетний Стивен Хокинг посетил Москву. В столице ему удалось принять участие в научном обсуждении с двумя выдающимися советскими учеными Алексеем Старобинским и Яковом Зельдовичем. Работая некоторое время над идеей Грибова, они пришли к выводу, что черные дыры могут излучать благодаря туннельному эффекту. Последний означает существование вероятности того, что частица может преодолеть любой барьер, с точки зрения квантовой физики. Заинтересовавшись данной темой, Хокинг подробно изучил вопрос и в 1974-м году опубликовал свою работу, впоследствии которой его именем было названо упомянутое излучение.

Стивен Хокинг несколько иначе описал процесс излучения частиц черной дырой. Первопричиной такого излучения являются так называемые «виртуальные частицы».

В процессе описания взаимодействий между частицами ученые пришли к мысли о том, что взаимодействия между ними происходят посредством обмена некими квантами («порции» какой-либо физической величины). Например, электромагнитное взаимодействие в атоме между электроном и протоном протекает при помощи обмена фотонами (переносчиками электромагнитного взаимодействия).

Однако тогда возникает следующая проблема. Если, рассмотреть этот электрон как свободную частицу, то он никоим образом не может просто излучить или поглотить фотон, согласно принципу сохранения энергии. То есть он не может просто потерять или приобрести какое-то количество энергии. Тогда ученые и создали так называемые «виртуальные частицы». Последние отличаются от реальных тем, что рождаются и исчезают так быстро, что зарегистрировать их невозможно. Все, что виртуальные частицы успевают сделать за короткий промежуток своей жизни – это передать импульс другим частицам, при этом, не передавая энергию.

Таким образом, даже пустое пространство, в силу неких физических флуктуаций (случайных отклонений от нормы) просто кишит этими виртуальными частицами, которые постоянно рождаются и уничтожаются.

Излучение Хокинга

В отличие от советских физиков, описание излучения Стивеном Хокингом основывается на абстрактных, виртуальных частицах, которые являются неотъемлемой частью квантовой теории поля. Британский физик-теоретик рассматривает спонтанное возникновение этих виртуальных частиц на черной дыры. В таком случае мощное гравитационное поле черной дыры способно «растащить» виртуальные частицы еще до момента их уничтожения, тем самым превратив их в реальные. Подобные процессы экспериментально наблюдаются на синхрофазотронах, где ученым удается растаскивать эти частицы, при этом затрачивая некоторое количество энергии.

С точки зрения физики, возникновение реальных частиц, имеющих массу, спин, энергию и прочие характеристики, в пустом пространстве «из ничего» противоречит закону сохранения энергии, а значит просто невозможно. Поэтому для «превращения» виртуальных частиц в реальные потребуется энергия, не меньше, чем суммарная масса этих двух частиц, согласно известному закону . Такой запас энергии затрачивает и черная дыра на то, чтобы растащить виртуальные частицы на горизонте событий.

В результате процесса растаскивания одна из частиц, находящаяся ближе к горизонту событий или даже под ним, «превращается» в реальную, и направляется в сторону черной дыры. Другая же, в обратном направлении отправляется в свободное плаванье по космическому пространству. Проведя математические подсчеты, можно убедиться в том, что даже, несмотря на полученную энергию (массу) от частицы, упавшей на поверхность черный дыры, энергия, потраченная черной дырой на процесс растаскивания - отрицательная. То есть, в конечном счете, в результате описанного процесса, черная дыра лишь утратила некоторый запас энергии, который, причем, в точности равен энергии (массе), которой обладает улетевшая «наружу» частица.

Таким образом, согласно описанной теории, черная дыра хоть и не излучает никаких частиц, но способствует такому процессу и теряет эквивалентную энергию. Следуя уже упомянутому закону Эйнштейна об эквивалентности массы и энергии, становится ясно, что черной дыре неоткуда брать энергию, кроме как из собственной массы.

Подводя итог всего вышеописанного, можно сказать, что черная дыра излучает частицу и при этом теряет некоторую массу. Последний процесс был назван как «испарение черной дыры». Исходя из теории об излучении Хокинга, можно догадаться, что спустя некоторое время, хотя и очень длительное (триллионы лет), черные дыры просто .

Интересные факты

  • Многие люди опасаются, что на Большом Адронном Коллайдере (БАК) могут образоваться черные дыры, и, вероятно, привнести угрозу в жизнь землян. Рождение черных дыр на БАК возможно только в случае существования дополнительных измерений пространства-времени и наличия мощного гравитационного взаимодействия на малых расстояниях. Однако сформированная таким образом микроскопическая черная дыра мгновенно испарится за счет излучения Хокинга.
  • На основе излучения Хокинга может работать сингулярный реактор или коллапсарный реактор – гипотетическое устройство, порождающее микроскопические черные дыры. Энергия излучения, образованного в результате их испарения, и будет основным источником энергии реактора.

Хотя Большой Адронный Коллайдер и выглядит грозно, из-за излучения Хокинга бояться его нечего

  • Опубликовав свою работу по излучению черных дыр, Стивен Хокинг поспорил с другим известным ученым – Кипом Торном. Предметом спора стала природа объекта, претендующего на звание черной дыры, под названием . Несмотря на то, что работа Хокинга основывалась на предположении о существовании черных дыр, он утверждал, что Лебедь Х-1 не является черной дырой. Примечательно, что в качестве ставок выступали подписки на журналы. Ставка Торна представлялась в виде 4-хгодовой подписки на сатирический журнал «Private eye», тогда как ставка Хокинга – годовая подписка на эротический журнал «Пентхауз». Логику своего утверждения в споре, Стивен аргументировал следующим: «даже если я окажусь не прав, утверждая о существовании черных дыр, то хоть выиграю подписку на журнал»

Вторая редакция

Цитата из Википедии.
«Изучая поведение квантовых полей вблизи чёрной дыры, Хокинг предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры.

Как происходит испарение.
У границы черной дыры физический вакуум находится в условно напряженном состоянии, вследствие чего он квантовым образом поляризуется (так решил Хокинг). Из ТО ничего подобного не следует. ТО Эйнштейна, вообще, несовместима с квантовыми представлениями. А квантовая теория, в свою очередь, не может оперировать безразмерными материальными точками, которыми манипулирует ТО.

Здесь требуется пояснение. Содружество релятивистов и некоторой части квантовиков, решившее примирить две несовместимые теории, пришло к следующему соглашению. Физический вакуум – это неисчерпаемое хранилище энергии в неизвестной нам форме. Это хранилище они образно назвали бушующим океаном (естественно четырехмерным, чтобы никто не мучился, пытаясь его представить). Наша Вселенная – является всего лишь пеной на поверхности этого бушующего океана. В результате этого бушевания, в нашем измерении происходит спонтанное рождение пар частица-античастица. Но это излучение мы не можем обнаружить в силу его скоротечности, т.е. оно для нас виртуальное. Дело в том, что каждая пара, еще не возникнув, уже аннигилирует . Случайные сбои в процессе моментальной аннигиляции, называемые флуктуациями этого бушевания, мы и наблюдаем как реальное рождение пары, что в обычных условиях происходит чрезвычайно редко. А вот в зоне горизонта событий ЧД, это уже обычное событие.

Каждая пара частиц характеризуется скоростью и направлением разлета частиц. И то, и другое – случайные величины. Ну вот, добрались до сути фокуса Хокинга: на поверхности горизонта событий направление разлета рожденных частиц перестает быть случайным, т.е. становится поляризованным, а именно, ортогональным к поверхности ЧД.

Однако у Хокинга по поводу полной поляризации вакуума подробностей нет, это всего лишь наши догадки. Можно мыслить поляризованное испарение и как изотропное рождение пар, но тогда испарение будет возможно только для пар, случайно оказавшихся ортогональными к горизонту событий. В этом случае возникает проблема с определением допустимых отклонений, т.к. в идеальном представлении, вероятность абсолютного совпадения направлений стремится к нулю.

Если подходящая для испарения пара рождается на поверхности ЧД (а поверхность эта, у Хокинга, бесконечно тонкая, хотя у других авторов - пенообразная), то неизбежно одна из частиц этой пары оказывается внутри ЧД, а вторая снаружи. У частицы, которая снаружи, появляется шанс покинуть ЧД. Но, как говорится, не каждая птица сможет перелететь Днепр. Чтобы покинуть ЧД частица снаружи должна иметь скорость, практически равную скорости света. Экспериментально, спонтанное рождении пар таких частиц еще не обнаружено. Но сделаем Хокингу уступку, пусть невозможное в природе, для него, станет возможным.

Итак, пусть с поверхности ЧД происходит (стартует) корпускулярное излучение. Рассмотрим процесс излучения с учетом начальных условий. Выберем самый простейший вариант ЧД, т.е. ЧД Шварцшильда. Как известно, такая ЧД имеет всего один первичный параметр, а именно, массу Mчд. В общем случае ЧД может иметь еще заряд Q и момент инерции MчдR, где R=0! Вся масса ЧД по определению (в соответствии с постулатом ТО Эйнштейна) сосредоточена в центре ЧД в одной безразмерной точке, называемой точкой сингулярности. При этом масса ЧД вполне конкретна и конечна. Ещё один размер ЧД, уже конечный, определяется условной границей, называемой «горизонтом событий». Горизонт событий материально никак не обозначен, есть только косвенный признак: ни один объект Вселенной, включая фотоны и нейтрино, не может покинуть область ЧД, ограниченную горизонтом событий.

Вернемся к нашему анализу. В исходном состоянии имеем стационарную ЧД с массой Мчд. Затем на условной поверхности ЧД происходит рождение пары. Это происходит за счет неизбывной энергии вакуумного океана, т.е. не за счет ЧД. Однако в этом случае подпорка для теории ЧД не получается. Надо, чтобы рождение пары происходило за счет ЧД. Раз надо – пусть так и будет.

Для того, чтобы одна из частиц могла покинуть ЧД, энергия каждой частицы, а с нею и её масса, должна быть близка к бесконечности,
Мисп= Мч/(1-v^2/c^2)^0,5 при «v», стремящейся к «c». Здесь Mисп - стартовая масса-энергия спонтанно рожденной частицы с массой покоя Мч. Внутренняя частица поглощается ЧД, и масса ЧД увеличивается на величину Мисп.

Здесь возникает сразу два вопроса к Хокингу. Где же тут испарение (потеря массы дырой), и кто кого захватывает? Ведь, прибавочная масса Мисп может быть сколь угодно большой, а Мчд конечна, т.е. возможна ситуация Мисп > Мчд. Но это означает, что ЧД не может родить пару, энергия которой больше энергии дыры. Вопросы, естественно, риторические, поэтому продолжим.

Раз уж мы исследуем излучение ЧД, необходимо выяснить судьбу испаренной частицы. При достаточно большой начальной скорости, близкой к скорости света, эта частица отдалится от ЧД достаточно далеко, и остановится. После чего снова начнет падать на ЧД, т.к. её стартовая скорость все-таки была меньше скорости света. Во время остановки и разворота частицы, её можно «спасти» от ЧД и даже исследовать. Окажется, что это простой электрон или позитрон с энергией равной m;c^2 или 0.5 МэВ.
У испаренной частицы нет возможности самостоятельно покинуть ЧД, т.к. частиц, рождающихся с необходимыми для этого параметрами, не существует. Таким образом, испарение частиц Черной Дырой невозможно в принципе.
Однако последнее утверждение относится только к одинокой ЧД. Если же ЧД существует в реальном космосе, то мимо неё будет пролетать множество космических объектов, которые способны уносить продукты излучения ЧД. Но эти же объекты могут являться «пищей» для ЧД.
Здесь следует напомнить читателю, что ЧД это вовсе не всё пожирающее страшилище. Представьте себе, что Солнце вдруг превратилось в ЧД. Станет темно, не будет магнитных бурь и солнечного ветра. Но все планеты будут продолжать движение по прежним орбитам. Будут прилетать и кометы. При этом часть комет, которая должна бы рванее упасть на Солнце, может в этой ситуации продлить свое существование, если траектории комет не будут пересекать границу горизонта событий ЧД.
Существует другой возможный сценарий событий. Частица снаружи горизонта событий аннигилирует с другой наружной частицей. В угоду Хокингу, обяжем образовавшиеся два гамма-кванта тоже быть поляризованными. Один из гамма-квантов устремится прочь от ЧД, и в данном варианте у него это с гарантией получится, т.к. его начальная скорость точно равна скорости света, а место старта чуточку удалено от горизонта событий.
Получив полную свободу за пределами притяжения ЧД, вырвавшийся гамма-квант окажется весьма похудевшим. Степень похудения зависит от места точки аннигиляции. Излучение должно быть представлено полным спектром, т.е. от 0 до m;c^2, и не обнаружить его, просто, не возможно. В этой ситуации Хокинг нам уже не указ. Чтобы узнать, как же происходит похудение гамма-кванта в поле гравитации, придется обратиться к наследию Эйнштейна. Но там ответа нет. А самое огорчительное, что нет ответа и на вопрос, как происходит фазовый переход от фотона-частицы (гамма-кванта) к кванту худеющего радиоизлучения, длина волны которого непрерывно скачками возрастает вплоть до максимально возможной длины – длины световой секунды. Но это огорчение уже для квантовой теории.
Есть еще один вопрос, уже к неизвестным авторам квантовых фантазий о вакуумном океане. Речь о виртуальных парах частиц, которые в огромном количестве рождаются на поверхности вакуумного океана и моментально аннигилируют. Рождение и исчезновение частиц мы не успеваем заметить, по определению. Но как можно не заметить огромное количество не исчезающих гамма-квантов, являющихся результатом аннигиляции? Ответ у авторов ЧД ошеломляюще простой: излучения нет, т.к. его наличие противоречило бы закону сохранения энергии. Вот так - изучайте классику.
Таким образом, вся теория ЧД это сплошная профанация - но она старательно замаскирована математическими зарослями, вскормленными на гидропонике произвольных предположений.
Идея же с испарением ЧД является не прикрытой ложью, и её необходимо рассматривать как бесстыдное надувательство, авторы которого уверенны в своей безнаказанности под крылом правящего учения - Теории Относительности Эйнштейна.

Здесь был рассмотрен простейший случай с ЧД Шварцшильда. Если же ЧД (безразмерную точку) раскрутить, то у нее якобы появится момент инерции (отложите классику), и все станет ещё затейливее. Но писать об этом почему-то скучно.

Нижний Новгород, октябрь 2015г.

ИСТОЧНИКИ

1. Стивен Хокинг, «Теория всего. Происхождение и судьба Вселенной».
2. Стивен Хокинг, «Краткая история времени».
3. Злосчастьев К., (кафедра гравитации и теории поля, Институт Ядерных Исследований, Национальный Автономный Университет Мексики. Доктор философии в области физики), «О сингулярности, информации, энтропии, космологии и многомерной Единой теории взаимодействий в свете современной теории черных дыр».
4. Хуан Малдасена (Juan Maldacena), (Институт высших исследований, Школа естественных наук, Принстон, Нью-Джерси, США) «Черные дыры и структура пространства-времени».
5. Новиков И.Д., Фролов В.П., «Чёрные дыры во Вселенной».
6. Паули В. «Теория относительности». - 2-е изд. - М.: Наука, 1983.
7. Новиков И.Д. «Черные дыры и Вселенная». М., Молодая гвардия, 1985.
8. Чандрасекар С. «Математическая теория черных дыр». М., Мир, 1986.
9. Черепащук А.М. «Поиски черных дыр». – Успехи физических наук, 2003, т.173, № 4.