Общие сведения о полициклических ароматических углеводородах (ПАУ). Полиароматические углеводороды Нежелательные последствия развития автомобилизма

Полиароматические углеводороды (ПАУ)

Среди множества токсичных веществ, образующихся при производстве энергии сжиганием ископаемых видов топлива, производствах химической, нефтехимической, металлургической, целлюлозно-бумажной промышленности, наиболее опасными являются вещества группы ПАУ (полиароматические углеводороды).

Группа ПАУ объединяет вещества, для которых характерно наличие в химической структуре трех и более конденсированных бензольных колец. Простейшие вещества из группы ПАУ – антрацен и фенантрен. Эти вещества не обладают канцерогенной (мутагенной) токсичностью, присущей другим ПАУ, какими являются холантрен, перилен, бенз(а)пирен, дибензпирен. На фоне их токсичности как нетоксичные квалифицируются и весьма похожие по структуре бензперилен, пирен, флуорантен.

Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, и чем ниже температура в устройстве для сжигания, тем больше образуется ПАУ. Относительно малые количества бенз(а)пирена обнаружены в асфальте. Вместе с другими продуктами сгорания ПАУ поступают в воздух. При комнатной температуре все ПАУ -– твердые кристаллические вещества. Температуры их плавления близки к 200 °С, а давление насыщенных паров очень мало. При охлаждении горячих газов, содержащих ПАУ, эти вещества конденсируются и оседают в зоне выбросов. На расстоянии нескольких километров от угольной ТЭС поверхность почвы загрязнена ПАУ. Но большая часть ПАУ уносится на дальние расстояния в виде аэрозолей. Прекрасным адсорбентом для ПАУ являются сажевые частицы. На 1 см 2 сажевой поверхности могут разместиться ~ 10 14 молекул ПАУ. Об относительном вкладе разных источников можно судить по данным о выбросах бенз(а)пирена (в т/год) в США:

Вклад всех курильщиков США в общее производство бенз(а)пирена невелик – 0,05 т/год. Но мнение о малозначимости этого количества сменится на противоположное на основе данных о локальных концентрациях бенз(а)пирена:

Содержатся ПАУ и в питьевой воде. Содержание бенз(а)пирена в питьевой воде составляет 0,3-2,0 нг/л. В атмосфере ПАУ довольно устойчивы. Их постепенная трансформация в иные продукты происходит при взаимодействии с озоном (с образованием полиядерных хинонов) и диоксидом азота (продукты – нитробенз(а)пирены, характерные высокой мутагенной активностью). ПАУ – типичные экотоксины. Сложность защиты окружающей среды от ПАУ связана с малостью концентраций этих веществ.

Токсические свойства бенз(а)пирена изучены на мышах: обнаружено подавление популяции за счет гибели при рождении и уменьшения веса новорожденных животных. Показано, что возникновение раковых заболеваний происходит и при ингаляции, и при введении бенз(а)пирена с пищей, а также при контакте с кожей. Однако эти результаты получены при дозах бенз(а)пирена в сотни и тысячи раз больших, чем получаемые людьми из окружающей среды. Из организма бенз(а)пирен частично выводится в неизмененном виде, а частично окисляется, давая производные фенольного и хинонного типа. Некоторым из этих продуктов также присуща мутагенная активность.

Лит. Пурмаль А.П. Антропогенная токсикация планеты. Часть 2.

Хроматограммы образцов, содержащих соединения этой группы

Метод

Полициклические ароматические углеводороды (ПАУ)

Полициклические ароматические углеводороды (ПАУ) не производятся промышленностью, они образуются в процессах горения. В частности, представителей этой группы соединений можно обнаружить в смолах, битумах, саже, они выделяются из гуминовых компонентов почвы, содержатся в выхлопных газах двигателей, продуктах горения отопительных установок, промышленных печей и т.д. Обычно они образуются в результате неполного сгорания органических соединений, но могут также синтезироваться некоторыми бактериями, водорослями и высшими растениями. ПАУ относительно малорастворимы в воде и прочно адсорбируются на взвешенном материале, особенно на глинистых частицах, что ведет к появлению в водной среде более высоких концентраций, чем те, которые были бы возможны только на основании представлений о растворимости.

В условиях окружающей среды обнаружено более 200 полициклических ароматических углеводород (ПАУ), большинство из которых обладают высокой устойчивостью и способны интенсивно накапливаться в различных компонентах водной среды. В водной среде их токсичность уменьшается вдвое за 5-10 лет. При микробиологическом распаде этот период составляет более 58 дней, однако за этот промежуток времени вещества не разрушаются полностью, а лишь изменяются под действием ферментов. Многие ПАУ опасны не только своей токсичностью, но и тем, что обладая трансформирующей активностью, могут способствовать возникновению канцерогенных, тератогенных или мутагенных изменений в организмах, причем канцерогенное действие их часто проявляется при дозах, которые на 1-2 порядка ниже, чем дозы общетоксического действия. Наибольшей канцерогенной активностью обладает 3,4-бензпирен (бенз(а)пирен) (табл. 4). Существенная часть растворяющихся в воде бициклических и трициклических ПАУ не является канцерогенами, однако под действием УФ излучения они переходят в соединения, остротоксичные для водных организмов.

Таблица 3. Формулы некоторых ПАУ

Способность ПАУ растворяться в воде значительно возрастает в присутствии нефти, бензола, СПАВ, ацетона и ряда других органических поллютантов, типичных для городских рек. В водной среде ПАУ претерпевают разнообразные химические превращения и подвергаются биологической деградации.

Последняя связана с участием ПАУ в метаболизме микроорганизмов (для окисления необходим кислород), а также растительных и животных организмов. Водные растения способны метаболизировать ПАУ. Значительная часть ПАУ способна сорбироваться на твердых органических частицах.

Вследствие гидрофобности, низкой растворимости в воде и высокой сорбционной способности ПАУ в значительной мере накапливаются на поверхности раздела вода-атмосфера.

Здесь они подвергаются довольно интенсивному окислению, в результате чего образуются кислородсодержащие соединения типа 5-феноксибензапирен и др. Основными окислителями при этом служат ОН-радикал и озон, приводящие к образованию перекисей и дионов, служащих, в свою очередь, источником появления разнообразных продуктов фотолиза.

В присутствии фенолов деградация их заметно снижается. Интенсивность фотохимического окисления ПАУ зависит от состава и свойств воды (мутности, температуры, содержания кислорода и т.п., т.е. параметров, резко меняющихся в условиях техногенеза). Скорость разложения ПАУ обратно пропорциональна уменьшению величины рН среды и возрастает с ростом температуры и концентрации свободного хлора. К настоящему времени установлено, что многие ПАУ скорее устойчивы в природных условиях, нежели малостабильны.

Концентрации ПАУ в поверхностных водах колеблются в широких пределах: от 0,0-0,2 нг/л в условно чистых до 1000 нг/л в сильно загрязненных водах. В свое время концентрации этих соединений в водах разных рек Германии колебались от 0,12 до 3,1 мкг/л. Обычно наиболее канцерогенные из ПАУ сосредотачиваются в поверхностном микрослое воды (поверхностной пленке).

Среди ПАУ выделяют соединения с молекулярной структурой преимущественно антропогенного и преимущественно природного происхождения.

Природными источниками ПАУ являются вулканы, углеводородные потоки от нефтегазовых и рудных месторождений и др. Содержания природных аналогов ПАУ могут быть также достаточно высоки.

В городах основное поступление ПАУ связано с промышленными предприятиями, работающих на угле, а также с выбросами автотранспорта. Например, в продуктах сгорания органического топлива идентифицировано более 200 полициклических ароматических углеводородов, а в выхлопных газах транспорта - до 150 ПАУ, их замещенных производных и гомологов.

Именно поэтому существенным источником поступления ПАУ в реки является не только канализационный сток города, но и поверхностный сток с его территории.

В сырой нефти, не подвергавшейся значительному термическому воздействию, ПАУ обнаруживается редко. Вместе с тем количество его резко возрастает в продуктах ее переработки.

В качестве приоритетных органических загрязнителей, при оценках техногенного загрязнения рек обычно рекомендуют изучать флуорантен, 10,11-бензфлуорантен, 11,12-бензфлуорантен, 3,4-бензпирен, 2,3-ортофениленпирен, 1,12-бензперилен. Ели суммарное количество их не превышает 40 нг/л, то говорят о малой степени загрязнения поверхностных вод. Однако в промышленны районах содержания только 3,4-бензпирена достигают десятков и даже сотен нг/л, тогда как условно фоновые концентрации его в речных водах обычно не превышают 1 нг/л. В поверхностных водах биосферных заповедников России, концентрации БП в основном изменялись от 0,01 до 5 нг/л (среднее 3,2 нг/л), иногда больше. В производственных сточных водах содержания БП составляют от 0,03 до 10 мг/л. В Голландии очистке подлежат грунтовые воды, если содержание в них БП превышает 1 мкг/л.

ПАУ очень негативно влияют на водную экосистему, так как являются очень токсичными соединениеми. У гидробионтов накопление ПАУ протекает по-разному. Так, одни семейства рыб не проявляют к нему склонности, другие, например, карп, могут аккумулировать за 76 часов 2700-кратные количества ПАУ.

В цепях питания, существующих в водных экосистемах, кумуляционных эффектов пока обнаружено не было. ПАУ редко встречаются в среде обитания изолированно; как правило, наблюдаются многочисленные взаимодействия со смесями ПАУ, посредством которых может усиливаться их действие с известной канцерогенной активностью.

Примерно до 60-65% ПАУ в поверхностных водах связано со взвешенными частицами (особенно органическими), которые играют большую роль в процессах переноса в толще воды и депонирования, например, БП в донные отложения.

Установлено, что флюорантен и его бензологи, обладающие довольно сильной канцерогенной активностью, широко распространены в поверхностных водах освоенных районов.

Как правило, на порядок выше, по сравнению с БП, содержание в водах пирена. Ряд ПАУ имеет биогенное происхождение, в связи с чем исследования по индикации их происхождения являются весьма важными и актуальными. По оценке В.П. Андрюкова, общий вынос БП реками в океан составляет около 35 т в год, причем 22 т имеет антропогенное происхождение.

Экологическое и токсикологическое воздействие полициклических ароматических углеводородов (ПАУ) на окружающую среду

Нгандже Tересе Нтонзи,

кандидат наук по геохимии окружающей среды, преподаватель кафедры геологии университета Калабар штата Кросс-Ривер в г. Калабар Федеративной Республики Нигерия,

Абара Энагу Aбара,

кандидат химических наук, проректор Технологического университета штата Кросс-Ривер в г. Калабар Федеративной Республики Нигерия,

Ибе Kеннет A,

кандидат наук по химии окружающей среды, преподаватель факультета теоретической и промышленной химии Государственного университета нефтяных ресурсов в г. Эффурун штата Дельта Федеративной Республики Нигерия,

Неджи Питер Амба,

аспирант кафедры технологии нефти и экологии Кубанского государственного технологического университета.

Присутствие ПАУ в окружающей среде является источником обеспокоенности специалистов в области органической химии, биохимиков, химиков по проблемам окружающей среды и геохимиков. Поскольку большинство ПАУ с низкой молекулярной массой являются токсичными для бактерий, то они замедляют биологическое разложение, в то время как другие являются канцерогенными. Кроме того, для геохимиков понимание присутствия ПАУ в геологических образцах приводит к установлению типа отложений окружающей среды, делая ПАУ потенциально полезными в качестве биомаркеров.

vyvod-iz-zapoya-moskva.com

Полициклические ароматические углеводороды (ПАУ) – это химические соединения, состоящие из двух и более сцепленных бензольных колец.

Имеются тысячи ПАУ соединений, каждое из которых отличается по количеству и расположению ароматических колец, а также позицией заместителей.

ПАУ встречаются в нефти, каменном угле, отложениях смолы, а также выступают в роли побочных продуктов при сгорании топлива (вне зависимости ископаемое ли это топливо или полученное из биомассы). Как загрязняющий агент они являются предметом большой обеспокоенности потому, что некоторые соединения были идентифицированы как канцерогенные, мутагенные и тератогенные.

Экологические и токсикологические аспекты полициклических ароматических углеводородов в окружающей среде в отношении природных ресурсов.

Озабоченность в отношении окружающей среды сфокусировалась на ПАУ, которые имеют молекулярную массу от 128,16 (нафталин, 2-кольцевая структура) до 300,36 (гексабензобензол, 7 – кольцевая структура). Незамещенные ПАУ соединения с низкой молекулярной массой, содержащие от 2-3 колец, показывают значительную токсичность, а другие – неблагоприятный эффект на некоторые организмы, но не являются канцерогенными; ПАУ с более высокой молекулярной массой, содержащие от 4 до 7 колец, значительно менее токсичны, но многие 4, 7-кольцевые соединения являются канцерогенными, мутагенными или тератогенными в отношении широкого ряда организмов, включая рыбу и другие водные организмы, амфибий, птиц и млекопитающих. (Эдвардс, 1983. Исмен, 1984. см. рисунки 1 и 2)

Источники ПАУ

ПАУ повсеместно встречаются в природе. Так доказано их присутствие в геологических отложениях, почве, воздухе, на поверхности образцов воды, в растительных и животных тканях. Первоначально ПАУ появились в результате таких природных процессов как лесные пожары, микробиальный синтез и вулканическая активность. (Согласно Баттерсби, С. 2004). Их также находят в межзвездном пространстве, в кометах, метеоритах и они также являются молекулярными маркерами в основе самых ранних форм жизни.

Человеческая деятельность, приводящая к значительному выделению ПАУ, что в свою очередь ведет к сильному загрязнению на ограниченных территориях, включает высокотемпературный пиролиз (>700 0 С) органических материалов, типичный для некоторых процессов, используемых при производстве железа и стали, в алюминиевых плавильных печах, на металлургических и коксовых заводах, при очистке нефти, при генерации энергии с помощью нагрева.

Водная среда может получать ПАУ при случайных разливах нефти и нефтепродуктов из средств ее хранения и транспортировки, из канализационных стоков и из других источников.

Доказательства, показывающие, что ПАУ являются причиной раковых и предраковых поражений, весьма очевидны и этот класс веществ, вероятно, является главной причиной недавнего увеличения уровня заболеваемости раком в индустриально развитых странах (Кук и Деннис 1984).

ПАУ были первыми известными веществами, канцерогенный эффект которых был установлен (Ли и Грант 1981).

В силу наличия канцерогенных характеристик у многих ПАУ и их возрастающей концентрации в окружающей среде, до получения более определенных экотоксикологических данных является целесообразным понизить концентрацию либо полностью нейтрализовать их везде, где это возможно (Эйслер, Р. 1987).

Рис. 1. Вещества, обладающие значительным уровнем токсичности, но не канцерогенные.

Рис. 2. Вещества с выраженным канцерогенным эффектом.

Воздействие ПАУ на окружающую среду

Полициклические ароматические углеводороды, будучи выброшенными в окружающую среду, обычно попадают в воздух. Некоторые испаряются в воздух из почвы или подземных вод и затем прилипают к микрочастицам, взвешенным в воздухе.

Полициклические ароматические углеводороды (ПАУ) могут по прошествии времени разрушаться под воздействием солнечного света или в результате реакции с другими химическими веществами в воздухе.

ПАУ малорастворимы в воде, они прилипают к пыли или грязи и опускаются на дно озер и рек. Различные группы микроорганизмов в осадке и в воде могут разрушать некоторые ПАУ по прошествии времени, причем, чем выше молекулярный вес, тем меньше скорость распада .

Полициклические ароматические углеводороды перемещаются в атмосфере в виде взвешенных в воздухе микрочастиц. Они переносятся воздушными потоками и оседают в виде сухих или мокрых (дождь, роса и т.п.) отложений. Оседая в озерах и реках, они опускаются на дно. Некоторые проникают сквозь слой почвы в грунтовые воды.

Токсичность полициклических ароматических углеводородов в отношении аквакультур и птиц колеблется от умеренной до высокой. Некоторые наносят ущерб и приводят к гибели сельскохозяйственные и декоративные злаки.

На данный момент имеет место недостаток данных в отношении острой и хронической токсичности в отношении наземных животных. ПАУ умеренно стойки в окружающей среде и могут биоаккумулироваться. Концентрация полициклических ароматических углеводородов в рыбе и моллюсках иногда значительно выше, чем в окружающей среде этих организмов.

ПАУ могут быть также прямо генотоксичны, при этом имеется в виду что химикаты и продукты их распада могут непосредственно взаимодействовать с генами и вызывать повреждения ДНК. При исследовании загрязнителей окружающей среды в домашней пыли, проводившимся Сайлент Спринг Инститьют, было установлено, что три ПАУ (пирен, бенз[а]антрацен и бенз[а]пирен) содержались в более чем трех четвертях обследованных домов.

Опасность, которую представляют ПАУ для окружающей среды

На шкале опасности в отношении окружающей среды от 0 до 3, представленной выше на рисунке 3, полициклические ароматические углеводороды имеют отметку 1,5. Уровень 3 представляет очень высокую опасность для окружающей среды, а уровень 0 представляет незначительную опасность. Факторы, принимаемые в расчет, включают в себя оценку степени токсичности или нетоксичности вещества, измерение его способности сохранять активность в окружающей среде и способности аккумулироваться в живых организмах. Выделение вещества в расчет не принимается. Оно отражается в уровне НПИ для данного вещества. Одно из веществ, опасность которого для окружающей среды оценивается как высокая это оксид азота (3) и одно из веществ, опасность которого оценивается как низкая это оксид углерода (0,8).

Токсичность ПАУ для человека

Токсичность ПАУ очень зависит от структуры, даже изомеры могут быть как нетоксичными, так и исключительно токсичными. Таким образом, высоко канцерогенные ПАУ могут быть малыми (менее 3 колец) или большими (более 4 колец). Один ПАУ, бензо[а]пирен, является первым исследованным канцерогеном и является одним из многих канцерогенов, содержащихся в сигаретах. Семь ПАУ были классифицированы как вероятные человеческие канцерогены: бенз[а]антрацен, бензо[а]пирен, бензо[ b ]флюорантен, бензо[к]флюорантен, крисен, дибенз[а, h ]антрацен и инденопирен.

ПАУ, известные своими канцерогенными, мутагенными и тератогенными свойствами: бенз[а]антрацен и крисен, бензо[ b ]флюорантен, бензо[ j ]флюорантен, бензо[к]флюорантен, бензо[а]пирен, бензо[ ghi ]пирилен, коронен, дибенз[ a , h ]антрацен, инденопирен и овален (Фетцер, Д. К.(2000), Лач, А (2005)).

В силу недостатка репрезентативных смесей ПАУ для целей исследования, воздействие биологических и небиологических модификаторов на токсичность ПАУ и метаболизм еще недостаточно понятен.

Были предложены следующие критерии безопасности общего содержания ПАУ, канцерогенных ПАУ и бензо(а)пирена для питьевой воды и воздуха и общего содержания ПАУ и бензо(а)пирена в пище: 0,01 до <0,2 мкг общих ПАУ/л, <0,002 мкг канцерогенных ПАУ/л и 0,0006 мкг бензо(а)пирена /л; воздух: < 0,01 мкг общих ПАУ/м 3 , <0,002 мкг канцерогенных ПАУ/м 3 и 0,0005 мкг бензо(а)пирена/м 3 ; пища: 1,6 до < 16,0 мкг общих ПАУ ежедневно и 0,16 до < 1,6 мкг бензо(а)пирена ежедневно.

Направления использования

Многие ПАУ не используются в принципе. Но некоторые используются в медицине, для производства красок, пластиков и пестицидов. Нафталин, также известный как шарики от моли, используется при производстве красителей, взрывчатых веществ, пластиков, смазок и средств от моли. Антрацен используется в красках, инсектицидах и средствах для защитной обработки древесины.

Заключение

Из приведенного обзора очевидно, что, несмотря на некоторую полезность ПАУ, их экологическая и токсикологическая опасность является предметом острой озабоченности и концентрация их должна быть сильно снижена в окружающей среде, а в лучшем случае они должны быть из нее полностью ликвидированы.

Литература

1. Баттерсби С (2004). Органическое происхождение космических молекул. Январь 2004, http:// www. newscientist. com/ news/ news. jsp? id= ns99994552 .

2. Кук М и А. Д. Деннис. 1981. Химический анализ и биологическая роль: полиядерные ароматические углеводороды. Пятый международный симпозиум. Баттель Пресс, Колумбус, Огайо. 770 с.

3. Едвардс Н.Т. 1983. Полициклические ароматические углеводороды (ПАУ) в наземной окружающей среде – обзор. Журнал «Качество окружающей среды» 12.427-441.

4. Исман Г. А., Давани Б., и Додсон Д. А. 1984. Гидростатическое тестирование газовых трубопроводов как источник попадания ПАУ в водную среду. Международный журнал химического анализа окружающей среды. 19:27-39.

5. Ислер Р (1987) Влияние полициклических ароматических углеводородов на рыбу, живую среду и беспозвоночных: Синоптический обзор.

6. Служба рыбы и дикой природы США, Центр исследования живой природы Патуксент. Лаурель. ЕПА. 1980. Качество воды с точки зрения содержания полициклических ароматических углеводородов. Агенство по защите окружающей среды США. 440/5-80-069.193.

7. Фетцер Д. К. (2000) Химия и анализ тяжелых полициклических ароматических углеводородов. Нью-Йорк. Виллей.

8. Ли С. Д., Грант Л. 1981. Здоровье и экологическая оценка полициклических ароматических углеводородов. Издательство Патотекс. Парк Форест Соуз, Иллинойс. 364 с.

9. Лач А. (2005). Канцерогенный эффект полициклических ароматических углеводородов. Лондон: Империал Колледж Пресс, ISBN 1-86094-417-5.

Полициклическими ароматическими углеводородами (ПАУ) называют большую группу органических соединений, содержащих два или более бензольных кольца (рис. 2.3). Они вызывают повышенный интерес экологов в связи с их высокой биологической (канцерогенной и мутагенной) активностью . Образование и поступление ПАУ в окружающую среду связано с микробиологическими и высокотемпературными процессами, протекающими в природе (лесные пожары, вулканическая деятельность), и антропогенными факторами (работа промышленности, сжигание топлива, транспортные выхлопы и т.п.) . Наряду с незамещенными полициклическими ароматическими углеводородами в окружающую среду поступают и их гетероциклические аналоги, иногда более

Рис. 2.3.

I - нафталин; 2 - аценафтилен; 3 - аценафтен; 4 - флуорен; 5 - фенантрен; 6 - антрацен; 7 - флуорантен; 8 - пирен; 9 - бенз(а)антрацен; 10 - хризен;

II - бенз(Ь)флуорантен; 12 - бенз(к)флуорантен; 13 - бенз(а)пирен; 14 - дибенз- (аф)антрацен; 15 - бенз^,1у)перилен; 16 - индено(1,2,3-с

токсичные, чем исходные соединения. Их присутствие в смеси с ПАУ может вызвать синергетический эффект.

Помимо незамещенных ПАУ, существует большое число полициклических соединений, содержащих различные функциональные группы в кольцах или в боковых цепях (нитро-, амино-, суль- фопроизводные, спирты, альдегиды, эфиры, кетоны и др.). Боль-

Углеводород

Температура, °С

Растворимость, мкг/л

плавления

в пресной воде

в соленой воде

Нафталин

Аценафтилен

Аценафтен

Фенантрен

Антрацен

Флуорантен

Бенз(а)пирен

Бенз(§,Ьд)перилен

Дибенз(а,Ь)антрацен

шинство ПАУ - кристаллические вещества (за исключением некоторых производных нафталина) с высокими температурами плавления (табл. 2.6). Из таблицы видно, что в воде ПАУ растворяются плохо. Растворимость ПАУ в органических растворителях возрастает и зависит от молекулярной массы. Как правило, с увеличением числа ароматических колец и алкильных радикалов растворимость ПАУ в воде уменьшается.

ПАУ интенсивно поглощают УФ-излучение (320 - 420 нм) и быстро окисляются под действием света в атмосфере с образованием хинонов и карбонильных соединений. Так, при 20-минутном облучении в УФ-диапазоне разлагается до 85 % антрацена, 70 % тетрафена, 52 % бенз(а)пирена, 51 % хризена, 34 % пирена . В городском воздухе ПАУ в основном адсорбированы на частицах сажи или пыли. Такие частицы могут существовать в атмосфере в виде аэрозолей или взвесей несколько недель и переноситься с воздушными потоками на значительные расстояния.

В присутствии оксидов азота ПАУ образуют нитропроизводные, многие из которых являются канцерогенами. Скорость образования нитросоединений зависит от концентрации NO* в атмосфере и температуры. Кроме того, большинство полициклических ароматических углеводородов участвуют в реакциях с сильными окислителями с образованием различных продуктов.

Установлен следующий ряд относительной стабильности ПАУ в городской атмосфере :

  • лето: бенз(а)пирен
  • зима: бенз(а)пирен

В отличие от превращений ПАУ в атмосфере из воды они удаляются в основном за счет биологической деградации. Так, микрофлора сточных вод способна разрушать до 40 % ПАУ, причем деструкция под действием микроорганизмов протекает не только в воде, но и в донных отложениях. Заметим, что многие ПАУ не являются канцерогенами, но под действием ультрафиолетового излучения переходят в воде в соединения, токсичные для водных организмов.

Микроорганизмы способны разрушать ПАУ и в почве. Наиболее эффективно такое разложение протекает в кислых пористых почвах. Так, в почве с pH 4,5 в первые 10 суток разлагается от 95 до 99 % бенз(а)пирена, тогда как при pH 7,2 - только от 18 до 80 % . В процессах самоочищения почв от ПАУ существенную роль играют и другие факторы, например метаболизм в растениях, ферментативная активность микроорганизмов, температура, влажность. В южных районах этот процесс протекает быстрее, чем в северных.

Одним из основных показателей токсичности полициклических ароматических углеводородов является их канцерогенность. Из обычного набора ароматических углеводородов, содержащихся в воздухе и других средах, наибольшую канцерогенную активность имеют бенз(а)пирен и дибенз(а,11)антрацен. Несмотря на то, что МАИР относит бенз(а)пирен к группе 2А, т.е. к веществам, канцерогенность которых для человека имеет ограниченные доказательства, концентрации бенз(а)пирена в воздухе на уровне 3-6 нг/м 3 при длительном воздействии могут привести к увеличению частоты рака легкого у населения. Канцерогенными являются многие нитропроизводные ПАУ. Например, 1-нитропирен проявляет мутагенные и канцерогенные свойства. Он поступает в окружающую среду при сжигании каменного угля в топках ТЭЦ, а также с выхлопами дизельных двигателей. Мутагенные нитропроизводные ПАУ обнаруживают в пробах сточных вод на бензозаправочных станциях, в отработанных автомобильных маслах. В последних содержание 1-нитропирена может достигать более 100 нг/л. В табл. 2.7 приведены коэффициенты токсичности ПАУ относительно бензапирена.

Токсичность отдельных представителей ПАУ зависит как от индивидуальных особенностей живых организмов, так и от экологической обстановки в целом. Она определяется также физико-

географическими, климатическими и погодными условиями. При этом для ПАУ кумулятивный эффект более выражен по сравнению с кратковременным воздействием высоких доз токсикантов. На основании исследований гигиенистов в России установлены следующие значения ПДК для бенз(а)пирена: 1 нг/м 3 (среднесуточная) - для воздуха населенных мест; 5 нг/л - для поверхностных вод; 20 мкг/кг - для сухой почвы .

Однако обоснованность применения бенз(а)пирена в качестве индикатора загрязнения окружающей среды полициклическими ароматическими углеводородами весьма проблематична. Его обнаружение свидетельствует лишь о факте загрязнения природной среды этими соединениями. Для получения реальной картины необходимо знать концентрацию 16 приоритетных веществ, которые формируют фоновое содержание ПАУ в атмосферном воздухе (см. рис. 2.3) .

В группу приоритетных ПАУ для поверхностных вод входят шесть представителей из этого списка: бенз(а)пирен и бенз(Ь)- флуорантен (сильные канцерогены), 6eH3(g,h,i)nepimeH и индено- (1,2,3-сс1)пирен (слабые канцерогены), а также неканцерогенные, но токсичные флуорантен и бенз(к)флуорантен. Присутствие ПАУ в поверхностных водах свидетельствует об угрозе здоровью населения. Согласно рекомендациям ВОЗ, общая концентрация приоритетных полициклических ароматических углеводородов в питьевой воде не должна превышать 0,2 мкг/л.

Индикаторами промышленных выбросов являются пирен, флуорантен, 6eH3(g,h,i)nepRJieH, бенз(Ь)флуорантен и индено(1,2,3- сфпирен; индикаторами выбросов двигателей внутреннего сгорания - 6eH3(g,h,i)nepRJieH, бенз(Ь)флуорантен и индено(1,2,3-сс1)- пирен (первый обычно преобладает).

По имеющимся данным глобальная эмиссия бензапирена в природную среду в конце 80-х годов XX века составляла около 5000 тонн в год, причем 61 % приходился на сжигание угля, 20 % - на производство кокса, 4 % - на сжигание древесины, 8 % - на лесные пожары, 1 % - на выбросы транспорта и лишь 0,09 % и 0,06 % - на сжигание нефти и газа соответственно. При этом фоновое загрязнение воздуха в Западной Европе составляло 0,05 - 0,15 нг/м 3 , в Восточной Европе - 0,04 - 5,0 нг/м 3 (в среднем 0,5 нг/м 3), в Арктике и Антарктике - КГ 4 - 1(Г 3 нг/м 3 .

Эмиссия бенз(а)пирена с территории СССР составляла 985 т/год, тогда как для США эта величина была равна 1280 т/год. В последнее время наблюдается уменьшение поступления ПАУ в окружающую среду. Это связано как с уменьшением объемов промышленного производства в 90-е годы, так и с совершенствованием технологий сжигания органического топлива и очистки дымовых газов, а также с повышением требований к качеству выхлопных газов двигателей внутреннего сгорания автомобилей. В частности, выброс бенз(а)пирена от промышленных источников в России уменьшился с 90 тонн в 1992 г. до 23 тонн в 1995 г. Заметное уменьшение объема выбросов объясняется не только сокращением производства, но и несовершенством системы мониторинга выбросов ПАУ, поскольку по многим областям отсутствуют официальные статистические данные о выбросах бенз(а)пирена. Более точные сведения можно получить при использовании данных о выбросах бенз(а)пирена на единицу сжигаемого топлива.

На фоне других загрязняющих веществ в воздухе крупных городов ПАУ присутствуют в незначительных количествах. Однако они вносят заметный вклад в загрязнение атмосферы промышленных центров наиболее опасными для здоровья человека веществами. В воздухе крупных городов концентрация бенз(а)пирена составляет от 0,1 до 100 нг/м 3 . В частности, во многих городах США среднее содержание бенз(а)пирена в атмосферном воздухе на наиболее оживленных автомагистралях достигает 6 нг/м 3 . В атмосферном воздухе большинства промышленных центров России бенз(а)- пирен содержится на уровне 2-3 нг/м 3 . Так, в пробах воздуха, отобранных во Владимире, концентрация бенз(а)пирена почти в три раза превышала ПДК для воздуха населенных мест - 2,9 нг/м 3 .

Высокий уровень загрязнения атмосферного воздуха (6-15 нг/м 3) отмечен в городах, где размещены заводы по производству алюминия и металлургические комбинаты (Новокузнецк, Братск, Магнитогорск, Нижний Тагил, Красноярск, Челябинск, Липецк), а также в районах размещения крупнейших тепловых электростанций (Губаха, Канск, Назарово, Новочеркасск, Черемхово). В целом по России примерно в 25 городах среднегодовая концентрация бенз(а)пирена в атмосферном воздухе превышает 3 нг/м 3 . В частности, в Магнитогорске среднегодовые концентрации бенз(а)пирена

ТАБЛИЦА 2.8. Средние данные многолетних измерений концентраций бенз(а)пирена в атмосферных осадках, поверхностных водах и донных отложениях

Район наблюдения

Атмосферные осадки, нг/л

Поверхностные воды, нг/л

отложения,

Астраханский заповедник

Березинский заповедник

Кавказский заповедник

Приокско-Т еррасный заповедник

Центрально-Лесной

заповедник

Баргузинский заповедник

Сихотэ-Алиньский

заповедник

Чаткальский заповедник

Болгария (Рожен, Ропотамо)

Венгрия (Сарваш)

Германия (Нойглобзов)

превышают ПДК в 9,4-12,1 раза. При этом показатели заболеваемости раком легкого у мужчин в наиболее загрязненных районах города в 1,5 раза выше по сравнению с менее загрязненными районами . Хотя в последние годы содержание бенз(а)пирена в атмосферном воздухе несколько снизилось, учитывая эффект отдаленного воздействия канцерогенных веществ, можно ожидать, что на протяжении 15-20 лет в городах с повышенным уровнем загрязнения воздуха будет регистрироваться более высокая частота рака легкого.

В осадках наиболее высокие концентрации бенз(а)пирена обнаружены вблизи крупных промышленных центров, что связано с общим содержанием ПАУ в воздухе районов, где выпали осадки. В табл. 2.8 приведены средние данные многолетних измерений концентраций бенз(а)пирена в дождевой воде на фоновых станциях.

В поверхностных водоемах концентрация ПАУ часто имеет довольно большие значения. Так, в ряде водоемов США содержание бенз(а)пирена доходило до 80 нг/л, а в озерах Германии - до 25 нг/л . Установлено, что если концентрация шести приоритетных ПАУ в воде не выше 40 нг/л, то данный водоем мало загрязнен.

Фоновая концентрация бенз(а)пирена в поверхностных водах России не превышает 10-11 нг/л. Самые низкие значения характерны для азиатской части и горных районов. В частности, в реках и озерах Камчатки и Курильских островов содержание бенз(а)пирена не превышает 0,1-1 нг/л. Расчеты показывают, что на 1 м 2 земной поверхности в европейской части России в течение года осаждается 110-170 мкг бенз(а)пирена.

Согласно представленным в табл. 2.8 данным, в донных отложениях фоновых районов средние концентрации бенз(а)пирена находятся на уровне 1-5 нг/г. Содержание ПАУ в верхних слоях отложений пресноводных водоемов сильно зависит от близости водоемов к индустриальным центрам. Так, в донном иле Великих озер США концентрация бенз(а)пирена изменяется от 10 до 1000 нг/г, в озерных отложениях стран Европы - от 100 до 700 нг/г (Швейцария) и от 200 до 300 нг/г (Германия), причем 2/3 его адсорбировано на взвешенных частицах, которые играют основную роль в процессах переноса бенз(а)пирена в водных системах .

Аналогично донным отложениям, почва также является местом накопления ПАУ в результате глобального переноса и поступления из антропогенных источников. Фоновые концентрации ПАУ в почвах зависят от их типа и характера использования. Обычно содержание бенз(а)пирена в поверхностном слое почв сельских районов России, находящихся вдали от индустриальных центров, не превышает 5-8 нг/г . Считается, что почва умеренно загрязнена ПАУ при содержании 20-30 нг/г, значительно - при 31- 100 нг/г и сильно - свыше 100 нг/г. При этом максимальное содержание ПАУ наблюдается в поверхностных слоях почв и связано с тем, что гумусовые горизонты, содержащие наибольшее количество органических веществ, имеют более высокую сорбционную способность, благодаря чему ПАУ накапливаются в почвах.

Фоновые концентрации полициклических ароматических углеводородов в растениях зависят в основном от их способности сорбироваться листьями при осаждении из воздуха и накапливаться в них. Повышенные концентрации бенз(а)пирена наблюдаются в мхах и лишайниках (до 50 нг/г и более). В траве содержание бенз(а)пирена довольно низкое (менее 1 нг/г), хотя в отдельных видах растений оно может достигать 20-30 нг/г. При этом через корни растений проникает меньшая часть ПАУ. Так, в капусте содержание бенз(а)пирена заметно выше, чем в помидорах - соответственно 15,6 и 0,22 мкг/кг. В зернах пшеницы бенз(а)пирен обнаружен на уровне 0,68-1,44 мкг/кг, в сушеных фруктах и черносливе - 16-23,9 мкг/кг .

ПАУ содержатся также в мясных и молочных продуктах. В колбасе твердого копчения содержание бенз(а)пирена составляет 0,2-3,7 мкг/кг, в вареной колбасе - 0,4-0,6 мкг/кг, в окороке и корейке - 16,5-29,5 мкг/кг, в сельди холодного копчения - 6,8-11,2 мкг/кг, в молоке и масле - 3,2-9,4 мкг/кг . Средняя концентрация бенз(а)пирена в морской рыбе находится в диапазоне 0,1- 0,2 мкг/кг. Исключение составляют угорь (1,1 мкг/кг) и лосось (5,9 мкг/кг). В речной рыбе содержание ПАУ зависит от загрязнения водоема. Заметим, что коэффициент биоконцентрирования ПАУ в рыбе меньше, чем в водных растениях и донных отложениях. В среднем за год с продуктами питания в организм жителя России поступает 1-2 мг бенз(а)пирена. При этом доза поступления бенз(а)пирена в организм человека за 70 лет жизни с продуктами растительного происхождения составляет только 3^1 мг.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства Российской Федерации

ФГОУ ВПО Государственный аграрный университет Северного Зауралья

Институт биотехнологии и ветеринарной медицины

На тему: Полициклические ароматические углеводороды

Тюмень 2015

Введение

Полиароматические углеводороды (ПАУ) -- органические соединения, для которых характерно наличие в химической структуре двух и более конденсированныхбензольных колец. В природе ПАУ образуются в процессе пиролиза целлюлозы и встречаются в пластах каменного, бурого угля и антрацита, а также как продукт неполного сгорания при лесных пожарах. Основными источниками эмиссии техногенных ПАУ в окружающую природную среду являются предприятия энергетического комплекса, автомобильный транспорт, химическая и нефтеперерабатывающая промышленность. В основе практически всех техногенных источников ПАУ лежат термические процессы, связанные со сжиганием и переработкой органического сырья: нефтепродуктов, угля, древесины, мусора, пищи, табака и др. Более подробно сегодня мы о них и узнаем.

полициклический ароматический углеводород токсичность

1. Действие ароматических углеводородов на окружающую среду

Присутствие ПАУ в окружающей среде является источником обеспокоенности специалистов в области органической химии, биохимиков, химиков по проблемам окружающей среды и геохимиков. Поскольку большинство ПАУ с низкой молекулярной массой являются токсичными для бактерий, то они замедляют биологическое разложение, в то время как другие являются канцерогенными. Кроме того, для геохимиков понимание присутствия ПАУ в геологических образцах приводит к установлению типа отложений окружающей среды, делая ПАУ потенциально полезными в качестве биомаркеров.

Полициклические ароматические углеводороды (ПАУ) - это химические соединения, состоящие из двух и более сцепленных бензольных колец.

Имеются тысячи ПАУ соединений, каждое из которых отличается по количеству и расположению ароматических колец, а также позицией заместителей.

ПАУ встречаются в нефти, каменном угле, отложениях смолы, а также выступают в роли побочных продуктов при сгорании топлива (вне зависимости ископаемое ли это топливо или полученное из биомассы). Как загрязняющий агент они являются предметом большой обеспокоенности потому, что некоторые соединения были идентифицированы как канцерогенные, мутагенные и тератогенные.

Экологические и токсикологические аспекты полициклических ароматических углеводородов в окружающей среде в отношении природных ресурсов.

Озабоченность в отношении окружающей среды сфокусировалась на ПАУ, которые имеют молекулярную массу от 128,16 (нафталин, 2-кольцевая структура) до 300,36 (гексабензобензол, 7 - кольцевая структура). Незамещенные ПАУ соединения с низкой молекулярной массой, содержащие от 2-3 колец, показывают значительную токсичность, а другие - неблагоприятный эффект на некоторые организмы, но не являются канцерогенными; ПАУ с более высокой молекулярной массой, содержащие от 4 до 7 колец, значительно менее токсичны, но многие 4, 7-кольцевые соединения являются канцерогенными, мутагенными или тератогенными в отношении широкого ряда организмов, включая рыбу и другие водные организмы, амфибий, птиц и млекопитающих.(Эдвардс, 1983. Исмен, 1984.)

2. Источники полициклических ароматических углеводородов

ПАУ повсеместно встречаются в природе. Так доказано их присутствие в геологических отложениях, почве, воздухе, на поверхности образцов воды, в растительных и животных тканях. Первоначально ПАУ появились в результате таких природных процессов как лесные пожары, микробиальный синтез и вулканическая активность. (Согласно Баттерсби, С. 2004). Их также находят в межзвездном пространстве, в кометах, метеоритах и они также являются молекулярными маркерами в основе самых ранних форм жизни.

Человеческая деятельность, приводящая к значительному выделению ПАУ, что в свою очередь ведет к сильному загрязнению на ограниченных территориях, включает высокотемпературный пиролиз (>700 0 С) органических материалов, типичный для некоторых процессов, используемых при производстве железа и стали, в алюминиевых плавильных печах, на металлургических и коксовых заводах, при очистке нефти, при генерации энергии с помощью нагрева.

Водная среда может получать ПАУ при случайных разливах нефти и нефтепродуктов из средств ее хранения и транспортировки, из канализационных стоков и из других источников.

Доказательства, показывающие, что ПАУ являются причиной раковых и предраковых поражений, весьма очевидны и этот класс веществ, вероятно, является главной причиной недавнего увеличения уровня заболеваемости раком в индустриально развитых странах (Кук и Деннис 1984).

ПАУ были первыми известными веществами, канцерогенный эффект которых был установлен (Ли и Грант 1981).

В силу наличия канцерогенных характеристик у многих ПАУ и их возрастающей концентрации в окружающей среде, до получения более определенных экотоксикологических данных является целесообразным понизить концентрацию либо полностью нейтрализовать их везде, где это возможно (Эйслер, Р. 1987).

Рис. 1 Вещества, обладающие значительным уровнем токсичности, но не канцерогенные

Рис. 2 Вещества с выраженным канцерогенным эффектом

3. Воздействие ароматических углеводородов на окружающую среду

Полициклические ароматические углеводороды, будучи выброшенными в окружающую среду, обычно попадают в воздух. Некоторые испаряются в воздух из почвы или подземных вод и затем прилипают к микрочастицам, взвешенным в воздухе.

Полициклические ароматические углеводороды (ПАУ) могут по прошествии времени разрушаться под воздействием солнечного света или в результате реакции с другими химическими веществами в воздухе.

ПАУ малорастворимы в воде, они прилипают к пыли или грязи и опускаются на дно озер и рек. Различные группы микроорганизмов в осадке и в воде могут разрушать некоторые ПАУ по прошествии времени, причем, чем выше молекулярный вес, тем меньше скорость распада.

Полициклические ароматические углеводороды перемещаются в атмосфере в виде взвешенных в воздухе микрочастиц. Они переносятся воздушными потоками и оседают в виде сухих или мокрых (дождь, роса и т.п.) отложений. Оседая в озерах и реках, они опускаются на дно. Некоторые проникают сквозь слой почвы в грунтовые воды.

Токсичность полициклических ароматических углеводородов в отношении аквакультур и птиц колеблется от умеренной до высокой. Некоторые наносят ущерб и приводят к гибели сельскохозяйственные и декоративные злаки.

На данный момент имеет место недостаток данных в отношении острой и хронической токсичности в отношении наземных животных. ПАУ умеренно стойки в окружающей среде и могут биоаккумулироваться. Концентрация полициклических ароматических углеводородов в рыбе и моллюсках иногда значительно выше, чем в окружающей среде этих организмов.

ПАУ могут быть также прямо генотоксичны, при этом имеется в виду что химикаты и продукты их распада могут непосредственно взаимодействовать с генами и вызывать повреждения ДНК. При исследовании загрязнителей окружающей среды в домашней пыли, проводившимся Сайлент Спринг Инститьют, было установлено, что три ПАУ (пирен, бенз[а]антрацен и бенз[а]пирен) содержались в более чем трех четвертях обследованных домов.

4. Опытность ПАУ для окружающей среды

На шкале опасности в отношении окружающей среды от 0 до 3, представленной выше на рисунке 3, полициклические ароматические углеводороды имеют отметку 1,5. Уровень 3 представляет очень высокую опасность для окружающей среды, а уровень 0 представляет незначительную опасность. Факторы, принимаемые в расчет, включают в себя оценку степени токсичности или нетоксичности вещества, измерение его способности сохранять активность в окружающей среде и способности аккумулироваться в живых организмах. Выделение вещества в расчет не принимается. Оно отражается в уровне НПИ для данного вещества. Одно из веществ, опасность которого для окружающей среды оценивается как высокая это оксид азота (3) и одно из веществ, опасность которого оценивается как низкая это оксид углерода (0,8).

5. Токсичность ПАУ для человека

Токсичность ПАУ очень зависит от структуры, даже изомеры могут быть как нетоксичными, так и исключительно токсичными. Таким образом, высоко канцерогенные ПАУ могут быть малыми (менее 3 колец) или большими (более 4 колец). Один ПАУ, бензо[а]пирен, является первым исследованным канцерогеном и является одним из многих канцерогенов, содержащихся в сигаретах. Семь ПАУ были классифицированы как вероятные человеческие канцерогены: бенз[а]антрацен, бензо[а]пирен, бензо[b]флюорантен, бензо[к]флюорантен, крисен, дибенз[а,h]антрацен и инденопирен.

ПАУ, известные своими канцерогенными, мутагенными и тератогенными свойствами: бенз[а]антрацен и крисен, бензо[b]флюорантен, бензо[j]флюорантен, бензо[к]флюорантен, бензо[а]пирен, бензопирилен, коронен, дибензантрацен, инденопирен и овален (Фетцер, Д. К.(2000), Лач, А (2005)).

В силу недостатка репрезентативных смесей ПАУ для целей исследования, воздействие биологических и небиологических модификаторов на токсичность ПАУ и метаболизм еще недостаточно понятен.

Были предложены следующие критерии безопасности общего содержания ПАУ, канцерогенных ПАУ и бензо(а)пирена для питьевой воды и воздуха и общего содержания ПАУ и бензо(а)пирена в пище: 0,01 до <0,2 мкг общих ПАУ/л, <0,002 мкг канцерогенных ПАУ/л и 0,0006 мкг бензо(а)пирена /л; воздух: < 0,01 мкг общих ПАУ/м 3 , <0,002 мкг канцерогенных ПАУ/м 3 и 0,0005 мкг бензо(а)пирена/м 3 ; пища: 1,6 до < 16,0 мкг общих ПАУ ежедневно и 0,16 до < 1,6 мкг бензо(а)пирена ежедневно.

6. Применение ПАУ

Многие ПАУ не используются в принципе. Но некоторые используются в медицине, для производства красок, пластиков и пестицидов. Нафталин, также известный как шарики от моли, используется при производстве красителей, взрывчатых веществ, пластиков, смазок и средств от моли. Антрацен используется в красках, инсектицидах и средствах для защитной обработки древесины.

Заключение

Из приведенного обзора очевидно, что, несмотря на некоторую полезность ПАУ, их экологическая и токсикологическая опасность является предметом острой озабоченности и концентрация их должна быть сильно снижена в окружающей среде, а в лучшем случае они должны быть из нее полностью ликвидированы.

Список использованных источников

1. https://ru.wikipedia.org

2. Едвардс Н.Т. 1983. Полициклические ароматические углеводороды (ПАУ) в наземной окружающей среде - обзор. Журнал «Качество окружающей среды» 12.427-441.

3. Исман Г. А., Давани Б., и Додсон Д. А. 1984. Гидростатическое тестирование газовых трубопроводов как источник попадания ПАУ в водную среду. Международный журнал химического анализа окружающей среды. 19:27-39.

4. http://jurnal.org/articles/2009/ekol2.html

5. Ислер Р (1987) Влияние полициклических ароматических углеводородов на рыбу, живую среду и беспозвоночных: Синоптический обзор.

6. Служба рыбы и дикой природы США, Центр исследования живой природы Патуксент. Лаурель. ЕПА. 1980. Качество воды с точки зрения содержания полициклических ароматических углеводородов. Агентство по защите окружающей среды США. 440/5-80-069.193.

7.Фетцер Д. К. (2000) Химия и анализ тяжелых полициклических ароматических углеводородов. Нью-Йорк. Виллей.

8. Ли С. Д., Грант Л. 1981. Здоровье и экологическая оценка полициклических ароматических углеводородов. Издательство Патотекс. Парк Форест Соуз, Иллинойс. 364 с.

9. Лач А. (2005). Канцерогенный эффект полициклических ароматических углеводородов. Лондон: Империал Колледж Пресс, ISBN 1-86094-417-5.

Размещено на Allbest.ru

...

Подобные документы

    Ароматические углеводороды: общая характеристика. Номенклатура и изомерия, физические и химические свойства ароматических углеводородов. Механизм реакций электрофильного и нуклеофильного замещения в ароматическом ряду. Применение аренов, их токсичность.

    реферат , добавлен 11.12.2011

    Закономерности влияния постоянного электрического поля на выход полициклических ароматических углеводородов, сажи, фуллеренов в бензол-кислородном пламени в зависимости от изменения межэлектродного расстояния, типа электродной системы, напряженности поля.

    диссертация , добавлен 16.06.2013

    Роль ароматических углеводородов и их производных. Сущность и механизм процесса деалкилирования толуола для получения бензола. Сырье и назначение. Конструктивное устройство и схема промышленной установки каталитического гидродеалкилирования толуола.

    презентация , добавлен 10.12.2016

    Общая характеристика ароматических углеводородов (аренов) как органических соединений карбоциклического ряда, молекулы которых содержат бензольное кольцо С6Н6. Процесс получения ароматических углеводородов и их свойства, склонность к реакциям замещения.

    реферат , добавлен 06.12.2014

    Классификация и номенклатура ароматических углеводородов. Бензол, нафталин, пиррол, пиридин. Реакции присоединения, окисление. Доноры электронов, дезактиваторы ароматического ядра. Реакции нуклеофильного замещения в галогенаренах и галогенбензилах.

    курс лекций , добавлен 11.11.2013

    Особенности строения предельных углеводородов. Номенклатура углеводородов ряда метана. Химические свойства предельных углеводородов, их применение. Структурные формулы циклопарафинов (циклоалканов), их изображение в виде правильных многоугольников.

    контрольная работа , добавлен 24.09.2010

    Понятие галогенпроизводных углеводородов, их изомерия и номенклатура, общая формула и метод составления названий. Методы получения галогенпроизводных углеводородов, их применение в промышленности. Характер действия хлора на углеродосодержащие вещества.

    реферат , добавлен 21.02.2009

    Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат , добавлен 21.02.2009

    Реакции сульфирования алкилароматических углеводородов. Выбор сульфирующего агента и способы устранения недостатка процесса. Тепловой эффект и кинетика процесса. Сульфирование парафинов, олефинов и ароматических углеводородов, технология процесса.

    контрольная работа , добавлен 19.03.2012

    Способы выделения, очистки и анализа органических веществ. Получение предельных, непредельных и ароматических углеводородов, спиртов, карбоновых кислот. Получение и разложение фенолята натрия. Методы выделения белков. Химические свойства жиров, ферментов.