Получение солей химия. Химические свойства солей и методи их получения

Солями называются сложные вещества, молекулы которых, состоят из атомов металлов и кислотных остатков (иногда могут содержать водород). Например, NaCl – хлорид натрия, СаSO 4 – сульфат кальция и т. д.

Практически все соли являются ионными соединениями, поэтому в солях между собой связаны ионы кислотных остатков и ионы металла:

Na + Cl – – хлорид натрия

Ca 2+ SO 4 2– – сульфат кальция и т.д.

Соль является продуктом частичного или полного замещения металлом атомов водорода кислоты. Отсюда различают следующие виды солей:

1. Средние соли – все атомы водорода в кислоте замещены металлом: Na 2 CO 3 , KNO 3 и т.д.

2. Кислые соли – не все атомы водорода в кислоте замещены металлом. Разумеется, кислые соли могут образовывать только двух- или многоосновные кислоты. Одноосновные кислоты кислых солей давать не могут: NaHCO 3 , NaH 2 PO 4 ит. д.

3. Двойные соли – атомы водорода двух- или многоосновной кислоты замещены не одним металлом, а двумя различными: NaKCO 3 , KAl(SO 4) 2 и т.д.

4. Соли основные можно рассматривать как продукты неполного, или частичного, замещения гидроксильных групп оснований кислотными остатками: Аl(OH)SO 4 , Zn(OH)Cl и т.д.

По международной номенклатуре название соли каждой кислоты происходит от латинского названия элемента. Например, соли серной кислоты называются сульфатами: СаSO 4 – сульфат кальция, Mg SO 4 – сульфат магния и т.д.; соли соляной кислоты называются хлоридами: NaCl – хлорид натрия, ZnCI 2 – хлорид цинка и т.д.

В название солей двухосновных кислот добавляют частицу «би» или «гидро»: Mg(HCl 3) 2 – бикарбонат или гидрокарбонат магния.

При условии, что в трехосновной кислоте замещён на металл только один атом водорода, то добавляют приставку «дигидро»: NaH 2 PO 4 – дигидрофосфат натрия.

Соли – это твёрдые вещества, обладающие самой различной растворимостью в воде.

Химические свойства солей

Химические свойства солей определяются свойствами катионов и анионов, которые входят в их состав.

1. Некоторые соли разлагаются при прокаливании:

CaCO 3 = CaO + CO 2

2. Взаимодействуют с кислотами с образованием новой соли и новой кислоты. Для осуществление этой реакции необходимо, чтобы кислота была более сильная чем соль, на которую воздействует кислота:

2NaCl + H 2 SO 4 → Na 2 SO 4 + 2HCl.

3. Взаимодействуют с основаниями , образуя новую соль и новое основание:

Ba(OH) 2 + Mg SO 4 → BaSO 4 ↓ + Mg(OH) 2 .

4. Взаимодействуют друг с другом с образованием новых солей:

NaCl + AgNO 3 → AgCl + NaNO 3 .

5. Взаимодействуют с металлами, которые стоят в раду активности до металла, который входит в состав соли:

Fe + CuSO 4 → FeSO 4 + Cu↓.

Остались вопросы? Хотите знать больше о солях?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Известно большое число реакций, приводящих к образованию солей. Приведем наиболее важные из них.

1. Взаимодействие кислот с основаниями (реакция нейтрализации):

N аОН + Н NO 3 = N а NO 3 + Н 2 О

Al (OH ) 3 + 3НС1 = AlCl 3 + 3Н 2 О

2. Взаимодействие металлов с кислотами:

F е + 2 HCl = FeCl 2 + Н 2

Zn + Н 2 S О 4 разб. = ZnSO 4 + Н 2

3. Взаимодействие кислот с основными и амфотерными оксидами:

С uO + Н 2 SO 4 = С uSO 4 + Н 2 О

ZnO + 2 HCl = Zn С l 2 + Н 2 О

4. Взаимодействие кислот с солями:

FeCl 2 + H 2 S = FeS + 2 HCl

AgNO 3 + HCI = AgCl + HNO 3

Ba(NO 3 ) 2 + H 2 SO 4 = BaSO 4 + 2HNO 3

5. Взаимодействие растворов двух различных солей:

BaCl 2 + Na 2 SO 4 = Ва SO 4 + 2N аС l

Pb(NO 3 ) 2 + 2NaCl = Р b С 1 2 + 2NaNO 3

6. Взаимодействие оснований с кислотными оксидами (щелочей с амфотерными оксидами):

Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О,

2 N аОН (тв.) + ZnO Na 2 ZnO 2 + Н 2 О

7. Взаимодействие основных оксидов с кислотными:

Са O + SiO 2 Са SiO 3

Na 2 O + SO 3 = Na 2 SO 4

8. Взаимодействие металлов с неметаллами:

2К + С1 2 = 2КС1

F е + S F е S

9. Взаимодействие металлов с солями.

Cu + Hg(NO 3 ) 2 = Hg + Cu(NO 3 ) 2

Pb(NO 3 ) 2 + Zn = Р b + Zn(NO 3 ) 2

10. Взаимодействие растворов щелочей с растворами солей

CuCl 2 + 2NaOH = Cu(OH) 2 ↓+ 2NaCl

NaHCO 3 + NaOH = Na 2 CO 3 + H 2 O

      1. Применение солей.

Ряд солей являются соединениями необходимыми в значительных количествах для обеспечения жизнедеятельности животных и растительных организмов (соли натрия, калия, кальция, а также соли, содержащие элементы азот и фосфор). Ниже, на примерах отдельных солей, показаны области применения представителей данного класса неорганических соединений, в том числе, в нефтяной промышленности.

N аС1 - хлорид натрия (соль пищевая, поваренная соль). О широте использования этой соли говорит тот факт, что мировая добыча этого вещества составляет более 200 млн. т.

Эта соль находит широкое применение в пищевой промышленности, служит сырьем для получения хлора, соляной кислоты, гидроксида натрия, кальцинированной соды (Na 2 CO 3 ). Хлорид натрия находит разнообразное применение в нефтяной промышленности, например, как добавка в буровые растворы для повышения плотности, предупреждения образования каверн при бурении скважин, как регулятор сроков схватывания цементных тампонажных составов, для понижения температуры замерзания (антифриз) буровых и цементных растворов.

КС1 - хлорид калия. Входит в состав буровых растворов, способствующих сохранению устойчивости стенок скважин в глинистых породах. В значительных количествах хлорид калия используется в сельском хозяйстве в качестве макроудобрения.

Na 2 CO 3 - карбонат натрия (сода). Входит в состав смесей для производства стекла, моющих средств. Реагент для увеличения щелочности среды, улучшения качества глин для глинистых буровых растворов. Используется для устранения жесткости воды при ее подготовке к использованию (например, в котлах), широко используется для очистки природного газа от сероводорода и для производства реагентов для буровых и тампонажных растворов.

Al 2 (SO 4 ) 3 - сульфат алюминия. Компонент буровых растворов, коагулянт для очистки воды от тонкодисперсных взвешенных частиц, компонент вязкоупругих смесей для изоляции зон поглощения в нефтяных и газовых скважинах.

N а 2 В 4 О 7 - тетраборат натрия (бура). Является эффективным реагентом - замедлителем схватывания цементных растворов, ингибитором термоокислительной деструкции защитных реагентов на основе эфиров целлюлозы.

B а S О 4 - сульфат бария (барит, тяжелый шпат). Используется в качестве утяжелителя (  4,5 г/см 3) буровых и тампонажных растворов.

2 SO 4 - сульфат железа (П) (железный купорос). Используется для приготовления феррохромлигносульфоната - реагента-стабилизатора буровых растворов, компонент высокоэффективных эмульсионных буровых растворов на углеводородной основе.

F еС1 3 - хлорид железа (Ш). В сочетании со щелочью используется для очистки воды от сероводорода при бурении скважин водой, для закачки в сероводородсодержащие пласты с целью снижения их проницаемости, как добавка к цементам с целью повышения их стойкости к действию сероводорода, для очистки воды от взвешенных частиц.

CaCO 3 - карбонат кальция в виде мела, известняка. Является сырьем для производства негашеной извести СаО и гашеной извести Ca(OH) 2 . Используется в металлургии в качестве флюса. Применяется при бурении нефтяных и газовых скважин в качестве утяжелителя и наполнителя буровых растворов. Карбонат кальция в виде мрамора с определенным размером частиц применяется в качестве расклинивающего агента при гидравлическом разрыве продуктивных пластов с целью повышения нефтеотдачи.

CaSO 4 - сульфат кальция. В виде алебастра (2СаSО 4 · Н 2 О) широко используется в строительстве, входит в состав быстротвердеющих вяжущих смесей для изоляции зон поглощений. При добавке к буровым растворам в виде ангидрита (СаSО 4) или гипса (СаSО 4 · 2Н 2 О) придает устойчивость разбуриваемым глинистым породам.

CaCl 2 - хлорид кальция. Используется для приготовления буровых и тампонажных растворов для разбуривания неустойчивых пород, сильно снижает температуру замерзания растворов (антифриз). Применяется для создания растворов высокой плотности, не содержащих твердой фазы, эффективных для вскрытия продуктивных пластов.

N а 2 Si О 3 - силикат натрия (растворимое стекло). Используется для закрепления неустойчивых грунтов, для приготовления быстросхватывающихся смесей для изоляции зон поглощений. Применяется в качестве ингибитора коррозии металлов, компонента некоторых буровых тампонажных и буферных растворов.

AgNO 3 - нитрат серебра. Используется для химического анализа, в том числе пластовых вод и фильтратов буровых растворов на содержание ионов хлора.

Na 2 SO 3 - сульфит натрия. Используется для химического удаления кислорода (деаэрация) из воды в целях борьбы с коррозией при закачке сточных вод. Для ингибирования термоокислительной деструкции защитных реагентов.

Na 2 Cr 2 О 7 - бихромат натрия. Используется в нефтяной промышленности в качестве высокотемпературного понизителя вязкости буровых растворов, ингибитора коррозии алюминия, для приготовления ряда реагентов.

В уроке 41 «Получение солей » из курса «Химия для чайников » узнаем, какими способами можно получить соли, как их добывают и какое экологические воздействие они оказывают на окружающею среду.

Получение солей

Для получения солей используют реакции, с которыми вы познакомились при изучении химических свойств оксидов, кислот, оснований и солей.

Схемы этих реакций и их примеры приведены в предыдущих уроках на нашем сайте. Номера схем и соответствующие им классы исходных веществ для получения солей указаны в таблице.

Очевидно, что одну и ту же соль можно получить несколькими способами, исходя из разных веществ. Покажем, как пользоваться этой таблицей, на примерах.

Пример 1. Из таблицы видно, что в строке «Основный оксид» находятся цифры 3, 6, 5, 8. Из них цифры 3 и 6 попадают в столбец «Кислотный оксид», а цифры 5 и 8 - в столбец «Кислота». Это значит, что соль можно получить по реакции основного оксида с кислотным оксидом (по схемам 3 или 6), а также с кислотой (по схемам 5 или 8).

Пример 2. Какие вещества реагируют с кислотами с образованием солей? Из таблицы видно, что в столбце «Кислота» находятся числа 7, 5, 8, 9, 11, 10 и 16. Из них число 7 попадает в строку «Металл»; числа 5 и 8 - в строку «Основный оксид»; числа 9 и 11 - в строку «Основание», а числа 10 и 16 - в строку «Соль». Это значит, что соли образуются в результате взаимодействия кислот с металлами (по схеме 7), с основными оксидами (по схемам 5 или 8), с основаниями (по схемам 9 или 11), а также с солями (по схемам 10 или 16).

Экологические проблемы добычи солей

Чаще всего в месторождениях соли находятся не в чистом виде, а в смеси с различными примесями. Эту смесь, которая называется «руда», из глубоких подземных шахт поднимают на поверхность земли и выделяют из нее полезные соли. Ненужные примеси, которые при этом остаются, собираются в больших количествах, образуя огромные соляные отвалы . Внешне они напоминают горы (рис. 125).

Эти отвалы представляют опасность для окружающей среды. Дело в том, что содержащиеся в отвалах вещества растворяются в дождевой воде и в таком виде проникают глубоко в почву, попадают в подземные воды. Почва от этого становится «мертвой», а вода - непригодной для питья и для использования в быту. Поэтому очень важно в настоящее время уменьшить вредное воздействие соляных отвалов на окружающую среду.

Для решения этой проблемы ученые предлагают разные способы. Один из них заключается в том, что руду перерабатывают под землей, оставляя ненужные отходы в подземных пустотах.

Краткие выводы урока:

  1. Соли получают, используя различные реакции с участием металлов, оксидов, кислот, оснований и солей.
  2. Одну и ту же соль можно получить несколькими способами.

Надеюсь урок 41 «Получение солей » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Способы получения солей

Рассмотрим важнейшие способы получения солей.

1. Реакция нейтрализации . Этот способ уже неоднократно встречался в предыдущих параграфах. Растворы кислоты и основания смешивают (осторожно!) в нужном мольном соотношении. После выпаривания воды получают кристаллическую соль. К примеру:

2 . Реакция кислот с основными оксидами . Этот способ получения солей упоминался в параграфе 8-3. Фактически, это вариант реакции нейтрализации. К примеру:

3 . Реакция оснований с кислотными оксидами (см. параграф 8.2). Это также вариант реакции нейтрализации:

В случае если пропускать в раствор избыток СО 2 , то получается избыток угольной кислоты и нерастворимый карбонат кальция превращается в растворимую кислую соль – гидрокарбонат кальция Са(НСО 3) 2:

СаСО 3 + Н 2 СО 3 = Са(НСО 3) 2 (раствор)

4 . Реакция базовых и кислотных оксидов между собой :

5 . Реакция кислот с солями . Этот способ подходит, к примеру, в том случае, в случае если образуется нерастворимая соль, выпадающая в осадок:

6 . Реакция оснований с солями . Для таких реакций подходят только щелочи (растворимые основания). В этих реакциях образуется другое основание и другая соль. Важно, чтобы новое основание не было щелочью и не могло реагировать с образовавшейся солью. К примеру:

7 . Реакция двух различных солей . Реакцию удается провести только в том случае, в случае если хотя бы одна из образующихся солей нерастворима и выпадает в осадок:

Выпавшую в осадок соль отфильтровывают, а оставшийся раствор упаривают и получают другую соль. В случае если же обе образующиеся соли хорошо растворимы в воде, то реакции не происходит: в растворе существуют лишь ионы, не взаимодействующие между собой:

NaCl + KBr = Na + + Cl - + K + + Br -

В случае если такой раствор упарить, то мы получим смесь солей NaCl, KBr, NaBr и KCl, но чистые соли в таких реакциях получить не удается.

8 . Реакция металлов с кислотами . В способах 1 – 7 мы имели дело с реакциями обмена (только способ 4 – реакция соединœения. Но соли образуются и в окислительно-восстановительных реакциях. К примеру, металлы, расположенные левее водорода в ряду активности металлов (таблица 8-3), вытесняют из кислот водород и сами соединяются с ними, образуя соли:

9 . Реакция металлов с неметаллами . Эта реакция внешне напоминает горение. Металл "сгорает" в токе неметалла, образуя мельчайшие кристаллы соли, которые выглядят, как белый "дым":

10 . Реакция металлов с солями . Более активные металлы, расположенные в ряду активности левее , способны вытеснять менее активные (расположенные правее ) металлы из их солей:

Алканы

Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле С n Н 2n+2 . В молекулах алканов всœе атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что всœе четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра. Углы между орбиталями равны 109°28" Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму. В развернутом состоянии такие молекулы имеют зигзагообразную форму с углами при атомах углерода, близких к тетраэдрическому (109°280, к примеру в молекуле н -пентана. Особо стоит напомнить о связях, при помощи которых построены молекулы алканов. Все связи в молекулах алканов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это Þ-связи. Связи углерод-углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм. Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной. Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов. Гомологический ряд метана Как вы уже знаете, гомологи - это вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН2. Предельные углеводороды составляют гомологический ряд метана.

Изомерия и номенклатура Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелœета. Как вам уже известно, простейший алкан, для которого характерны структурные изомеры, - это бутан. Основы номенклатуры ИЮПАК уже обсуждались. В этой части параграфа она будет рассмотрена подробнее для алканов. 1. Выбор главной цепи Формирование названия углеводорода начинается с определœения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой. 2. Нумерация атомов главной цепи Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). В случае если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). В случае если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителœей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: летил (-СН3), затем пропил (-СН2-СН2-СН3), этил (-СН2-СН3) и т. д.Обратите внимание, что название заместителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана. 3. Формирование названия В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. В случае если при данном атоме находится несколько заместителœей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителœей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил), затем без пробелов и дефисов - название главной цепи. Главная цепь принято называть как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).

Названия веществ, структурные формулы которых приведены выше, следующие: структура А 2-метилбутан

структура Б З-метилгексан

структура В 2,2,4-тприметилпентап

структура Г З-метил-5-этилтептан Получение 1. Выделœение углеводородов из природного сырья. Источниками предельных углеводородов, как вы уже знаете, являются нефть и природный газ. Основной компонент природного газа - простейший углеводород метан, который используется непосредственно или подвергается переработке. Нефть, извлеченная из земных недр, также подвергается переработке, ректификации, крекингу. Больше всœего углеводородов получают при переработке нефти и других природных источников. Но значительное количество ценных углеводородов получают искусственно, синтетическими способами. 2. Изомеризация. Наличие катализаторов изомеризации ускоряет образование углеводородов с разветвленным скелœетом из линœейных углеводородов:

Добавление катализаторов позволяет несколько уменьшить температуру, при которой протекает реакция. 3. Гидрирование (присоединœение водорода) алкенов. Как уже было сказано, в результате крекинга образуется большое количество непредельных углеводородов с двойной связью - алкенов. Уменьшить их количество можно, добавив в систему водород и катализаторы гидрирования - металлы (платина, палладий, никель): СН3 - СН2 - СН = СН2 + Н2 -> СН3 - СН2 - СН2 - СН3 Крекинг в присутствии катализаторов гидрирования с добавлением водорода принято называть восстановительным крекингом. Основными его продуктами являются предельные углеводороды. В заключение добавим, что повышение давления при крекинге (крекинг высокого давления) позволяет уменьшить количество газообразных (СН4-С4Н10) углеводородов и повысить содержание жидких углеводородов с длиной цепи 6-10 атомов углерода, которые составляют основу бензинов. Мы рассмотрели несколько промышленных способов получения алканов, которые являются основой промышленной переработки основного углеводородного сырья - нефти. Теперь обсудим несколько лабораторных способов получения алканов. 4. Декарбоксилирование натриевых солей карбоновых кислот. Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана: СН3СОNа + NаОН СН4 + Nа2С03 В случае если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д. RСН2СОNа +NаОН -> RСН3 + Nа2С03 5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, к примеру: 2СН3СН2Вг + 2Nа -ʼʼ>СН3СН2СН2СН3 + 2NаВг Действие щелочного металла на смесь галогенуглеводородов (к примеру, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана). Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединœен к первичному атому углерода. 6. Гидролиз карбидов . При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (к примеру, карбида алюминия), водой образуется метан: Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета͵ вкуса и запаха (запах ʼʼгазаʼʼ, почувствовав который нужно звонить по телœефону 04, определяется запахом меркаптанов - серусодер-жащих соединœений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку). Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства 1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения наиболее характерных реакций. Галогенирование: СН4 + С12 -> СН3Сl + HCl В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всœех атомов водорода на хлор: СН3Сl + С12 -> HCl + СН2Сl2 дихлорметан хлористый метилен СН2Сl2 + Сl2 -> HCl + CHCl3 трихлорметан хлороформ СНСl3 + Сl2 -> HCl + ССl4 тетрахлорметан четыреххлористый углерод Полученные вещества широко используются как растворители и исходные вещества в органических синтезах. 2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена: СН3-СН3 -> СН2=СН2 + Н2 3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определœенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива. СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:

Реакции термического расщепления лежат в базе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти. При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена. 4. Изомеризация. При нагревании линœейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелœетом:

5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу. Кинœетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелœевская премия по химии.

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями: 1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света͵ нагревания). 2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы). 3. Обрыв цепи (объединœение свободных радикалов в неактивные молекулы (рекомбинация), ʼʼгибельʼʼ радикалов, прекращение развития цепи реакций).

Семенов Николай Николаевич

(1896 - 1986)Советский физик и физикохимик, академик. Лауреат Нобелœевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим данный механизм на примере реакции хлорирования метана: СН4 + Сl2 -> СН3Сl + НСl Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы: Сl: Сl -> Сl· + Сl· Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода: СН4 + Сl· -> СН3· + НСl и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов: СН3· + Сl2 -> СН3Сl + Сl· и т. д. Происходит развитие цепи. Наряду с образованием радикалов происходит их ʼʼгибельʼʼ в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов: СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2 СН3· + СН3· -> СН3-СН3 Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько крайне важно для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, в случае если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединœений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к крайне важно сти разрабатывать сложные и дорогостоящие методики очистки и выделœения целœевых веществ. В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования. Теперь попытаемся рассмотреть реакцию галогенирования (к примеру, бромирования) более сложного органического соединœения - пропана. В случае если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:

Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причинœе основным продуктом реакции бромирования пропана является 2-бром-пропан - соединœение, образование которого протекает через более устойчивую промежуточную частицу. Приведем несколько примеров свободнорадикальных реакций: Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединœений - растворителœей, исходных веществ для многих синтезов. Каталитическое окисление алканов кислородом Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, к примеру: СН4 + [О] -> СН3ОН

Применение Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Οʜᴎ являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединœений. Соединœения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединœений. Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателœей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д. Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом исходя из условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателœей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью. Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединœения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всœего в линœейных, или нормальных, углеводородах. При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединœений с образованием большого числа свободных радикалов, которые ʼʼзапускаютʼʼ свободнорадикальную цепную реакцию горения раньше, чем это крайне важно. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, основной причиной детонации является наличие перекисных соединœений, способность образовывать которые максимальна у линœейных углеводородов.Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан). Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (к примеру, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана. В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

17. Спирты

Строение Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединœенных с углеводородным радикалом.

По числу гидроксильных групп (атомности) спирты делятся на: ‣‣‣ одноатомные ‣‣‣ двухатомные (гликоли) ‣‣‣ трехатомные.

По характеру углеводородного радикала выделяют следующие спирты: ‣‣‣ предельные, содержащие в молекуле лишь предельные углеводородные радикалы ‣‣‣ непредельные, содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода ‣‣‣ ароматические, т. е. спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода.

Органические вещества, содержащие в молекуле гидрок-сильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и в связи с этим выделяются в самостоятельный класс органических соединœений - фенолы. К примеру, гидроксибензол фенол. Подробнее со строением, свойствами и применением фенолов мы познакомимся позже. Существуют и полиатомные (многоатомные) спирты , содержащие более трех гидроксильных групп в молекуле. К примеру, простейший шестиатомный спирт гексаол (сорбит).

Следует заметить, что спирты, содержащие две гидроксильные группы при одном атоме углерода, неустойчивы и самопроизвольно разлагаются (подвергаются перегруппировке атомов) с образованием альдегидов и кетонов:

Непредельные спирты, содержащие гидроксильную группу у атома углерода, связанного двойной связью, называются еколами. Нетрудно догадаться, что название этого класса соединœений образовано из суффиксов -ен и -ол, указывающих на присутствие в молекулах двойной связи и гидроксильной группы. Енолы, как правило, неустойчивы и самопроизвольно превращаются (изомеризуются) в карбонильные соединœения - альдегиды и кетоны. Эта реакция обратима, сам процесс называют кето-енольной таутомерией. Так, простейший енол - виниловый спирт чрезвычайно быстро изомеризуется в уксусный альдегид. По характеру атома углерода, с которым связана гидроксильная группа, спирты делятся на: ‣‣‣ первичные, в молекулах которых гидроксильная группа связана с первичным атомомуглерода ‣‣‣ вторичные, в молекулах которых гидроксильная группа связана с вторичным атомом углерода ‣‣‣ третичные, в молекулах которых гидроксильная группа связана с третичным атомом углерода, к примеру: Номенклатура и изомерия При образовании названий спиртов к названию углеводорода, соответствующего спирту, добавляют (родовой) суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. - их число:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого - изомерияуглеродного скелœета (бутанол-1; 2-метилпропанол-1). Стоит сказать, что для них характерна и межклассовая изомерия - спирты изомерны простым эфирам.

рода, входящий в гидроксильную группу молекул спиртов, резко отличается от атомов водорода и углерода по способности притягивать и удерживать электронные пары. Благодаря этому в молекулах спиртов имеются полярные связи С-О и О-Н. Физические свойства спиртов

Учитывая полярность связи О-Н и значительный частичный положительный заряд, локализованный (сосредоточенный) на атоме водорода, говорят, что водород гидроксильной группы имеет ʼʼкислотныйʼʼ характер.
Размещено на реф.рф
Этим он резко отличается от атомов водорода, входящих в углеводородный радикал. Необходимо отметить, что атом кислорода гидроксильной группы имеет частичный отрицательный заряд и две неподелœенные электронные пары, что дает возможность спиртам образовывать особые, так называемые водородные связи между молекулами. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов - метанол, имея относительную молекулярную массу 32, в обычных условиях жидкость. Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от одного до одиннадцати атомов углерода, - жидкости. Высшие спирты (начиная с С 12 Н 25 ОН) при комнатной температуре - твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, и ок-танол уже не смешивается с водой. Химические свойства Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные радикалы, в связи с этим химические свойства спиртов определяются взаимодействием и влиянием друг на друга этих групп. Характерные для данного класса соединœений свойства обусловлены наличием гидроксильной группы. 1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу крайне важно сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержащего углеводородный радикал, - с другой. Такими веществами бывают, к примеру, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельнымиметаллами (замещаться на них).

С водой это взаимодействие идет значительно активнее, чем со спиртом, сопровождается большим выделœением тепла, может приводить к взрыву. Это различие объясняется электронодонорными свойствами ближайшего к гидроксильной группе радикала. Обладая свойствами донора электронов (+I-эффектом), радикал несколько повышает электронную плотность на атоме кислорода, ʼʼнасыщаетʼʼ его за свой счет, уменьшая тем самым полярность О-Н-связи и ʼʼкислотныйʼʼ характер атома водорода гидроксильной группы в молекулах спиртов по сравнению с молекулами воды. 2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. К примеру: С2Н5ОН + НВг <-> С2Н5Вг + Н2O Данная реакция обратима. 3. Межмолекулярная дегидратация спиртов - отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140 °С образуется диэтиловый (серный) эфир.
Размещено на реф.рф
4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации):

Реакция этерификации катализируется сильными неорганическими кислотами.К примеру, при взаимодействии этилового спирта и уксус-аой кислоты образуется уксусноэтиловый эфир - этилацетат:

5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате ее образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксиль-ной группы при сосœедних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше 140 °С в присутствии концентрированной серной кислоты. 6. Окисление спиртов обычно проводят сильными окислителями, к примеру дихроматом калия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидроксильной группой. Учитывая зависимость отприроды спирта и условий проведения реакции могут образовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:

Третичные спирты достаточно устойчивы к окислению. При этом в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, ĸᴏᴛᴏᴩᴏᴇ происходит с разрывом углерод-углеродных связей, ближайших к гидроксильной группе. 7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, к примеру медью, серебром или платиной, первичные спирты превращаются в альдегиды, а вторичные - в кетоны:

Присутствием в молекуле спирта одновременно нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в воде ярко-синие комплексные соединœения при взаимодействии со свежеполученным осадком гидроксида меди(II).Одноатомные спирты не способны вступать в эту реакцию. По этой причине она является качественной реакцией на многоатомные спирты. Алкоголяты щелочных и щелочноземельных металлов подвергаются гидролизу при взаимодействии с водой. К примеру, при растворении этилата натрия в воде протекает обратимая реакция С2Н5ОNа + НОН <-> С2Н5ОН + NаОН равновесие которой практически полностью смещено вправо. Это также подтверждает, что вода по своим кислотным свойствам (ʼʼкислотномуʼʼ характеру водорода в гидроксильной группе) превосходит спирты. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, взаимодействие алкоголятов с водой можно рассматривать как взаимодействие соли очень слабой кислоты (в данном случае в данном качестве выступает спирт, образовавший алкоголят) с кислотой более сильной (эту роль здесь играет вода). Спирты могут проявлять основные свойства при взаимодействии с сильными кислотами, образуя соли алкилоксония благодаря наличию неподелœенной электронной пары на атоме кислорода гидроксильной группы:

Реакция этерификации обратима (обратная реакция - гидролиз сложного эфира), равновесие смещается вправо в присутствии водоотнимающих средств.Внутримолекулярная дегидратация спиртов протекает в соответствии с правилом Зайцева: при отщеплении воды от вторичного или третичного спирта атом водорода отрывается от наименее гидрированного атома углерода. Так, дегидратация бутанола-2 приводит к бутену-2, а не бутену-1. Наличие в молекулах спиртов углеводородных радикалов не может не сказаться на химических свойствах спиртов. Химические свойства спиртов, обусловленные углеводородным радикалом, различны и зависят от его характера. Так, всœе спирты горят; непредельные спирты, содержащие в молекуле двойную С=С связь, вступают в реакции присоединœения, подвергаются гидрированию, присоединяют водород, реагируют с галогенами, к примеру, обесцвечивают бромную воду, и т. д. Способы получения 1. Гидролиз галогеналканов. Вы уже знаете, что образование галогеналканов при взаимодействии спиртов с галогено-водородами - обратимая реакция. По этой причине понятно, что спирты бывают получены при гидролизе галогеналканов - реакции этих соединœений с водой. Многоатомные спирты можно получить при г

Способы получения солей - понятие и виды. Классификация и особенности категории "Способы получения солей" 2017, 2018.

Соли образуются в результате целого ряда химических превращений. Выбор способа получения каждой конкретной соли зависит от целого ряда факторов, в частности от доступности исходных веществ, а в промышленности определяется в первую очередь экономической целесообразностью.

Разберём некоторые общие подходы к выбору способов получения средних солей.

1. Соли образуются при взаимодействии металлов с неметаллами.

Например , при взаимодействии железа с хлором образуется хлорид железа(\(III\)):
2 Fe + 3 Cl 2 ⟶ t ° 2 Fe Cl 3 .

При нагревании смеси железа с серой образуется сульфид железа(\(II\)):
Fe + S ⟶ t ° FeS .

2. Соли образуются при взаимодействии металлов с кислотами.

Например , при взаимодействии железа с соляной кислотой образуется хлорид железа(\(II\)):
Fe + 2HCl → Fe Cl 2 + H 2 .

При взаимодействии магния с серной кислотой образуется сульфат магния:
Mg + H 2 SO 4 → M gSO 4 + H 2 .

3. Соли можно получить, используя реакции замещения, протекающие при взаимодействии металлов с другими солями.

Например , сульфат железа(\(II\)) образуется при взаимодействии железа с сульфатом меди(\(II\)):
Fe + Cu SO 4 → Fe SO 4 + Cu ↓ .

Нитрат магния образуется при взаимодействии магния с нитратом серебра:
Mg + 2 Ag NO 3 → M g NO 3 2 + 2 Ag ↓ .

4. Соли образуются при взаимодействии основных, кислотных или амфотерных оксидов с оксидами, принадлежащими к другой группе оксидов.

Например , при взаимодействии основного оксида кальция с кислотным оксидом углерода(\(IV\)) образуется карбонат кальция:
CaO + CO 2 → Ca CO 3 .

При нагревании смеси основного оксида магния с амфотерным оксидом алюминия образуется алюминат магния:
MgO + Al 2 O 3 ⟶ t ° Mg AlO 2 2 .

5. Соли образуются при взаимодействии основных и амфотерных оксидов с кислотами.

Например , сульфат меди(\(II\)) можно получить, используя оксид меди(\(II\)) и серную кислоту:
CuO + H 2 SO 4 → Cu SO 4 + H 2 O .

Хлорид цинка можно получить, используя оксид цинка и соляную кислоту:
ZnO + 2 HCl → Zn Cl 2 + H 2 O .

6. Соли образуются при взаимодействии кислотных и амфотерных оксидов с основаниями.

Например , при пропускании углекислого газа через известковую воду (водный раствор гидроксида кальция) выпадает осадок карбоната кальция:
Ca OH 2 + CO 2 → Ca CO 3 ↓ + H 2 O .

При взаимодействии оксида серы(\(IV\)) с гидроксидом натрия образуется сульфит натрия:
2 NaOH + SO 2 → Na 2 SO 3 + H 2 O .

7. Соли образуются при взаимодействии кислот с основаниями или с амфотерными гидроксидами.

Например , сульфат меди(\(II\)) можно получить, используя гидроксид меди(\(II\)) и серную кислоту:
Cu OH 2 + H 2 SO 4 → Cu SO 4 + 2 H 2 O .

Нитрат алюминия образуется в результате взаимодействия гидроксида алюминия с азотной кислотой:
Al OH 3 + 3 H NO 3 → Al NO 3 3 + 3 H 2 O .

8. Соли можно получить, используя химическую реакцию обмена, протекающую между кислотой и другой солью.

Например , при взаимодействии сульфида железа(\(II\)) с серной кислотой образуется сульфат железа(\(II\)):
FeS + H 2 SO 4 → Fe SO 4 + H 2 S .

Хлорид кальция образуется при взаимодействии соляной кислоты (водного раствора хлороводорода) с карбонатом кальция:
CaCO 3 + 2 HCl → CaCl 2 + H 2 O + CO 2 .

9. Соли образуются при взаимодействии щелочей с растворимыми в воде солями.

Например , нитрат натрия образуется в результате химической реакции, протекающей между гидроксидом натрия и нитратом меди(\(II\)):
2 NaOH + Cu NO 3 2 → 2 Na NO 3 + Cu OH 2 ↓ .

Сульфат калия образуется в реакции обмена, протекающей между гидроксидом калия и сульфатом железа(\(III\)):
2 KOH + Fe SO 4 → K 2 SO 4 + Fe OH 2 ↓ .

10. Соли образуются в реакциях обмена, протекающих между другими солями.

Например , чтобы получить бромид серебра, можно в качестве исходных веществ использовать нитрат серебра и бромид калия:
Ag NO 3 + KBr → AgBr ↓ + KNO 3 .

Сульфат бария образуется в реакции обмена, протекающей между сульфатом натрия и хлоридом бария:
Na 2 SO 4 + Ba Cl 2 → Ba SO 4 ↓ + 2 NaCl .

11. Соли можно получить, разлагая некоторые другие соли.

Например , хлорид калия образуется при термическом разложении хлората калия (бертолетовой соли):
2 KCl O 3 ⟶ катализатор t ° 2 KCl + 3 O 2 .

Осадок карбоната кальция образуется при разложении гидрокарбоната кальция:
Ca HCO 3 2 ⇄ t ° CaCO 3 ↓ + H 2 O + CO 2 .