Понятие индукции. Что такое Дедукция и Индукция

Проводник с электрическим током имеет способность накапливать энергию в магнитном поле. Подобное явление называется индуктивностью. У обычного проводника, имеющего прямую форму, эта величина имеет небольшое значение, но если проводнику придать вид спирали и одинаковую направленность тока с соседними проводниками, то их поля будут взаимодействовать. При этом усилится индуктивность. Но есть факт того, что воздух значительно их ослабляет.

Человеческий мозг предположил следующее: поле должно протекать вокруг проводников не по воздуху, а по железу, сопротивляемость которого магнитному полю намного меньше. Такие катушки являются индуктивными.

Свойства

При подаче напряжения к индуктивной катушке, в ней происходит линейное нарастание тока , а при его снятии начинается его падение. Моментально остановить его протекание в катушке не представляется возможным, как, например, нельзя сразу остановить автомобиль, мчащийся на скорости. При попытке быстро остановить нарастание этого параметра, произойдёт удар напряжения, равный тому, что оно, при этом, может вызвать искровой разряд. Подобное явление получило название самоиндукция. На этом принципе основана работа катушки зажигания в автомобиле.

Коэффициент самоиндукции - это есть индуктивность. Иными словами: величина, которая характеризует связь между находящимся в проводнике электрическим током и магнитным полем, создаваемым при протекании. Эта мера представляет сумму потока индукции. Прямая зависимость её от конфигурации проводника и от проницаемости доказана.

При подаче на катушку электрического тока постоянного напряжения, в катушке возникает напряжение, противоположное напряжению электрического тока (Е =U), которое исчезает через некоторое время. Это противоположное напряжение называется ЭДС (электродвижущей силой самоиндукции). Параметр зависит от индуктивности катушки.

Как найти индуктивность

Формулы индуктивности будут выглядеть следующим образом:

  • Ф = LI (магнитный поток в контуре);
  • Е= LdI/dt (ЭДС самоиндукции).

ЭДС определяет энергию магнитного поля, от этой величины зависит противодействие системы при изменении тока. При этом ЭДС самоиндукции направлена противоположно последнему.

Перевод слова «индукция» с латинского языка (induct) - побуждение, наведение . Исходя из сказанного, понятно, что это величина, которая характеризует магнитные свойства электрической цепи. Ток проводящего контура создаёт в окружающем его пространстве магнитное поле. При этом, возникающий в контуре поток Ф, имеет прямую ему пропорциональность. Формально записывается это так: Ф=LI, где L - коэффициент пропорциональности или коэффициент самоиндукции контура. Его определяют размеры и формы контура, а также, магнитная проницаемость среды.

Энергия W магнитного поля тока I определяется по формуле: W =LI2/2. При проведении аналогии между электрическим и механическими явлениями, энергия сопоставима с кинетической энергией тела T=mv2/2, где m - масса, v - скорость. Тогда индуктивность подобна массе, а ток - скорости. Это наглядное сравнение помогает лучше понять суть. Эта интересная характеристика определяет инерционные свойства электрического тока.

На практике для увеличения её значения применяют катушки с сердечниками из ферромагнетиков , их свойства имеют зависимость от напряжённости магнитного поля и, следовательно, I. В основном это ферритовые пластины из электротехнической стали. Эффективность применения сердечников довольно значительна: индуктивность катушки возрастает в несколько раз. Помимо цилиндрических, распространены тороидальные варианты, они позволяют достичь большей индуктивности, из-за наличия замкнутого магнитного потока.

Индуктивность соленоида определённой длины, имеющего N витков и площадь поперечного сечения S в среде, имеющей проницаемость m равна:

где m0- магнитная проницаемость вакуума.

Измерение индуктивности катушки можно провести в лабораторных условиях. За единицу индуктивности в системе СИ принимается 1 Генри - она измеряется в контуре с магнитным потоком в 1 Вб, сила тока при этом в контуре равна 1 Амперу. В системе Гаусса индуктивность равняется 1 Гн = 10⁹ см.

Для того, чтобы её определить, нужно измерить действующее значение переменного тока и его частоту, а также, напряжение на катушке и её активное сопротивление:

  1. R - омическое сопротивление катушки.
  2. F - частоту переменного тока.
  3. U - напряжение.
  4. I - силу тока.

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

  • L = N х F: I.

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F: I,

где F - магнитный поток, I - ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI: dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I 2: 2.

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк - это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U: R,

где I характеризует силу тока, U - показывает напряжение, R - сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка - источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN 2 R 2: 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N 2 R 2: 2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

  • df: dt = L dl: dt.

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом - ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n 2 V,

где µ0 показывает магнитную проницаемость вакуума, n - это число витков, V - объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N 2 S: l,

где S - это площадь поперечного сечения, а l - длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

  • B= µ0nI,

где µ0 - это магнитная проницаемость вакуума, n - это число витков, а I - значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

  • E = LI 2: 2,

где L показывает значение индуктивности, а E - запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для в

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить формула используется следующая:

  • XL = W х L,

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное то формула будет выглядеть следующим образом:

Важными характеристиками колебательного контура являются резонансная частота, и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

  • Q = R√C: L.

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C: (1 - 4Π 2 f 2 LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f - это частота, L - индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида - апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp -пакета, Lm - главных шин, а Lb - индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc: n + µ0 l х d: (3b) + Lb,

где l - длина шин, b - ее ширина, а d - расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

движение знания от единичных утверждений к общим положениям. Тесно связана с дедукцией. Логика рассматривает индукцию как вид умозаключения, различая индукцию полную и неполную. Психология изучает развитие и нарушения индуктивных рассуждений. Движение от единичного к общему знанию анализируется в его обусловленности всеми психическими процессами и строением мыслительной деятельности в целом. Пример экспериментальных исследований индуктивных рассуждений - опыты с образованием искусственных понятий.

ИНДУКЦИЯ

способ рассуждения, когда умозаключение идет от частного к общему.

И. как операция обобщения бывает полной или частичной. Полная И. довольно затруднительна, поскольку требует учета, изучения каждого элемента, входящего в определенное множество, в один класс (порядок) явлений. Напр., при социологических опросах невозможно узнать, что думают о тех или иных проблемах миллионы людей. Выделяют поэтому только сравнительно небольшие их группы, типичные по основным показателям (пол, возраст, доходы, образование, профессия, место жительства, национальная и религиозная принадлежность) по отношению к основному множеству. На примерном учете мнений этих групп и делают обобщения, совершают операцию частичной И. Ср. АНАЛОГИЯ, ДЕДУКЦИЯ.

ИНДУКЦИЯ

induction) - 1. В акушерстве - начало искусственно стимулированных родов. Медицинская индукция (medical induction) осуществляется с помощью таких лекарственных веществ, как простагландины или окситоцин, которые стимулируют маточные сокращения. Хирургическая индукция (surgical induction) выполняется с помощью амниотомии (искусственного вскрытия плодных оболочек) обычно совместно с применением окситоцина и его аналогов. Индукция родов производится в случае, если жизни матери или ребенка угрожает опасность при дальнейшем продолжении беременности. 2. В анестезии - введение анестезии. Общая анестезия обычно индуцируется с помощью внутривенной инъекции или введения наркотических препаратов кратковременного действия, например, тиопентона.

ИНДУКЦИЯ

1. Процесс рассуждения, при котором общие принципы выводятся из конкретных случаев. Вообще, это логическая операция, которая осуществляется от частного к общему; то, что признается истинным в отношении элементов класса, признается истинным и в отношении целого класса Экспериментальный метод в основном индуктивный по своей природе, так как заключения о популяциях выводятся из наблюдений за отдельными личностями и малыми выборками. Ср. здесь с дедукцией. 2. Процесс, посредством которого воздействия передаются от одного "предмета" к другому. "Предмет" здесь понимается наиболее широко. Принято говорить, что эмоции передаются от человека к человеку через симпатическую индукцию, электрические поля – через индукционные катушки, нервное возбуждение или торможение могут быть индуцированы в одну область посредством распространения активности из других областей, скорости реакций – посредством отрицательных эффектов поведенческого контраста и т.д. 3. Способ поддержания дисциплины родителями, когда родители используют устное рассуждение для того, чтобы индуцировать ребенка думать о своих действиях и их последствиях.

индукция

Гипнотические опыты традиционно начинаются с индукции. Имеются в виду более или менее ритуализованные начала, предположительно способные облегчить доступ к гипнотическому функционированию и сравнимые с «дебютами» в шахматах.

Форма индукций с течением времени менялась. В разное время предпочтение отдавалось то прикосновениям (Месмер), то магнетическим пассам (Пюиселор), приказаниям уснуть (Фариа), фиксации взора (Брейд), внушению сна (Льебо), прямому внушению (Бернгейм, Фрейд), обаянию (эстрада)... И несть числа предлагавшимся ухищрениям и способам.

В новом гипнозе индукции менее формальны и не содержат монотонных повторений. Гипноз приобретает вид беседы. Сопровождение в приятном воспоминании - это простой и сдержанный способ, позволяющий освоиться с эриксоновскими подходами.

Эриксон советует по мере возможности применять утилизирующие индукции, в которых в качестве отправной точки принимается то, что уже имеется в душе пациента; в крайнем случае индукция становится парадоксальной.

Несмотря на то, что в новом гипнозе терапевт в каждом отдельном случае приспосабливает свой подход к индивидуальности пациента, замечено, что каждый оператор имеет свои излюбленные методы. Индукция представляет собой выбор терапевта в его опыте и подразумевает ответственность за то, «загон действует.

Индукция

от лат. inductio - выведение), процесс логического вывода на основании перехода от частных положений к общим, умозаключение от фактов к некоторой гипотезе (общему утверждению). Среди наиболее важных законов индуктивной логики выступают правила доказательства, связывающие причину и следствие: 1)всегда, когда возникает причина, возникает и феномен (следствие); 2)всегда, когда есть феномен (следствие), ему предшествует причина; 3)если варьирует причина, варьирует и феномен; 4)если причина имеет дополнительные свойства, то и феномен приобретает дополнительные свойства. Различают полную индукцию, когда обобщение относится к конечнообозримой области фактов, и неполную индукцию, когда оно относится к бесконечно- или конечнонеобозримой области фактов.

История

Термин впервые встречается у Сократа (др.-греч. Έπαγωγή ). Но индукция Сократа имеет мало общего с современной индукцией. Сократ под индукцией подразумевает нахождение общего определения понятия путём сравнения частных случаев и исключения ложных, слишком узких определений.

Индуктивный метод

Различают двоякую индукцию: полную (induction complete) и неполную (inductio incomplete или per enumerationem simplicem). В первой мы заключаем от полного перечисления видов известного рода ко всему роду; очевидно, что при подобном способе умозаключения мы получаем вполне достоверное заключение, которое в то же время в известном отношении расширяет наше познание; этот способ умозаключения не может вызвать никаких сомнений. Отождествив предмет логической группы с предметами частных суждений, мы получим право перенести определение на всю группу. Напротив, неполная И., идущая от частного к общему (способ умозаключения, запрещённый формальной логикой), должна вызвать вопрос о праве. Неполная И. по построению напоминает третью фигуру силлогизма, отличаясь от неё, однако, тем, что И. стремится к общим заключениям, в то время как третья фигура дозволяет лишь частные.

Умозаключение по неполной И. (per enumerationem simplicem, ubi non reperitur instantia contradictoria) основывается, по-видимому, на привычке и даёт право лишь на вероятное заключение во всей той части утверждения, которая идёт далее числа случаев уже исследованных. Милль в разъяснении логического права на заключение по неполной И. указал на идею однообразного порядка в природе, в силу которой наша вера в индуктивное заключение должна возрастать, но идея однообразного порядка вещей сама является результатом неполной индукции и, следовательно, основой И. служить не может. В действительности основание неполной И. то же, что и полной, а также третьей фигуры силлогизма, то есть тождество частных суждений о предмете со всей группой предметов. «В неполной И. мы заключаем на основании реального тождества не просто некоторых предметов с некоторыми членами группы, но таких предметов, появление которых перед нашим сознанием зависит от логических особенностей группы и которые являются перед нами с полномочиями представителей группы». Задача логики состоит в том, чтобы указать границы, за пределами которых индуктивный вывод перестаёт быть правомерным, а также вспомогательные приёмы, которыми пользуется исследователь при образовании эмпирических обобщений и законов. Несомненно, что опыт (в смысле эксперимента) и наблюдение служат могущественными орудиями при исследовании фактов, доставляя материал, благодаря которому исследователь может сделать гипотетическое предположение, долженствующее объяснить факты.

Таким же орудием служит и всякое сравнение и аналогия, указывающие на общие черты в явлениях, общность же явлений заставляет предположить, что мы имеем дело и с общими причинами; таким образом, сосуществование явлений, на которое указывает аналогия, само по себе ещё не заключает в себе объяснения явления, но доставляет указание, где следует искать объяснения. Главное отношение явлений, которое имеет в виду И., - отношение причинной связи , которая, подобно самому индуктивному выводу, покоится на тождестве, ибо сумма условий, называемая причиной, если она дана в полноте, и есть не что иное, как вызванное причиной следствие. Правомерность индуктивного заключения не подлежит сомнению; однако логика должна строго установить условия, при которых индуктивное заключение может считаться правильным; отсутствие отрицательных инстанций ещё не доказывает правильности заключения. Необходимо, чтобы индуктивное заключение основывалось на возможно большем количестве случаев, чтобы эти случаи были по возможности разнообразны, чтобы они служили типическими представителями всей группы явлений, которых касается заключение, и т. д.

При всём том индуктивные заключения легко ведут к ошибкам, из которых самые обычные проистекают от множественности причин и от смешения временного порядка с причинным. В индуктивном исследовании мы всегда имеем дело со следствиями, к которым должно подыскать причины; находка их называется объяснением явления, но известное следствие может быть вызвано целым рядом различных причин; талантливость индуктивного исследователя в том и заключается, что он постепенно из множества логических возможностей выбирает лишь ту, которая реально возможна. Для человеческого ограниченного познания, конечно, различные причины могут произвести одно и то же явление; но полное адекватное познание в этом явлении умеет усмотреть признаки, указывающие на происхождение его лишь от одной возможной причины. Временное чередование явлений служит всегда указанием на возможную причинную связь, но не всякое чередование явлений, хотя бы и правильно повторяющееся, непременно должно быть понято как причинная связь. Весьма часто мы заключаем post hoc - ergo propter hoc , таким путём возникли все суеверия, но здесь же и правильное указание для индуктивного вывода.

Примечания

Литература

  • Владиславлев М.И. Английская индуктивная логика // Журнал Министерства народного просвещения.1879. Ч.152.Ноябрь.С.110-154.
  • Светлов В.А. Финская школа индукции // Вопросы философии.1977. № 12.
  • Индуктивная логика и формирование научного знания. М.,1987.
  • Михаленко Ю.П. Античные учения об индукции и их современные интерпретации // Зарубежное философское антиковедение.Критический анализ. М., 1990. С.58-75.

См. также

Wikimedia Foundation . 2010 .

- (греч. philosophía, буквально – любовь к мудрости, от philéo – люблю и sophía – мудрость) форма общественного сознания; учение об общих принципах бытия и познания, об отношении человека и мира; наука о всеобщих законах развития природы,… …

Позитивизм … Википедия

I (греч. hypothesis основание, предположение, от hypó под, внизу и thésis положение) то, что лежит в основе, причина или сущность. Например, «атомы» Демокрита, «идеи» Платона, «перводвигатель» Аристотеля. В современном словоупотреблении Г … Большая советская энциклопедия

Логика (др. греч. λογική «наука о рассуждении», «искусство рассуждения» от λόγος «речь», «рассуждение») наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Поскольку это… … Википедия

Совокупность философских идей, образов, концепций, присутствующих во всем контексте отечественной культуры, начиная с ее возникновения до сего дня. Генезис отечественной культуры и возникшей в ее лоне протофилософской мысли уходит в глубины… … Философская энциклопедия

Дедукция (лат. deductio выведение) метод мышления, при котором частное положение логическим путем выводится из общего, вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического… … Википедия

Дедукция (лат. deductio выведение) метод мышления, при котором частное положение логическим путем выводится из общего, вывод по правилам логики; цепь умозаключений (рассуждение), звенья которой (высказывания) связаны отношением логического… … Википедия

В данной статье мы рассмотрим существующее в физике обозначение - индукцию. Мы ознакомимся с некоторыми ее характеристиками и изучим существующие разновидности. Помимо физики, данный термин встречается и в других сферах человеческой деятельности.

Введение

В физике индукция - это соотношение коэффициента пропорциональности с электрическим током, движущимся вдоль замкнутого контура. А также он имеет магнитный поток полного типа. Называют потокосцеплением.

Индуктивность выступает в качестве электрической инерции, уподобляясь инерции тела механической природы. В качестве меры, для определения электрического инерциального коэффициента, необходимо использовать ЭДС индукции.

Существует понятие об индуктивных свойствах прямых длинных проводов. Здесь замкнутый контур может определять полезность действия путем определения особых уточнений.

В физике, индукция - это форма выражения показателя ЭДС самоиндукции в пределах контура, которая возникает при изменении величины тока.

При наличии заданного параметры силы тока, индуктивность будет определять энергетический потенциал магнитного поля, которое создал этот ток.

Обозначающие средства

При измерении показателя индуктивности в пределах системы СИ, для ее обозначения используют «Гн». Один контур вмещает себя величину индукции равную одному генри. Но для этого необходимым условием является изменение тока на один ампер ежесекундно. Данное требование дает контуры на выводе с показателем возникшего напряжения, равного одному вольту.

Системные возможности СГС позволяют нам измерять показатель индуктивности при помощи Гауссовой системы. СГСЭ единицей, определяющей данную величину, служит статгенри. Однако очень часто ей не дают имени.

Обозначение символом L увековечило имя ученого Э. Х. Ленца. По имени Дж. Генри также назвали единицу измерения величины индуктивности. Предложил ввести в терминологию понятие индуктивности О. Хевисайд, а сделал он это в 1886 году.

Немного теории

Проводящий контур, по которому протекает ток, образует вокруг себя магнитное поле, за счет деятельности электричества.

С точки зрения квазистатического приближения, рассмотрение подразумевает в себе то, что переменная электрического поля довольно слаба либо изменяется довольно медленно, для того чтобы ей можно было пренебрегать магнитным полем, которое они порождают. Это соответствует условиям закона Био-Савара-Лапласа. Суммирование всех полей, которые порождает любая единица, пропорциональная такому току, показывает нам то, что в физике вектор магнитной индукции, его поле, соответствует данному явлению электричества, такому же току.

Такие данные соответствуют протеканию процесса в вакууме. Если имеется присутствие магнетика, с достаточно мощным показателем магнитной восприимчивости, то вектор индукции станет ярко выражать различие, в сравнении с тем, как он себя вел в отсутствии такой среды.

Контур одновиткового типа и индуктивность катушки

Одновитковые контуры, пронизанные величиной потока магнитной природы, связаны с уровнем тока, что выражается здесь:

Где L - это индуктивная способность единичного витка.

При наличии количества витков в размере - N, выражение принимает другой вид:

В таком виде Ψ = ∑ (N, I = 1) Φi - это общее количество потоков магнитной природы, проходящих сквозь имеющиеся витки. L - становится индуктивностью катушки с большим количеством витков. Ψ - величина потокосцепления.

L - называют коэффициентом пропорциональности или самоиндукции. В случае, когда ток воздействует на все витки с равной силой, получаем Ψ = N Φ. Этому соответствует L N = L 1 N 2 .

О соленоиде

Соленоид - это катушка, у которой диаметр гораздо меньше ее длины. Наличие данной характеристики при отсутствии магнитных материалов, выражающих свою плотность магнитных потоков в системе СИ, фактически имеет постоянный показатель.

Абсолютное заполнение пространства внутри катушки создаст различие в индуктивности. Разница выражается в множителе относительной магнитной проницаемости.

Понятие об электростатической индукции

Индукция в физике - это «многогранное» явление, которое способно иметь место в различных разделах рассматриваемой их науки.

Индукция электростатической природы представляет собой наведение личного поля электростатического типа телом, на которое воздействует внешнее эл. поле.

Основания для этого явления заключены в перераспределении зарядов, находящихся внутри проводящего тела. Процесс поляризации набора внутренних микроструктур у тел непроводящего типа, также подтверждает такой вид индукции. Внешние электрические поля могут заметно искажаться, находясь рядом с телом, обладающим индуцированным эл. полем.

Явление в проводниках

Значение индукции в физике позволяет нам, при помощи ряда других знаний о природе тока, определять, что процесс перераспределения зарядов внутри металлов, имеющих высокий показатель проводимости, в условиях воздействия внешнего эл. поля, будет протекать до момента его полной взаимной компенсации. А также это приведет к появлению разно заряженных наведенных зарядов, расположенных на противоположных концах самого проводника.

Рассмотрение такого явления важно при решении задач по физике. Индукция электростатической природы используется для их заряжения. Это можно показать, если заземленный проводник подвергнуть воздействию тела с отрицательным зарядом, путем их сближения. С учетом отсутствия их соприкосновения, некоторая часть «-» зарядов отправится в землю, замещаясь при этом зарядами «+». Теперь, если мы уберем заземление и тело, имеющее заряд, последнее все равно будет заряжено положительно. Такие же действия, но в отсутствии заземления, обусловят индуцированное перераспределение зарядов внутри проводника. Это приведет к тому, что каждая его часть обретет нейтральную форму.

Индукция магнитной природы

В физике магнитная индукция - это величина, определяемая векторами и являющаяся силовым параметром магнитного поля в конкретно указанной точке. Позволяет обнаруживать силу поля, воздействующего на заряды.

Индукция магнитного поля в физике может определяться в качестве отношения максимального момента силы механического типа, действующего на рамку под напряжением, помещенную в поле однородного характера, к параметру произведения силы тока в пределах рамки, ее площади.

Считается, что именно это явление объясняет и закладывает основу для определения фундаментальной которое является аналогичным вектору, указывающему на напряженность эл. поля.

Система СГС измеряет магнитную индукцию при помощи гауссов (Гс), а система СИ использует единицы Тесла (Тл). Один Тл соответствует 10 4 Гс.

Прибор, измеряющий показатель такого типа индукции, называется тесламетром.

Индукция электромагнетизма

Электромагнитную индукцию физика 11 класса представляет в форме явления, при котором возникает электрополе в условиях замкнутого контура, сквозь который проходит изменяющийся магнитный поток. М. Фарадей в 1831 году обнаружил, что ЭДС, появляющаяся в таком контуре, соблюдает пропорциональность скорости, при которой изменяется магнитный поток. Это показатель движущей электричество силы, независимо от причины, обусловливающей изменение потока - изменения свойств самого поля или контурного движения, его части, в маг. поле. Ток, который вызывает такой ЭДС, называют индукционным.

Г. Х. Эрстедом в 1820 году было доказано, что вследствие воздействия протекающей цепи тока, магнитная стрелка будет отклоняться. Когда эл. ток порождается магнетизмом, то сам магнетизм должен быть связанным с электротоком. обуславливающие процессы.

Данную мысль стал детально изучать английский ученый М. Фарадей. Попытка получить электричество из магнетизма была его главной целью в жизни на тот момент. Его старания насчитывают огромнейшее количество опытов, который он проводил, но без успеха. Однако в 1831 г., 29 августа, его постиг триумф. Было открыто явление электромагнитной индукции в физике. Установка, при помощи которой был совершен прорыв, базируется на кольце, изготовленном из железа с относительно высокой мягкостью. Его ширина составляла два см, и в диаметре достигала 15. Он намотал на колечко большое количество витков проволоки из меди, на обеих половинах кольца. Цепочка первой обмотки производила замыкание проволоки. В витках располагалась стрела, для обнаружения электромагнитной индукции. Вторая половина обмотки пропускала ток в гальванические элементы от батареи. Включение электрического напряжения вызывало колебания на магнитной стрелке, которые вскоре утихали; прерывание подачи тока вызывало вспыхивание и затухание движений указателя. Было выяснено, что стрелочка отклоняется в одном направлении, когда ток подавали, и в другом, когда его прерывали. М. Фарадей определил, что превращение сил магнетизма в электричество можно совершить при помощи простого магнита.

Выводы

Из всего выше прочитанного, можно заключить, что в физике индукция - это многогранное количество явлений, которые могут обнаруживаться в разных областях изучения физики. Данная величина свое выражение находит при помощи ряда векторов. По характеру и природе явления может делиться на магнитную, электростатическую и электромагнитную индукции. Данное свойство тока позволяет рассчитывать множество значений, например, таких, как параметры проводников. Оно выражает ЭДС, лежащее в пределах определенного контура. Изначально явление индукции было гипотезой, которая была возведена в статус теории посредством множества проведенных опытов, подтверждающих и объясняющих суть устройства данного механизма. Также важно знать, что данное явление может носить несколько иной характер, если оно наблюдается в соленоиде. В жизни человека этот механизм является условием, на основе которого строится современная система передачи тока на большие расстояния, а также играет важную роль при создании самой энергии. Понимание индукции и вытекающих из нее следствий, позволяет человеку эксплуатировать ее для достижения личностных производственных целей.